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Abstract 
Benefit-cost Integrated Assessment Models (IAMs) have been largely used for optimal policies and mitigation 
pathways countering climate change. However, the available models are relatively limited in the representation 
of regional heterogeneity. This is despite strong evidence of significant variation of local mitigation costs and 
benefits, institutional capacity, environmental and economic priorities. Here, I introduce RICE50+, a benefit-cost 
optimizing IAM with more than 50 independently deciding regions or countries. Its core foundation is the DICE 
model, improved with several original contributions. These include new calibrations on actual mitigation cost 
data, full integration of recent empirically based impact functions, alternative socioeconomic reference 
projections as well as normative preferences, including welfare specifications explicitly featuring inequality 
aversion. Due to its high level of regional detail, the model can support researchers in better investigating the role 
of heterogeneity in international cooperation, cross-country inequalities, and climate change impacts under a 
variety of mitigation pathways and scenarios. 
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Code and Data Availability 
All code for the described model can be accessed at: https://github.com/witch-team/RICE50xmodel. All data used 
for the illustrative results and code to reproduce following figures can be accessed at: https://github.com/witch-
team/RICE50xmodel/releases/download/v1.0.0/SESMO_results_dataset.zip.  
 

 

1.  Introduction 

As time passes, climate change has become one of the most important and challenging global problems, with 
severe potential consequences for natural ecosystems and human societies. In its last reports (IPCC, 2018; IPCC, 
2021), the Intergovernmental Panel on Climate Change once more called for immediate and ambitious 
mitigating actions. Among the models that climate scientists and economists use to inform policymakers on 
climate policies, Integrated Assessment Models (IAMs) play a significant and influential role (e.g., see Weyant et 
al., 1996; Weyant, 2014, 2017). These models are called integrated due to the different subject areas – economy, 
energy, and climate – interconnected within a common framework.  
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Weyant (2017) classifies IAMs into two main categories: detailed process (DP) and benefit-cost (BC). DP-IAMs 
usually provide more information as they include: economic sectors, a high degree of geographical 
disaggregation, and a more complex system for physical feedbacks. Their main usages comprise the analyses of 
climate impacts, mitigation, and interactions between impact sectors under mitigation and adaptation policies. 
BC-IAMs, on the other hand, aggregate the physical impacts, the economic costs of climate change, and the 
benefits of GHG emissions mitigation. They are extensively adopted to perform long-term optimal assessments, 
which are usually too onerous and time-consuming applications for the complexity of DC-IAMs. These 
assessments notably include: (1) the evaluation of long-term optimal trajectories for global GHG emissions (i.e., 
balancing the marginal cost against the marginal damages resulting from the last ton emitted), (2) the 
assessment of corresponding policy-equivalent prices to charge for those emissions,  (3) the evaluation of 
additional costs of nonoptimal climate policies, and (4) the estimation of the Social Cost of Carbon (SCC), an 
important indicator of the marginal damage caused by an additional ton of carbon emissions (cf. Weyant, 2014). 
Weyant (2017) illustrates some significant limitations and key improvement directions for this modelling 
research field. 
 
This paper focuses on the crucial aspect of regional socio-economic heterogeneity representation in BC-IAMs. 
Popular BC optimizing models like RICE (Nordhaus, 2010; Nordhaus & Yang, 1996), PAGE (Hope, 2008), FUND 
(Anthoff, 2009), C^3 IAM (Wei et al., 2020), CWS (Eyckmans & Tulkens, 2003), WITCH (Bosetti et al., 2006), MICA 
(Lessmann et al., 2015), and STACO (Nagashima et al., 2009), execute from 6 up to 16 independent regions only. 
Despite the coherent grouping criteria applied, this may raise some legitimate doubt on their capability of 
properly capturing local growth differences, climatic vulnerabilities, and mitigation costs, as they all significantly 
vary across countries (van den Berg et al., 2020). 
 
In fact, and most notably, recent and debated empirical evidence on climate economic impacts point out strong 
heterogeneities across countries, with potential winners and losers related to local temperature deviations (e.g., 
see Burke et al., 2015; Dell et al., 2012; Diffenbaugh & Burke, 2019; Kahn et al., 2019). They also esteem 
significant higher impacts than previously expected. However, I have found only a few attempts of implementing 
these studies as BC-IAMs impact functions in the literature so far. Glanemann et al. (2020) implement the 
general rule found by Burke, Hsiang, and Miguel (2015) –hereafter BHM– in DICE, but, given the single-region 
nature of this model, they had to fit an aggregated response to the global mean temperature increase. Moore 
& Diaz (2015) implement the impact function by Dell, Jones, and Olken (2012) –henceforth DJO– in a two-region-
only extension of the DICE model. Ricke et al. (2018) provide country-level impact projections linked to local 
temperatures but do not apply any optimizing framework. To the best of my knowledge, no implementation of 
these empirical impact functions has been introduced in any BC-IAMs that accounts for an adequate number of 
regions yet. 
 
Besides impacts, abatement cost curves also vary remarkably across regions, as they depend on specific local 
conditions (e.g., local fuel prices, wind and solar potential, insolation; cf. Gillingham & Stock, 2018). Detailed-
Process model outcomes are therefore extensively used to calibrate the marginal abatement costs curves 
(MACCs) in benefit-costs optimizations. However, when a high level of aggregation is applied, their regionally 
differentiated expressivity undoubtedly reduces (e.g., see Weyant, 2017; Hänsel et al., 2020). 
 
Impacts and costs allow, then, to estimate another important economic variable: the Social Cost of Carbon (SCC). 
Defined as the incremental impact related to the emission of an additional ton of carbon dioxide, when 
evaluated on optimal emissions trajectory, the SCC reveals the equivalent carbon tax required to restore 
efficiency.  Recent contributions of Ricke et al. (2018) and Tol (2019) notably show how SCC differ significantly 
across different countries.  
 
Last, spatial heterogeneity also has strong repercussions on efforts coordination (e.g., see Keohane & Victor, 
2016; Li & Rus, 2019; Nordhaus, 2015). Despite the obvious presence of coalitions, alliances, and shared 
objectives, any final decision in international cooperation (and real action-taking) is up to each national 
jurisdiction. This has direct consequences on the estimation of counterfactual scenarios. In fact, these are usually 
based on Business-As-Usual (BAU) assumptions, which account for no mitigation at all. However, recent 
criticisms point out how these scenarios lead to implausibly high emissions (Peters, 2016), whereas a more 
adequate counterfactual reference entails countries that react to climate impacts based on their pure self-
interest. In the context of international climate negotiation, it corresponds to a non-cooperative game-theoretic 
assumption. 
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Here I present a new regional model, called RICE50+, which originates from the well-known Nordhaus’ DICE 
model and aims at tackling these gaps. RICE50+ was developed with the aim to provide a benefit-cost optimizing 
tool that explicitly focuses on cross-region dynamics, with unprecedented detail for major heterogeneity 
components. What follows provides a general description of the model and illustrates all the original 
contributions in its main dynamics, data integration and calibration. Some examples, showing representative 
model outputs and a sensitivity analysis over main benefit-cost drivers importance, complete the technical 
description. 
 

2. Model description and calibrations 

I built the RICE50+ model pursuing four main objectives: (1) introducing a high level of regional representation, 
finer than every other benefit-cost optimizing model known in the literature; (2) providing a direct 
implementation for recent empirically-estimated impact functions, linking them to local temperature dynamics 
and preserving their essential heterogeneity; (3) introducing alternative and coherent socio-economic scenarios 
from detailed-process IAMs projections; and (4) keeping an adequate focus on cross-regional implications as 
well as bearable optimization solving-times, finding a well-balanced compromise with economies detail. 
 
I started from Nordhaus’ Dynamic Integrated Climate-Economy (DICE) model (Nordhaus, 1994, 2010), among 
the simplest yet most used and known benefit-cost IAMs. I chose not to start from RICE (Nordhaus & Yang, 1996) 
as it is older and oversophisticated. Hereafter I always refer to its latest DICE-2016R2 formulation, used by 
Nordhaus (2018), unless otherwise stated. The RICE50+ model is written in GAMS (GAMS Development 
Corporation, 2013) and is executed using CONOPT, a solver for large-scale nonlinear optimization (NLP). What 
follows will provide a detailed description for all implemented advancements, original contributions, and new 
calibrations operated. 

2.1 Time and regions 

The model runs on discrete time-steps, lasting five years each, starting from 2015. To avoid the end-of-world 
biasing effect (i.e., a closing period with total-consumption and no investments or mitigation policies to boost 
solution welfare performance), run horizon goes up to the year 2300. Meaningful projections outcomes are then 
extracted from the 2015-2100 interval only. 
 
Figure 1 shows all the independently-deciding regions of RICE50+. They have been chosen according to the finest 
detail available from local abatement costs data retrieved from POLES model (Després et al., 2018), as I will 
better illustrate in dedicated Section 2.4. Almost all the most influential economies are represented as single-
country regions. Note how also the European Union is accounted as single member-states (but I included the 
possibility to group them together, acting as a single player). Largest country-groups left are: those aggregating 
states of Persian Gulf (Gulf), Sub-Saharan Africa (SSAfr) and middle East (MEast); members of the former Soviet-
Union (FSU); and secondary players of Latin-America (RSAm) and South-East-Asia (RSEAs). Sub-Saharan Africa, 
notably, is the widest geographical and political aggregation left. Unfortunately, it reflects the lack of detailed 
data as well as the high uncertainties currently concerning several African economies. I plan to further subdivide 
this in future model updates, as soon as more detailed data will become available. See also Table S1 in the 
Supplementary Material for a full mapping between model regions and their ISO3 countries. 

2.2 Economy and projections 

RICE50+ regional economies largely inherit from Nordhaus’ DICE/RICE models’ representation. GDP outputs are 
expressed in Purchasing Power Parity (PPP), which means they adjust for price differences, providing a correct 
comparison of income levels across countries. GDP gross output 𝑌GROSS,𝑖(𝑡), for region i at each timestep t, is 

the result of a Cobb-Douglas production function in capital 𝐾𝑖(𝑡), labour 𝐿𝑖(𝑡) and total factor productivity 
TFP𝑖(𝑡): 

 𝑌GROSS,𝑖(𝑡) = TFP𝑖(𝑡) ⋅ 𝐾𝑖(𝑡)𝛼 ⋅ 𝐿𝑖(𝑡)1−𝛼 .  (1) 
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Figure 1: Geographical representation for RICE50+ model regions. Subdivision reflects the finest available resolution for local 
abatement cost curves. 

 
Labour and TFP have exogenous trends, calibrated to match the Shared Socio-economic Pathways (SSPs) (O’Neill 
et al., 2014; Riahi et al., 2017) population and GDP-growth projections. Hence, the model can execute five 
alternative and coherent future reference-baselines, from SSP1 to SSP5. To expand SSPs projections beyond 
2100 (country-level data cover 2015-2100 period only), I followed a conservative approach. I extrapolated the 
growth-rates from last available time-period for both population and GDP, and I progressively reduced them up 
to 2200. From 2200 on, levels stabilize and keep constant till the end of model time-horizon. This approach was 
chosen to avoid potentially unjustified long-term conjectures and, at the same time, reduce model biasing at 
minimum for the current century. Figure S1 in the Supplementary Material shows stacked projections for both 
regional population and GDP in a SSP2 scenario. 
 
In benefit-cost optimizing models, the savings rates 𝑆𝑖(𝑡) are usually left as free variables to be evaluated by the 
solver. They determine regions’ internal investments, and consequent capital formation according to the 
equations: 

 𝐼𝑖(𝑡) = 𝑆𝑖(𝑡) ⋅ 𝑌𝑖(𝑡), (2) 
and: 

 𝐾𝑖(𝑡 + 1) = (1 − 𝑑𝑘)𝛥𝑡 ⋅ 𝐾𝑖(𝑡) + 𝛥𝑡 ⋅ 𝐼𝑖(𝑡). (3) 
 
Variable 𝑌𝑖(𝑡) represents the final GDP output accounting for climate-change impacts 𝛺𝑖(𝑡), and abatement 
costs 𝛬𝑖(𝑡, 𝜇𝑖) that are related to mitigation decisions 𝜇𝑖(𝑡): 

 
𝑌𝑖(𝑡) =

𝑌GROSS,𝑖(𝑡)

𝛺𝑖(𝑡)
− 𝛬𝑖(𝑡, 𝜇𝑖). 

(4) 

 
In RICE50+, I implemented two alternative execution modes: 1. free-option, where 𝑆𝑖(𝑡) variables are left 
endogenous and freely optimized as in the original DICE/RICE models; 2. fixed-option, where 𝑆𝑖(𝑡) variables are 

fixed, starting from current values (WEO) and linearly converging to DICE-2016R2 optimal projection 𝑆 by the 
end of the time-horizon. This optimal level results as a function of capital elasticity in production function 𝛼, 
depreciation rate on capital per year 𝑑𝑘, elasticity over the marginal utility of consumption 𝜂, elasticity of output 
to capital 𝜁, and pure rate of social time preference 𝜌 (also known as utility discount rate): 

 
𝑆 = 𝛼 ⋅

(𝑑𝑘 + ζ)

(𝑑𝑘 + ζ ⋅ 𝜂 + 𝜌)
. 

(5) 

 
Table 1 shows all default values for these parameters, following DICE-2016R2 formulation (Nordhaus, 2018). A 
discussion on the highly influential parameters of discount rate 𝜌 and elasticity over the marginal utility of 
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consumption 𝜂 follows in Section 2.7, dedicated to the social welfare function. Last, note that the savings rate 
definition lets regions invest only internally. I chose to keep this limitation for the moment, given the complexity 
of modelling cross-region capital flows. Future improvements of the model may address this point more 
adequately. 
 

Table 1: Default values for main economic normative parameters (cf. DICE-2016R2). 

Parameter Default value Description 

𝑑𝑘     0.1 Depreciation rate on capital per year 

𝛼    0.3 Capital elasticity in production function 

𝜁    0.004 Elasticity of output to capital 

𝜂    1.45 Elasticity over the marginal utility of consumption 

𝜌    0.015 Pure rate of social time preference (i.e., discount rate) 

 

2.3 Emissions and carbon-intensity calibration 

Industrial emissions are directly related to output 𝑌GROSS,𝑖(𝑡) by the carbon-intensity 𝜎𝑖(𝑡), which exemplifies 

fossil-fuel-share in production sectors: 

 𝐸IND,𝑖(𝑡) = 𝜎𝑖(𝑡) ⋅ 𝑌GROSS,𝑖(𝑡) ⋅ (1 − 𝜇𝑖(𝑡)). (6) 

 
The control variable 𝜇𝑖(𝑡) represents regions’ emissions-mitigation choice (expressed in percentage units). As in 
the original DICE definition, and for the sake of simplicity, I assumed that the control rate 𝜇𝑖(𝑡) implicitly 
encompasses technological change, while carbon-intensity 𝜎𝑖(𝑡) is kept exogenous (hence, same limitations and 
caveats apply, e.g., see Nordhaus, 2008).  Future model developments will try to endogenize the technological 
change effect (e.g., following Bosetti et al., 2008; Popp, 2004; van der Zwaan et al., 2002). 
 
To calibrate exogenous 𝜎𝑖(𝑡) I started from the DICE carbon-intensity definition, applied to each region: 

 𝜎𝑖(𝑡 + 1) = 𝜎𝑖(𝑡) ⋅ exp( 𝑔𝑖(𝑡) ⋅ 𝛥𝑡), (7) 

where the cumulative improvement of energy efficiency 𝑔𝑖(𝑡) evolves according to: 

 𝑔𝑖(𝑡 + 1) = 𝑔𝑖(𝑡) ⋅ (1 + 𝑑𝑖)
𝛥𝑡 . (8) 

 
Although DICE model has a single trend for its carbon-intensity, in RICE50+ it varies according to SSP-reference. 
I therefore assumed DICE trend as representative for middle-of-the-road SSP2 baseline, and hence I calibrated 
𝜎ssp,𝑖(𝑡) following a two-step process. First, I assessed its parameters’ values to best match the SSP2 baseline, 

then I proportionately determined other-SSP values accordingly. 
 
To best match the SSP2 baseline I imposed, for all curves of eq. (7), their passage through known 2015 levels. 

Then, I estimated optimal decreasing rates 𝑑𝑖  – and consequently 𝑔𝑖(𝑡) and 𝜎𝑖(𝑡) terms – which minimize the 
difference between resulting emissions (obtained from eq.(6), by imposing 𝜇𝑖(𝑡) = 0), EnerData MACC emission 
baselines (available for 2025-2040 period, as described later in dedicated Section 2.4), and regional emission-
projections from SSP2-marker-model (MESSAGE-GLOBIOM, available for 2015-2100 period). Beyond 2100 I 
opted for a conservative smooth convergence, for each region, to DICE-2016R2 global carbon-intensity levels by 
year 2200. Therefore, at each point in time, final carbon-intensity for SSP2 results as a convex-combination of 
two components: 

 𝜎ssp2,𝑖(𝑡) = (1 − cc(𝑡)) ⋅ 𝜎𝑖(𝑡) + cc(𝑡) ⋅ 𝜎DICE(𝑡), (9) 

with coefficient cc(𝑡) following a smooth sigmoid transition from 0 to 1 for 𝑡 ∈ [2100,2200]. 
 
As a second step, I evaluated carbon-intensities also for other socio-economic scenarios. I added 𝑚𝑖(𝑠𝑠𝑝), an 
SSP-dependent multiplier, in eq. (7), also accounting for previously optimized 𝑔𝑖(𝑡) term: 

 𝜎𝑖(𝑠𝑠𝑝, 𝑡 + 1) = 𝑚𝑖(𝑠𝑠𝑝) ⋅ 𝜎𝑖(𝑠𝑠𝑝, 𝑡) ⋅ exp( 𝑔𝑖(𝑡) ⋅ 𝛥𝑡). (10) 
 
As before, I imposed passage through 2015 levels and computed optimal 𝑚̂(𝑠𝑠𝑝) – and 𝜎𝑖̂(𝑠𝑠𝑝, 𝑡) – values that 
minimize differences between resulting emissions and regional emission projections from each SSP-marker-
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model. Beyond 2100 I kept the convex combination between calibrated curves and an SSP-corrected DICE global 
carbon-intensity: 

 𝜎𝑖(𝑠𝑠𝑝, 𝑡) = (1 − cc(𝑡)) ⋅ 𝜎𝑖̂(𝑠𝑠𝑝, 𝑡) + cc(𝑡) ⋅ 𝜉(𝑠𝑠𝑝) ⋅ 𝜎DICE(𝑡). (11) 
 
Correction factor: 

 
𝜉(𝑠𝑠𝑝) =

𝜎̂World,2100(𝑠𝑠𝑝)

𝜎World,ssp2,2100

 
(12) 

reflects the resulting proportion, in year 2100, between each SSP world-aggregated carbon-intensity (from 
calibrated values) and the SSP2 one.  
 
Regions can reduce their baseline emissions by increasing their choice over percentage mitigation 𝜇𝑖(𝑡) ∈
[0%, 120%]. Unlike the original DICE/RICE, I introduced limitations on the maximum mitigation increasing rate. 
Following assumptions as in Hänsel et al. (2020), I fixed a 20% maximum increase every (5-years) period. As a 
direct consequence, negative emissions (ranging from 100% to 120% mitigation as in the original DICE) cannot 
be achieved before the year 2050 by construction. The same limit is applied to decreasing mitigation rates, 
preventing the possibility of abrupt reversion of emissions to BAU levels. 

2.4 Abatement costs and MAC curves 

To determine the regional Marginal Abatement Cost (MAC) curves I differentiated between three time periods. 
For the near future (2025-2040), I fitted continuous curves on EnerData-EnerFuture data projections, retrieved 
from the detailed process-based model POLES, an energy-sector model jointly developed with the European 
Commission (Després et al., 2018). For the rest of the century, I extracted emissions and abatement potential 
from detailed-process IAMs reviewed in the IPCC SR1.5 (IPCC, 2018). In the very long term (post 2100), model 
assumptions converge to DICE trend, driven by a backstop technology. 
 
As previously mentioned, and shown by Figure 1, the MACC dataset has significant higher detail for European 
countries, with coarser aggregations for African, South-East Asian, and Latin American ones. Despite it being the 
most granular dataset of this kind (at the moment of RICE50+ definition), I acknowledge this could lead to a 
potential European bias and, therefore, a potential limitation. I commit to improving the model on this aspect 
when better and more detailed datasets become available. 
 

2.4.1 Data-driven phase 

To evaluate the individual abatement cost curves, I started from EnerData-EnerFuture MAC data, which provide, 
for each region, industrial CO2 projected reductions for several carbon-price levels over the 2025-2040 period. 
First, I identified the best continuous curve fitting those data. I compared R-squared goodness measures for 
different candidate curves (see Figure S2a in Supplementary Material C), and I analyzed qualitatively their 
performances for the most influential economies (Figure S2b in Supplementary Material C shows curves for the 
China region, as a representative example). A fourth-exponent polynomial curve turned out to be the best-
matching model: 

 𝐶PRICE,𝑖(𝑡, 𝜇) = 𝑎𝑖(𝑡)𝜇𝑖 + 𝑏𝑖(𝑡)𝜇𝑖
4. (13) 

 
I extended the region-specific 𝑎𝑖(𝑡) and 𝑏𝑖(𝑡) coefficients also to time-steps not directly covered by EnerData 
projections. This preserves a primal differentiating component among different regions. Then, I introduced an 
additional multiplying correction factor 𝜈𝑖(𝑡) to better regulate these curves to the state-of-the-art assumptions 
in the Integrated Assessment Modelling community (i.e., Riahi et al., 2017; IPCC, 2018): 

 MAC𝑖(𝑡, 𝜇) = 𝜈𝑖(𝑡) ⋅ (𝑎𝑖(𝑡)𝜇𝑖 + 𝑏𝑖(𝑡)𝜇𝑖
4). (14) 

 
I first exploited the 𝜈𝑖(𝑡) multiplier to harmonize the calibrated curves with the SSP-models ones to increase 
general consistency (i.e., limit the risk of overfitting to the POLES model assumptions). To this end, I extracted 
the MAC curves from the SSPs database, using policy scenarios with different carbon-price projections. I used 
those curves to evaluate the best value 𝜈(𝑡), equal for all regions, which minimizes the difference between 
RICE50+ globally abated emissions and the correspondent SSP ensemble’s median levels. 
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2.4.2 Backstop phase 

For the long-term period, given the absence of any regional-detailed projection, I decided to follow the original 
DICE model, by adopting an exogenous global backstop (i.e., carbon-free technology whose cost depends on 
R&D investments, cf. Nordhaus, 2008; Bosetti & Tavoni, 2009) curve. It is defined as: 

 BT(𝑡) = 𝑝𝑏𝑎𝑐𝑘 ⋅ (1 − 𝑔𝑏𝑎𝑐𝑘)𝑡−1, (15) 

with 𝑝𝑏𝑎𝑐𝑘 = 550 and 𝑔𝑏𝑎𝑐𝑘 = 0.025 as in DICE2016-R2. 
 
After an intermediate transition phase (described in the following subsection), from time 𝑡 ≥ 𝑡BT I imposed to 
match backstop values for a 100% mitigation level (𝜇𝑖̂ = 1) for each regional MAC curve, obtaining correction 
factor 𝜈𝑖̂(𝑡) values accordingly: 

 𝜈𝑖̂(𝑡) ⋅ (𝑎𝑖(𝑡)𝜇𝑖̂ + 𝑏𝑖(𝑡)𝜇𝑖̂
4) = BT(𝑡)|𝑡≥𝑡BT

. (16) 

 

2.4.3 Transition phase 

Transition towards a common backstop curve begins in 2045 (first timestep without EnerData projections) and 

terminates in 𝑡BT. It is regulated by the correction parameter 𝜈𝑖(𝑡) which moves from 𝜈(𝑡) (for 𝑡 = 2040) to 
𝜈𝑖̂(𝑡) (for 𝑡 = 𝑡BT) according to: 

 𝜈𝑖(𝑡) = 𝜈𝑖̂(𝑡) − cb(𝑡) ⋅ max(𝜈𝑖̂(𝑡) − 𝜈𝑖(𝑡),0). (17) 
 
Transition coefficient cb(𝑡) follows a smooth sigmoid dynamic (a commonly used functional form for transitional 
technology, e.g., see Rogers, 2010): 

 
cb(𝑡) =

1

1 + 𝑒
−𝑘⋅(𝑡−

1
2

 (𝑡BT−𝑡))

, 
(18) 

where parameter 𝑘 affects general transition speed and smoothness. I qualitatively selected 𝑘 and 𝑡BT after 
evaluating several tests and comparing model responses to increasing carbon-tax policies with the SSPs models 
ensemble. Figure S3 in Supplementary Material C shows an example for this qualitative evaluation. 
 

2.4.4 Final abatement costs 

Regional abatement costs 𝛬𝑖  are related to mitigation level 𝜇𝑖  according to the equation: 

 
𝛬𝑖(𝑡, 𝜇𝑖) = ∫ 𝐸BAU,𝑖

𝜇𝑖

0

(𝑡) ⋅ MAC𝑖(𝑡, 𝜇𝑖) 𝑑𝜇, 
(19) 

where 𝐸BAU,𝑖(𝑡) represents regions’ baseline industrial emissions, as from eq. (6) in absence of mitigation 

(𝜇𝑖(𝑡) = 0). Therefore, from the integration of eq. (14), it follows that in RICE50+ abatement costs are ultimately 
evaluated as: 

 
𝛬𝑖(𝑡, 𝜇𝑖) = 𝜈𝑖(𝑡) ⋅ 𝐸BAU,𝑖(𝑡) ⋅ (

𝑎𝑖(𝑡)

2
𝜇𝑖

2 +
𝑏𝑖(𝑡)

5
𝜇𝑖

5). 
(20) 

2.5 Global and local climate 

The atmospheric concentrations of greenhouse gases are obtained by modelling the equations of the carbon 
cycle for three reservoirs (atmosphere, the upper oceans and biosphere, and the lower oceans, respectively) as 
in the original DICE family of models (e.g., see Nordhaus, 2008; 2018). CO2-effect on radiative forcing RFCO2

(𝑡) 

is then determined by its changes in the atmospheric concentration 𝑀CO2
(𝑡) from the pre-industrial reference 

level 𝑀CO2,pre as follows: 

 𝑅𝐹CO2
(𝑡) = am ⋅ ln(𝑀CO2

(𝑡)/𝑀CO2,pre) (21) 

 
Then, total forcing results from equation: 

 𝑅𝐹(𝑡) = 𝑅𝐹CO2
(𝑡) + 𝑅𝐹OGHG(𝑡), (22) 

where 𝑅𝐹OGHG(𝑡) is an exogenous addition related to other-greenhouse-gases (OGHG) contribution (described 
in the following section). Finally, the global atmospheric mean temperature increase 𝛥GMT(t) is computed 
following the DICE-2016R2 two-layer model, adjusted in its exchange-coefficients to match the MAGICC6 model 
emulation (Meinshausen et al., 2011). 
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In most climate-economy IAMs, climate variables are considered only at the global level, mainly due to 
computational reasons. However, in RICE50+ regional temperature responses to greenhouse gas emissions are 
also needed to assess the heterogeneous warming impacts across countries. For this purpose, I used the CMIP51 
database (Taylor et al., 2011) to implement a calibrated statistical downscaling method. Data provide historical 
projections for temperature and precipitation at the 0.5° gridded level on an average annual basis. Values were 
aggregated to the country level using population weights, preferred over spatial weights to capture better the 
impact on people (i.e., for large countries like China or Canada, where the population concentrates unevenly on 
a smaller portion, it may be significant). I used the population values from the year 2000 kept fixed over time 
(as done by Burke et al., 2015; 2018), obtaining observations for 𝑁 = 244 countries and territories.  
 
Then, from different representative concentration pathways (RCPs), implemented by several global climate 
models, I considered the mean of model ensemble to link the global-mean-temperature increase (𝛥GMT) to the 
country-level average annual temperature. This procedure was repeated for all the RCPs. Finally, I ran a linear 
regression (cf., e.g., Mitchell, 2003; Giorgi, 2008) on this dataset to estimate the ultimate effect of global 
temperature increase 𝛥GMT(𝑡) on local temperature levels in countries 𝑛 at time 𝑡 (measured in absolute °C): 

 𝑇𝑛(𝑡) = p𝑛 + q𝑛𝛥GMT(𝑡) (23) 
 
The 𝑅2 goodness measure for the estimated regressions varies between 0.95 and 0.999. The equivalent p𝑖  and 
q𝑖  coefficients for RICE50+ model regions (which determine local temperatures 𝑇𝑖(𝑡)) are the population-
weighted average of the p𝑛 and q𝑛values for the associated countries, due to their linear relationship. 

2.6 Other GHG and land-use effect 

Land-use (LU) and other greenhouse gases (OGHG) are not the primary focus of this model. Therefore, I decided 
to keep them simple exogenous effects (as in the original DICE formulation) with a few minor adjustments.  
 
OGHGs are modelled as an additional forcing 𝑅𝐹OGHG that sums to the CO2-related 𝑅𝐹CO2

to generate final 

climate forcing 𝑅𝐹(𝑡) (see eq. (22)). I extracted data for both forcing components from SSPs models (Riahi et 
al., 2017), accounting for all baseline and policy experiments. I found that these two components can be linked 
by a linear model, under an acceptable approximation (𝑅2 = 0.608). Therefore, in RICE50+ the additional OGHG 
effect is directly estimated from CO2 forcing by the following linear regression: 

 𝑅𝐹OGHG(𝑡) = 𝑟 ⋅ 𝑅𝐹CO2
(𝑡) + 𝑠, (24) 

with 𝑟 = 0.199 and 𝑠 = −0.011. 
 
To calibrate the regional land-use effect, I obtained the initial 𝐸LU,𝑖(𝑡0) values by aggregating PRIMAP historical 

country-level database (Gütschow et al., 2016). I took the mean values between 2010 and 2015 to reduce the 
impact of historical fluctuations (quite common in LU emissions). Then, I kept the DICE original decreasing trend 
and applied it to each region: 

 𝐸LU,𝑖(𝑡) = 𝐸LU,𝑖(𝑡0) ⋅ (1 − 𝑑)𝑡−1. (25) 

 
Starting from this general rule, I introduced two alternative behaviors. In the first one, all countries equally 
follow the decreasing trend. High-emitting countries will lower their emissions over time, while already negative-
emitting countries will increase their contributions towards the common zero-value asymptote. Under this 
behavior, cumulative LU emissions result in an almost perfectly equivalent global DICE2016-R2 effect. This 
behavior applies to non-mitigative BAU experiments. In the second case, only countries with positive initial 
values follow the decreasing trend, while already negative-emitting ones keep their 𝐸LU,𝑖(𝑡0)  levels constant. 

This behavior leads to a more ambitious cumulative effect and applies in benefit-cost optimizations. 

2.7 Climate impact functions 

The classical approach, used in most IAMs, consists in calibrating a region-specific damage curve, typically based 
on global mean temperature increase. Projected impacts from climate change often include factors like sea-
level rise, increased energy demand, and agricultural productivity changes. Non-market damages, like 

                                                                 
1 An appropriate database for statistical downscaling based on CMIP6 results was not available at the time of model 
construction. I plan on updating it in future releases. 
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ecosystem losses and non-market health impacts, are also often considered. Regional impacts are thus usually 
computed using a damage function which depends on global mean temperature GMT(𝑡) as follows: 

 𝛺𝑖(𝑇(𝑡)) = 𝑎1𝑖 ⋅ 𝛥GMT(𝑡) + 𝑎2𝑖 ⋅ 𝛥GMT(𝑡)𝑎3𝑖 , (26) 

where 𝑎1𝑖 , 𝑎2𝑖 , 𝑎3𝑖  are calibrated, region-specific coefficients. The impact factor 𝛺𝑖, in turn, leads to a GDP 
reduction (or a consumption reduction, depending on the model): 

 
𝑌NET,𝑖(𝑡) =

𝑌GROSS,𝑖(𝑡)

𝛺𝑖(𝑡)
. 

(27) 

 
This approach has some drawbacks. A noteworthy contribution comes from Weitzman (2009), who criticizes 
classical IAMs impact functions, arguing that their extrapolation is hardly well justified. That is due to the high 
nonlinear effects of GHG-induced warming, which lead to fat-tails on the probability density function. That 
implies the possibility of catastrophic events (i.e., tipping points) that may produce, although with low 
probability, harm so great that would be difficult to compensate by ordinary savings. Furthermore, he also 
notices how these functions are usually calibrated upon observations at low degrees of warming, and therefore 
hardly empirically justifiable, as “almost anything can be made to fit the low-temperature damages assumed by 
the modeller” (Weitzman, 2009). 
 
Moreover, there is also general disagreement in the scientific community on whether temperature feedbacks 
affect the level of GDP production or its growth (e.g., see Schlenker & Auffhammer, 2018). Classical IAMs 
functions, that affect solely the level, have been criticized as potentially underestimating the full impacts for the 
long-run growth of the economy (e.g., Pindyck, 2013). On the other hand, the uncertainty is greatest for models 
that specify the effects of temperature on GDP growth, as recently assessed by Newell et al. (2021). 
 
In the RICE50+ model, I chose to take both the growth and level assumptions as alternative options. In addition 
to the classical DICE formulation, which follows eq. (24) and can be regionally calibrated as in RICE (e.g., see 
Nordhaus & Yang, 1996), I added other formulations based on recent empirically estimated impact functions. 
Different specifications of linear impacts 𝛿𝑖,spec(𝑡) on the GDP per-capita baseline growth rate g𝑖(𝑡) have been 

considered for this purpose, as described in the rest of this section. According to this formulation, GDP per-
capita production between periods 𝑡 and 𝑡 + 1 can be written as: 

 GDPCAP,𝑖(𝑡 + 1) = GDPCAP,𝑖(𝑡)(1 + g𝑖(𝑡) + 𝛿𝑖,spec(𝑡)). (28) 

 

This translates into DICE notation as follows: GDPCAP,𝑖(𝑡) =
𝑌NET,𝑖(𝑡)

𝐿𝑖(𝑡)
; thus, replacing the classical impact 

definition of eq. (25), and then equations (1), (2), (3), I obtained a new recursive formula for impacts 𝛺𝑖(𝑡): 

 
𝛺𝑖(𝑡 + 1) =

TFP𝑖(𝑡 + 1)

TFP𝑖(𝑡)
(

𝐿𝑖(𝑡 + 1)

𝐿𝑖(𝑡)
)

−𝛼

⋅ 𝛶𝑖(𝑡)𝛼 ⋅
1 + 𝛺𝑖(𝑡)

(1 + g𝑖(𝑡) + 𝛿𝑖,spec(𝑡))𝛥𝑡
− 1, 

(29) 

where: 

𝛶𝑖(𝑡) = (1 + 𝛿𝑘)𝛥𝑡 + 𝛥𝑡 ⋅ 𝑆𝑖(𝑡) ⋅ TFP𝑖(𝑡) ⋅ (
𝐿𝑖(𝑡)

𝐾𝑖(𝑡)
)

1−𝛼

⋅
1

1 + 𝛺𝑖(𝑡)
. 

 
This implementation is perfectly consistent with the growth-rate empirical impact estimation of eq. (26). 
However, it can lead to numerical issues, notably when the model optimizes policies with an endogenous savings 

rate. Therefore, I also implemented an alternative approximate rule 𝛺̃𝑖(𝑡), equivalent to the standard 𝛺𝑖(𝑡) in 
DICE: 

 
𝛺̃𝑖(𝑡 + 1) = (1 + 𝛺̃𝑖𝑡)

1

(1 + 𝛿𝑖,spec(𝑡))𝛥𝑡
− 1. 

(30) 

 
When fixed-option is enabled for the savings rate, then eq. (27) is generally preferred; eq. (28) otherwise. A 
detailed explanation for this approximation and an estimation of its magnitude are provided in Supplementary 
Material B. In addition to that, Figure S4 in Supplementary Material C shows a qualitative comparison of the two 
specifications under indicative model conditions.   
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2.7.1 Burke et al. (2015) specification 

The regional temperature patterns (obtained as described in Section 2.5) allowed us to integrate an impact 
function based on Burke et al. (2015), who find an inverse U-shaped relationship between economic growth and 
average annual temperatures across countries and over time. Their contribution, grounded on fifty years of data 
across a large set of countries, estimates a global quadratic relationship for both temperature and precipitation 
(I concentrated on the former, as it is easier to work with and has less uncertainty). They estimate distributed 
lag models with 1–5 lags of a quadratic temperature polynomial to explore the persistence of temperature 
effects. They obtain, as base-case, the following function of growth effects, solely related to the country-level 
temperature variable 𝑇𝑖(𝑡): 

 h(𝑇𝑖(𝑡)) = 0.0127 ⋅ 𝑇𝑖(𝑡) − 0.0005 ⋅ 𝑇𝑖(𝑡)2. (31) 
 
Impacts on the production growth rate 𝛿𝑖,BHM(𝑡) are then obtained by computing the difference between the 

result of eq. (29) at time 𝑡 and its base-value under reference temperatures 𝑇𝑖0 (defined as the average values 
between 1980 and 2010): 

 𝛿𝑖,BHM(𝑡) = h(𝑇𝑖(𝑡)) − h(𝑇𝑖0). (32) 

   
I included four major BHM specifications for the eq. (29) coefficients. They include different lags assumptions – 
capturing either short-run (SR) or long-run (LR) effects – and whether a differentiation between rich and poor 
countries (i.e., countries whose GDP per-capita [PPP] is respectively higher or lower than the overall median in 
the base year) is considered. All these coefficients are reported in Table 2.  
 

Table 2: Specifications’ coefficients for BHM impacts. 

Spec. 𝑇𝑖 coeff. 𝑇𝑖
2 coeff. Applies for 

SR 0.01271 -0.00048 all 

LR -0.00374 -0.00009 all 

SRdiff 0.00889 -0.00031 rich 

SRdiff 0.02543 -0.00077 poor 

LRdiff -0.00269 -0.00002 rich 

LRdiff -0.01860 0.00015 poor 

  

Last, BHM also estimate their function separately for the first half and for the second half of the data, finding no 
statistical difference in the mean temperature response. They conclude there is no evidence of adaptation that 
should be incorporated into projections of the future effects of climate change.  
 

2.7.2 Dell, Jones, and Olken (2012) specification 

Another specification I implemented in RICE50+ comes from the contribution by Dell et al. (2012) – hereafter 
DJO – who provide a different and forerunner empirical estimation for regional impacts. The authors assessed a 
linear relationship between local temperature and economic growth. Impacts on the production growth rate 
are obtained based on a general effect (almost irrelevant), and a more significant negative effect of an additional 
1.655 percentage point reductions for poor countries only (defined as in the former BHM-differentiated case): 

 𝛿𝑖,DJO(𝑡) = 0.00261 ⋅ (𝑇𝑖(𝑡) − 𝑇𝑖0)

− 0.01655 ⋅ (𝑇𝑖(𝑡) − 𝑇𝑖0)|
GDPCAP,𝑖(𝑡0)<Median(GDPCAP,𝑖(𝑡0)) .

 
(33) 

Its implementation in the model follows what was already described in the previous section. 
 

2.7.3 Kahn et al. (2019) specification 

I implemented a third empirical-based contribution by Kahn et al. (2019), who similarly estimated a linear 
relationship between local temperature and economic growth related to deviations of the country-level 
temperatures over the historical norm. Their main results point out that a temperature increase by one degree 
leads to a growth rate reduction by 5.86 percentage points, while a decrease by one degree implies a reduction 
by 5.20 percentage points. The authors did not find a significant differentiated response between rich and poor 
countries. I used their main specification (that accounts for a 30-years interval) to compute the historical norm 
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as a moving average (starting from 1980-2010, consistent with the case of Burke et al., 2015). I hence obtained 
the following specification for the growth effect 𝛿𝑖,Kahn(𝑡): 

 𝛿𝑖,Kahn(𝑡) = −0.0586([𝑇𝑖(𝑡) − 𝑇𝑖(𝑡 − 1)] − [𝑇𝑖(𝑡 − 1) − 𝑇𝑖(𝑡 − 2)])|𝑇𝑖(𝑡)>𝑇𝑖(𝑡−1)

−0.0520([𝑇𝑖(𝑡) − 𝑇𝑖(𝑡 − 1)] − [𝑇𝑖(𝑡 − 1) − 𝑇𝑖(𝑡 − 2)])|𝑇𝑖(𝑡)<𝑇𝑖(𝑡−1)

 
(34) 

with 𝑇𝑖(𝑡 − 1) = 𝑛−1 ∑ 𝑇𝑖
𝑛
𝜏=1 (𝑡 − 𝜏) for 𝑛 = 6 (each t accounts for 5 years). 

 

2.7.4 Long-run impacts bounding 

Cumulative growth effects resulting from the described impact functions can lead, in very few specific countries 
(i.e., those with the coldest reference temperature), to extreme values in GDP production along the three-
centuries execution period (cf. Figure S5 in Supplementary Material C). As a notable example, a very cold country 
like Finland, under the BHM-SR impact specification and a non-cooperative policy scenario, may gain up to 
+384% of baseline GDP value by 2100 (consistent with its projections in Burke et al., 2005). In 2200 Finland 
positive impacts raise to more than +20000% and increase even further afterwards. 
 
To dampen this evident degenerating trend and therefore minimize the risk of biasing model optimal outputs, I 
decided to impose a maximum bound to regional impacts magnitude. I opted for a reasonable compromise of 
capping GDP impacts within the [+100%, −100%) interval over no-climate-change baseline (cf. Figure S5b in 
Supplementary Material C). Alternative approaches demonstrated to be inadequate. A decay effect, for 
example, would insufficiently smooth out the magnitude of these few extreme trends (cf. Figure S5c in 
Supplementary Material C), with the drawback of introducing an arbitrary (and more substantial) influence to 
all the other countries. 

2.8 Cooperation and social welfare 

Regions maximize their inter-temporal welfare in either a non-cooperative (self-interested) or cooperative 
setting. The former yields the Nash equilibrium obtained optimizing mitigation strategy for each country while 
taking others’ behavior as given. It uses an iterative algorithm that converges to the open-loop Nash equilibrium. 
On the other hand, the cooperative is modelled as equivalent to there being a global social planner, which 
maximizes a utility function aggregating the welfare of all regions. 
 
As in the original DICE/RICE formulations, the RICE50+ model optimizes the flow of generalized consumption 
over time. It assumes that regions maximize the following social welfare function: 

 
𝑊 = ∑ ∑ [𝑤(𝑡, 𝑛) ⋅ 𝐿(𝑡, 𝑛) ⋅ (

1

1 − 𝜂
⋅ ((

𝐶(𝑡, 𝑛)

𝐿(𝑡, 𝑛)
)

1−𝜂

− 1) − 1) ⋅ (1 + 𝜌)−𝑡]

𝑡𝑛

. 
(35) 

Parameter 𝜌 denotes the pure rate of social time preference, while 𝜂 is the inter-temporal elasticity of 
substitution. 
 
RICE model uses Negishi weights (i.e., welfare weights equal to the inverse of the marginal utilities of 
consumption, as described by Nordhaus & Yang, 1996) for 𝑤(𝑡, 𝑛), but their distortion of inter-temporal 
preferences has been criticized and their implications are at odds with welfare economics (e.g., see Stanton, 
2010). In RICE50+ I’ve therefore implemented a welfare function which disentangles preferences over inter-
temporal discount 𝜌 (as in original formulation) and regional inequality aversion 𝛾: 

 

𝑊 = ∑ [
1

1 − 𝜂
(∑ 𝑤pop

𝑛

(𝑡, 𝑛) (
𝐶(𝑡, 𝑛)

𝐿(𝑡, 𝑛)
)

1−𝛾

)

1−𝜂
1−𝛾

− 1]

𝑇

𝑡=1

⋅ (1 + 𝜌)−𝑡 , 

(36) 

with population-weights 𝑤pop(𝑡, 𝑛) = 𝐿(𝑡, 𝑛)/(∑ 𝐿𝑛 (𝑡, 𝑛)) and 𝛾 ≠ 1 condition. Parameter 𝜌 is set to 1.5% in 

the default specification, and 𝜂 = 1.45 is close to what expert elicitation by Drupp et al. (2018) has found. For 
𝛾 = 0, the resulting objective simply maximizes world average consumption; for 𝛾 = 𝜂, the formulation 
collapses to the standard DICE welfare function. Increasing 𝛾 value allows a gradual change from equal marginal 
utility to population weighting. Atkinson & Brandolini (2010) consider 𝛾 values between 0.2 and 2.5 as defensible 
(see also Berger & Emmerling, 2017; Emmerling et al., 2016). For the default specification I chose an 
intermediate value of 𝛾 = 0.5, close to the value found by Tol (2010) and values used by the U. S. Census Bureau 
(2000). Table 3 shows the four main reference levels for 𝛾 tested in the model. 



P. Gazzotti (2022) Socio-Environmental Systems Modelling, 4, 18038, doi:10.18174/sesmo.18038  

 12  

 
Table 3: Inequality aversion main reference levels. 

Parameter 𝛾 value Interpretation 

0 No inequality aversion 

0.5 Intermediate inequality aversion (𝛾 < 𝜂) 

1.45 High inequality aversion, (𝛾 = 𝜂) 

2 Very high inequality aversion, (𝛾 > 𝜂) 

 

3. Illustrative results 

In this section, I conclude the model description showing some representative results of the benefit-cost 
outputs. Runs include all the socio-economic baselines (SSP1-SSP5) and the climate-impact specifications 
described. They also account for all the four levels of inequality aversion (𝛾) from Table 3; note that this covers 
the full range suggested by Atkinson & Brandolini (2010). I also explored three different values for the utility 
discount rate 𝜌 over the 0.1% - 3% interval. Cooperation and non-cooperation execution modes are both 
considered. 
 
Figure 2 shows the primary globally aggregated outcomes. Panel (a) shows optimal projections for world 
emissions trajectories, with colors depicting cooperation and inequality aversion levels. Thicker lines highlight a 
representative intermediate reference scenario: SSP2 baseline, BHM-SR impacts and 1.5% utility discount rate. 
Projections show that non-cooperative outputs have significantly lower emissions than no-climate-change 
Business-As-Usual (BAU). They also visibly display the largest uncertainty range, suggesting a strong correlation 
with scenario definition. On the contrary, with cooperation, only inequality neutrality (𝛾 = 0) presents 
significant uncertainty. From 𝛾 = 0.5 to higher values, all projections indicate the needing for fast and firm 
mitigation, with some negative emissions reached in the second half of the century. Panel (b) shows optimal 
Global Mean Temperature (GMT) increase distributions associated with these scenarios. They consistently 
follow the emissions trajectory patterns, reflecting both ranges and ultimate target ambition. 
 

 
Figure 2: Benefit-cost optimal world-aggregated emissions projections (a) and 2100 Global Mean Temperature (GMT) increase 
distribution (b). Colors distinguish among progressively increasing cooperation and inequality aversion. Results include all 
impact specifications, discount rates, and SSPs baselines. Thicker lines highlight projections for a representative intermediate 
SSP2 reference, with BHM-SR impacts and 1.5% utility discount rate. 
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Figure 3: Panel (a) reports 2050 regions mitigation efforts over their GDP per-capita for all scenarios tested. Colors and 
population-weighted regression lines show the ultimate effect of cooperation and inequality aversion in the model. Panel (b) 
and (c) show local population-weighted average temperature increase in 2100 under non-cooperation and cooperation cases. 
Baseline scenario is SSP2 with intermediate values for utility discount rate and inequality aversion.  

 
 
The effect of inequality aversion in the model is well depicted by Figure 3, panel (a). Here mitigative efforts from 
all scenarios (reported as reduction percentages of baseline emissions) are associated with the GDP per-capita 
for each region, for the year 2050. Point size accounts for regions’ populations, while colors indicate non-
cooperation or cooperation with increasing inequality aversion. As evidenced by population-weighted linear 
regressions, the higher the cooperation and inequality-concern, the less the burden left to the poorest, high-
populated states (those hit by the strongest climate impacts). However, while on one side I see inequality 
aversion triggering a true concern from the richest regions, I also notice a saturating effect, since values higher 
than 1.45 don’t vary the result significantly. The substantial effects of cooperation are also visible at a regional 
scale in Figures 3b and 3c. Here, I reported local population-weighted temperature-increase projections for the 
year 2100, which show a significant reduction under cooperation. 
 
Figure 4 depicts residual damages distribution in 2100, under the SSP2 baseline and a non-cooperative scenario. 
Under BHM specifications, short-run impacts (SR) generate winners (cold countries) and losers (warm countries), 
while long-run impacts (LR) negatively affect all countries. Differentiated rich/poor responses exacerbate both 
scenarios’ patterns. Under DJO, a marked difference between the two groups persists, while Kahn specification 
leads to generalized negative impacts, as all the countries deviate from their historical norm. 
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Figure 4: Impacts distribution in 2100 for each implemented specification under the SSP2 baseline and an intermediate utility 
discount rate. Only non-cooperative (most severe) scenarios are reported. 

 
 

 
Figure 5: Uncertainty drivers associated with global mean temperature (GMT) increase projected in 2100. For each of three 
major categories (Overall, Coop. only, Non-coop. only) the correlation ratio (η2) expresses a percentage measure of drivers’ 
importance to the final GMT outcome. The eta-squared correlation ratio, according to the law of total variance, does not 
require the input variables to be independent or identically distributed. 
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Last, Figure 5 shows a sensitivity heatmap with the estimated importance of model drivers in determining GMT 
increase in 2100. For each of the three major projected categories (i.e., heatmap rows: Overall, Coop-only, Non-
coop-only) the eta-squared correlation ratio (evaluated from an ANOVA of GMT outputs) denotes a percentage 
measure of each driver importance. The eta-squared correlation ratio, according to the law of total variance, 
does not require the input variables to be independent or identically distributed. First-row values (Overall, 
accounting both for cooperative and non-cooperative outputs) confirm that, unsurprisingly, cooperation is by 
far the most determining driver. More interestingly, I observe how the Non-coop scenarios (third row) are 
largely driven by the socio-economic baselines, followed by the impacts specifications and, last, the utility 
discount rate. In contrast, Coop scenarios (second row) are proportionally driven more by the normative utility 
discount rate and inequality aversion than impacts or SSP projections. 
 

4. Conclusions 

In this paper, I presented RICE50+, an extension of Nordhaus’ RICE/DICE Integrated Assessment Models, 
featuring the noteworthy granularity of 57 independently deciding regions. I extensively described all the 
introduced novelties: the calibrations of local economic projections, mitigation costs, climate and temperatures 
downscaling process; the direct implementation of impact functions based on recent empirical findings; last, the 
alternative solving options for cooperation and inequality aversion. Some illustrative results confirmed that the 
added regional detail plays an extensive role in benefit-cost outcomes. Moreover, results suggest also that the 
degree of inequality aversion has a significant impact on both the global emissions pathway and the regional 
distribution of mitigation efforts. Last, it is also worth pointing out how this implicitly demonstrated the solving 
feasibility for optimizations with such a disaggregated detail level. In fact, IAMs complexity may rapidly escalate, 
turning fast to unbearable solving times. CONOPT solver converges and finds optimal policies in less than 30 
minutes when RICE50+ is run on a commercial laptop.  
 
Several future developments and improvements have already been identified at this stage. Among these, the 
noteworthiest are: (1) the definition of time-varying coalitions, which mix cooperative (within coalitions) and 
non-cooperative (between coalitions) behaviors; (2) the introduction of explicit adaptation decisions (currently 
missing), which can reduce the local impact effect with some costs; (3) a better representation of endogenous 
spillovers from technological changes; and (4) the introduction of potential geoengineering leverages like Solar 
Radiation Management and Direct Air Capturing. The automatized process which performs all described 
calibrations can be reused and readjusted to integrate any future data-source update or findings. 
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