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Abstract 
Will you be able to run your computational models in the future? Even with well-documented code, this can be 
difficult due to changes in the software frameworks and operating systems that your code was built on. In this 
paper we discuss the use of containers to preserve code and their software dependencies to reproduce simulation 
results in the future. Containers are standalone lightweight packages of the original model software and their 
dependencies that can be run independent of the platform. As such they are suitable for reuse and sharing results. 
However, the use of containers is rare in the field of modeling social-environmental systems. We provide an 
introduction to the basic principles of containerization, argue why it would be beneficial if this tool became 
common practice in the field, describe a conceptual walkthrough to the process of containerizing a model, and 
reflect on near future directions of containerization workflows. 
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1.  Introduction 

Simulations of social-environmental systems help us explore the consequences of alternative assumptions of 
social and environmental processes in systematic and rigorous ways. Moreover, because computer simulations 
are based on explicit algorithms, their results should be more repeatable than natural language narratives about 
processes, even if non-deterministic or emergent chaotic behavior impose certain constraints (McPhillips et al., 
2019). Advancing scientific understanding of societal and environmental phenomena depends on the ability to 
build on the existing body of work. Reusable models can aid in the development of new models as authors often 
borrow useful components from existing models (Bell et al., 2015; Grimm et al., 2020). In these cases, modelers 
would benefit from being able to run the component of interest in a controlled environment where the expected 
results were previously defined. The ability to easily reuse models also facilitates coupling models, combining 
their inputs and outputs to explore feedbacks in novel ways. As such, successful replications of previously 
reported simulation results and comparisons between algorithms to represent processes in different models are 
critical to the advancement of the field. Such knowledge scaffolding requires FAIR (Findable, Accessible, 
Interoperable, and Reusable) models (Wilkinson et al., 2016) that can be readily discovered, shared, and 
executed to produce the expected results. 
 

mailto:Manuela.VanegasF@asu.edu
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://www.sesmo.org/


M. Vanegas Ferro et al. (2022) Socio-Environmental Systems Modelling, 3, 18074, doi:10.18174/sesmo.18074  

 2  

However, FAIR models have not been the norm and reusability is rarely found in published models (Boettiger, 
2015). This is at least in part because the field of modeling social-environmental systems emerged comparatively 
recently, with ad hoc contributions by scholars that often had no formal training in computer science or software 
engineering best practices. We have experienced these issues firsthand. One of the authors published an article 
on model-based research more than 20 years ago accompanied by the model software, taking advantage of the 
(then novel) potential of a web-based journal to disseminate both simulation results and the model code that 
produced them (Janssen & Jager, 1999). However, due to changes in operating systems and software versions, 
the provided executable (the source code was not included) no longer runs. The model-based research is not 
reproducible 20 years after publication. This example underscores why it is important that the field of social-
environmental simulation adopts best practices for reproducibility from computer science and software 
engineering that have been successfully applied in other disciplines like bioinformatics (Jalili et al., 2020) and 
machine learning (Pineau et al., 2020). 
 
Nevertheless, producing reusable models is not straightforward. Reliance on the algorithm’s documentation 
presented in a publication has been proven to be insufficient to replicate the model’s results due to the gap 
between an algorithm’s description and the numerous ways in which it can be implemented (Meadows & Cliff, 
2012; Polhill et al., 2005; Wilensky & Rand, 2007). This ambiguity has been found even when standardized 
documentation is used (Amouroux et al., 2010; Grimm et al., 2020). Noting that publishing model code facilitates 
the replication of its results, CoMSES Net developed a public repository where model source code and 
documentation can be archived and easily accessed (Rollins et al., 2014). The CoMSES Net Computational Model 
Library (https://www.comses.net/codebases/) is designed to provide long-term preservation of published 
models and assigns permanent URLs to uploaded models and DOIs to models that have passed peer review. 
These permanent identifiers should be cited in the corresponding article, so the specific version of the model 
used to generate published results is findable and accessible to the reader in accordance with the FAIR principles 
for scientific data management.  
 
Efforts like public repositories contribute to the transparency of the field and to the reproducibility of archived 
models, but access to the source model code does not guarantee the reproduction of previously obtained 
results. In order to execute published model code, it is often necessary to have full knowledge of all of its 
software, system, and data dependencies and establish an appropriate computational compile-time and run-
time environment accordingly. Even when it is possible to run the model, results may vary with the version of 
the simulation platform, operating system, other dependencies, or hardware used (Hacker et al., 2017; Seppelt 
& Richter, 2005). Over the longer-term (5, 10, or 20 years), the model code will become increasingly difficult to 
run as the modeling frameworks, programming languages, and software systems they depend on continue to 
evolve and the dependencies needed to build and execute the model become unsupported (Hinsen, 2019). 
 
To improve model reusability, we provide an introduction to the use of containers. Containerizing models allows 
model developers to create reproducible packages that include model code, their simulation platform, and any 
additional software requirements, and which can be executed in any machine that supports containerization 
software. Researchers can leverage this tool to facilitate the model development process, since it allows them 
to operate and seamlessly collaborate within a clean and controlled environment where external software 
updates or modifications do not introduce unpredictable alterations to the model’s execution. While we favor 
an early integration of containers into the model development cycle due to the advantages it offers for authors, 
it requires more experience with containerization software than this introductory paper aims to provide, and is 
not required to make models more reusable. Indeed, models can be containerized after they are deemed to be 
ready for publication.  
 
By archiving a containerized version of their model, whether it was developed within a containerized 
environment or not, researchers can ensure that its results are reproducible and that they and other researchers 
will be able to run the code further into the future. Producing a containerized model requires attention to the 
software versions used, any other required dependencies, and following a series of simple steps. However, 
knowledge of how to build or use containerized environments is mostly limited to professional software 
engineers and developers and relatively rare within the social and ecological sciences modeling community. In 
this paper we provide an overview of containers, the concepts needed to understand the containerization of 
simulation models, and their relevance to the production of high-quality scientific software. 
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2.  What is a container? 

Containerization is the process of producing a standalone, executable package that includes all software and 
data needed to run a given software application - this package is called a container image (usually referred to as 
just “image”). For example, a NetLogo model’s image can be pictured as a compressed archive (like a zip file) 
that includes the model source code files, a specific version of the NetLogo platform with its accompanying Java 
Development Kit runtime, and any NetLogo extensions used. These images are simply files and thus can be 
readily shared with other authors or users via dedicated image repositories (e.g., DockerHub for Docker, or Cloud 
Library for Singularity) or through private channels. 
  
Container images can then be used to create a running instance (called a container) with an embedded virtual 
filesystem that only contains the files (e.g., model source code, software or data dependencies, system libraries) 
originally included in the image. This arrangement has been characterized as a host-guest relationship, where 
the host’s hardware is utilized by the guest environment of the container. Host and guest environments are 
independent and do not have direct access to elements from each other, unless explicitly specified and under 
restricted uses. Irrespective of the original operating system or the versions of simulation platforms available in 
the host environment of the computer, the simulations in the container will be run using only the tools that 
were purposefully included in the underlying image. As a consequence, a container can be seen as an isolated 
and controlled runtime environment. 
  
Before containers, these kinds of isolated environments were created through virtual machines, which required 
the installation of a full copy of an operating system and the pre-allocation of a set of computing resources per 
runtime environment (Figure 1). Having several copies of operating systems running on a single machine results 
in increased memory requirements and longer waiting times to start each environment. Instead, containers are 
intended as lightweight applications that can dynamically share computing resources with others, allowing for 
more time- and energy- efficient execution. Virtual machines provide a stronger level of isolation than containers 
because they minimize sharing of computing resources with other virtual machines. In contrast, containers share 
the operating system kernel, which handles the communication with the machine’s hardware, and use its 
scheduler to assign computing resources to each running container. Isolation is achieved by controlling access 
and visibility of processes, so each container can only “see” what belongs to its runtime environment. This 
translates to a noticeable difference in computing resources needed from the point of view of prospective users: 
instead of having to dedicate an entire operating system for each isolated environment (which can quickly 
exhaust a machine’s CPU and memory), it is sufficient to install the container runtime platform that executes 
various containers, using the original operating system as the host. 
 
 

 
 
Figure 1: Comparison between virtual machines (left) and containers (right). 
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Container development was made possible by features present in Linux kernels, thus most of the available tools 
are based on this operating system. In host machines originally running this operating system, containers will 
simply use its kernel as discussed above. Notably, the same kernel can be shared by containers using different 
Linux distributions or versions, which allows to use environments with different Linux distributions on the same 
host machine. When containers are run in machines using a different operating system, it is first necessary to 
start a virtual machine containing the Linux features that are minimally needed to run the containers. It is worth 
noting that Docker containers can also be Windows-based, a functionality supported by Microsoft in recent 
years, which eliminates the need to start a virtual machine if run by a Windows host operating system. For the 
rest of cases where the host operating system does not match the container’s, a lightweight virtual machine is 
used to support the execution of the container. 
 

3.  Advantages of containers 

Being able to produce a controlled running environment that is lightweight and easily shared facilitates the 
production of consistent results from its corresponding model, irrespective of current versions of any software 
dependencies or the operating system of the host machine used to run it. Model development within containers 
is the answer for researchers that feel hesitant about updating their modeling software or any of the extensions 
or packages it uses, in fear of breaking or changing the behavior of their model. Compared to native (i.e., non-
containerized) models, generating the controlled running environments of containerized models requires the 
execution of some additional processes. However, containers have been found to produce a negligible impact 
on CPU, memory, and execution time performance under most circumstances (Di Tommaso et al., 2015; Felter 
et al., 2014), when using a Linux-based host operating system. Still, this efficient performance is expected to be 
lost if it is necessary to start a virtual machine to solve operating system incompatibilities between the host and 
the container platform, as would be the case with MacOS and Windows machines when running Linux-based 
containers. 
 
Containers provide a ready-to-use environment where models can be edited, manipulated and run, eliminating 
the need to ensure that a prospective host machine has all the right versions of the model’s dependencies 
installed. This tool allows models to be reusable among researchers and portable across different operating 
systems. Models that are reusable can aid in model-to-model comparisons (Hales et al., 2003), expedite 
replication studies (Wilensky & Rand, 2007), or can be coupled with other reusable models to facilitate the study 
of feedbacks between the newly connected processes (Robinson et al., 2018). In addition, using the portable 
environment provided by containers allows model users and developers to focus on the code as a probable 
source of inconsistency when unexpected results are obtained, instead of exploring the different ways in which 
the host machine’s operating system or installed software versions could have influenced such results. 
Accordingly, containers can accelerate the collaborative development of a model by allowing team members to 
work on a ready-to-use development environment that can be easily ported to any machine. Portability is also 
important in an education context: if the instructor uses containerized example models, students only need to 
follow a handful of straightforward instructions (discussed in the section “Running a container”) to run the 
model. This would allow them to independently run and interact with the educational material, while having the 
confidence that their version of the model is producing consistent results (Hacker et al., 2017). In the longer 
term, it would also be beneficial to include containerization practices in the curriculum, so future researchers 
have more familiarity with building and running containers. 
 
Containerizing models also reduces the chance that the code will become obsolete and unrunnable in the near 
future. Despite efforts of simulation platforms and computer languages to maintain backwards compatibility, 
software updates regularly add and remove features that can potentially change the model’s results or even 
impede its execution (Boettiger, 2015; Hinsen, 2019). As a result, many older models may need to be modified 
and updated to be capable of being executed today, as is the case for the model described by Janssen and Jager 
(1999). Because a model’s runtime environment is provided by a container, it can run simulations as long as the 
container itself can be executed. Even if the support for current images is discontinued at some future time as 
containerization software itself is updated, it is reasonable to predict a longer life expectancy for the images, 
which enclose both the code and its matching version of the simulation platform, than for the code alone. 
Conversely, containers also offer the opportunity to configure an environment where older versions of an 
operating system and a simulation platform are used, which would allow to run models that could not be run 
otherwise. Rerunning these “legacy” models requires conditions that cannot always be met, like having access 
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to the appropriate software versions and ensuring that the operating system used can share the host machine’s 
kernel. The process of backward engineering the dependencies of a model published several years ago may not 
be straightforward, but containers offer the ability to easily test different environments until the appropriate 
one is found. 
 
Despite their increasing popularity in other areas (Almugbel et al., 2017; Clyburne-Sherin et al., 2019; Morris et 
al., 2017), containers are rare in the field of social-environmental systems and ecological modeling, in part 
because of the learning curve it entails. In many cases, using container platforms requires a basic familiarity with 
command line instructions and, although their integration with graphic user interfaces (GUIs) is possible, it 
sometimes requires experienced manipulation of the container environment to enable it. Nevertheless, we 
argue that the transparency, portability, reusability, and long-term preservation enabled by containerization 
easily outweighs the effort needed to learn this new tool.  
 
The following section provides an introduction to containerization concepts and a simple workflow to 
containerize a model with the widely used containerization platform, Docker. Because specific commands can 
change according to the simulation platform used and as new Docker versions are released, we don’t provide 
detailed instructions for containerization in this paper. Instead, our aim is to familiarize the readers with the 
conceptual organization of a container and the terminology used with Docker. This introductory material can 
help readers better understand more detailed instructions available elsewhere, like in our series of step-by-step 
tutorials for current Docker versions and specific simulation platforms, which can be found at 
https://forum.comses.net/t/what-is-a-container-and-why-should-you-containerize-your-model/8139. 
 

4.  How to containerize a model: a conceptual guide based on Docker 

Docker is a container platform, available for multiple operating systems, that started as an open-source effort 
and continues to offer open access to its core functionality. It has found widespread use in different fields and 
an active user community (Morris et al. 2017). Although it can be considered as the container industry leader, 
Docker is only one of the many tools available in the market. In fact, in 2015 it helped launch the Open Container 
Initiative (Open Container Initiative, n.d.), with the purpose of creating open standards to share container format 
and runtime specifications with other actors in the industry, like Red Hat (buildah, podman), Canonical (LXD), 
and Google (Jib, Kubernetes). Among the other container options, Singularity is a platform of relevance for 
researchers (Kurtzer et al., 2017). It is not yet as widely used as Docker, but has the advantage of not requiring 
high-level permissions to run. This characteristic is desirable for users who do not have administrator’s access 
in their machine, or for many users of High-Performance Computing (HPC) or High-Throughput Computing (HTC) 
environments. Singularity was developed with HPC use in mind, which makes it more compatible with the 
complicated architectures used in these environments than Docker. Although the concepts described below 
focus on Docker containers, the underlying logic is similar for Singularity. In fact, Singularity’s documentation 
(https://sylabs.io/docs/) emphasizes the importance of its interoperability with Docker and provides a detailed 
guide to the different ways Docker images can be ported to Singularity.  
 
Containerization of a model refers to the process of creating or building a package that includes the model code, 
the simulation platform, other dependencies, and, optionally, any data needed and the instructions to follow 
when the container is run. Accordingly, interaction with the Docker software revolves around the “build” (i.e., 
create the container image) and “run” (i.e., execute the container) commands (Figure 2), and the same is true 
for Singularity. For a given model, the “build” command would be executed once by the author to create the 
corresponding image, while the “run” command would be executed any number of times a user chooses to 
interact with the model or to run it from the image. 
 
It is important to note that, whenever a container is shared, all of its contents and functionalities are made 
available to the prospective users. This adds an important point to consider when working with commercial 
software or sensitive data, since it may be necessary to remove software licenses and aggregate or produce 
some representative replacement data before starting the containerization process. Due to the introductory 
purpose of this paper, the following section provides a general overview of the steps needed to containerize a 
model and it does not mention any of the additional steps that are to be followed to comply with the different 
regulations. Before releasing or publishing a container, it is vital to confirm that it complies with the appropriate 
licenses and permissions.  

https://forum.comses.net/t/what-is-a-container-and-why-should-you-containerize-your-model/8139
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Figure 2: Schematic representation of the creation of an image through the “build” command (top) and of the execution of a 
container through the “run” command (bottom). 

 

4.1  Building a container image 

The first step when building an image is to find an appropriate base image, which includes a lightweight 
operating system and has the specified version of the simulation software, like R, NetLogo or Python, already 
installed. This enables a simulation to run in an environment that is isolated from the host’s operating system. 
One of the advantages of Docker is the availability of a diverse array of base images to build upon, provided by 
both the Docker team and the community, and downloadable from the DockerHub repository. Base images 
especially relevant for socio-environmental models are the “Rocker” collection, comprising different versions of 
R and RStudio images (Boettiger & Eddelbuettel, 2017), and the official “OpenJDK” images, which provide Java 
Development Kit base images, needed to generate NetLogo containers. 
 
After the base image is downloaded, the rest of the image building process can be pictured as a series of 
incremental modifications where additional software is downloaded, the model code and data files are copied, 
and settings may be customized. In a sense, the new image will be the product of adding a number of layers to 
a base image. Accordingly, “layer” is the term used by Docker to refer to these modifications. For example, when 
creating a container for a NetLogo model, the first instruction would direct Docker to download a base image 
from OpenJDK to provide the Java environment on which the simulation platform runs. The second instruction 
would be to download and install a specific version of NetLogo. In the case of R and RStudio, the base images 
provided by Rocker already include the specified version of the software, but a common modification is the 
addition of packages that are not present in the base distribution of R (e.g., adding “tidyverse” to the base 
image). To reproduce the correct environment, it is vital to specify all the necessary settings and the required 
packages, extensions, or any other dependencies that are not included in the base image, as well as the right 
version of each of these additions. Because discovering all the software requirements of a finished modeling 
project can be cumbersome, we recommend making dependencies and requirements explicit as the model is 
developed (Wilson et al., 2017). This task can be facilitated by keeping a modelling notebook, analogous to a 
laboratory notebook, that follows the TRACE structure presented by Ayllón et al. (2021). 
 
Once the necessary software layers are added, the next step is to include the author’s model source code, input 
data, and scripts. Both software and model-related files can be downloaded from user-specified URLs or copied 
from the author’s file system. It is important to remember that the steps outlined above are only executed when 
building the image and not when the container is subsequently run. Items are downloaded and copied once and 
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are stored as a snapshot of the model and its simulation environment at the time the image was built. This is a 
vital feature to ensure the reusability and reproducibility of the package: any subsequent modifications made 
to the model or any of its dependencies will not be reflected in the image (although a new version of the image 
can always be built if the intent is indeed to include these changes). 
 
Depending on the purpose of the containerization, it may be necessary to provide execution instructions which 
are run every time the image is executed. Common uses of these commands are to instruct the container to 
open the simulation platform so the user can interact with the model, or to execute a script that produces output 
files. It is important to note that any files generated in the container will not be accessible from the host 
environment unless the container is correctly started by using the appropriate “run” command options. 
 
The series of instructions for Docker to build an image are usually collected in a dedicated file called Dockerfile 
(the equivalent for Singularity users is called Definition File). A successful containerization depends on a careful 
adjustment of the Dockerfile to the software and settings requirements of the model (see our tutorials for 
examples of a Dockerfile using agent-based models implemented in R and Netlogo at  
https://forum.comses.net/t/what-is-a-container-and-why-should-you-containerize-your-model/8139). 
However, the additional effort devoted to this activity is repaid in the enhanced transparency and reproducibility 
of the published work. Once a Dockerfile is customized to the needs of a model, the author can simply execute 
the “build” command to create the image (see Fig. 2, top panel). Provided with the Dockerfile instructions, 
Docker will follow them sequentially: it will download the base image, install the specified additional software, 
modify any necessary settings and copy the model’s input data and code files. This bundle of ready-to-run 
software plus any execution instructions will be stored in an efficient manner that can be easily shared using the 
dedicated DockerHub, which is a public repository that allows users to easily download any images available, or 
compressed and shared directly with collaborators. 

4.2  Running a container 

A container is a running instance of an image that was built previously. After downloading and installing Docker 
in their machine, any user with access to the image can run a container instance by executing a “run” command 
(the same is true with Singularity and Singularity images). A typical “run” command will include the name of the 
image to be run and the paths of the folders (in the host machine and in the container) that are designated to 
share the model’s output files (Fig. 2, bottom panel). Other information like variable values or connection ports 
can be also specified in the “run” command. Docker Desktop, the application for MacOS and Windows, provides 
in its dashboard a simple graphic interface that allows to start any subsequent interactions with existing 
containers.  
 
According to the instructions given in the Dockerfile or Definition File during the image building step, containers 
might allow the user’s interaction through command-based or graphic interfaces, or be programmed to run 
certain execution instructions (e.g., a BehaviorSpace experiment in NetLogo, or an R script) and produce a 
determined set of results. Irrespective of how output files are generated, it is important to note that they will 
exist within the isolated environment that constitutes a container. Result files or any changes made inside the 
container will not be accessible on the host filesystem, and thus will be lost as soon as the container is stopped 
and removed, unless the “run” command includes an explicit instruction to “mount” a directory from the host 
filesystem into a container. “Mounting” a directory establishes a connection between a specific directory in the 
container’s filesystem and the host directory of interest (hence the typical inclusion of the paths to host and 
guest folders in the “run” command) that allows them to share their contents. For this reason, this instruction 
is typically used to be able to obtain output files of interest from the container.  
 
When containers are used during the model development stages, directories are typically “mounted” from the 
host filesystem into the container so changes to the model or analysis code made in the host system are 
immediately visible within the container. Alternatively, if no “mount” points were established when the 
container was “run”, a “commit” command can be executed to build a new image that includes the latest 
changes. In any case, since a development environment can easily bloat with unused files, extensions, packages, 
or even variables, it is advisable to carefully build a dedicated publication-ready image for archival using a new 
Dockerfile or Definition File. Although we favor the use of containers during the development process, it is 
important to note that the goal of improving model reproducibility and reusability largely depends on the correct 

https://forum.comses.net/t/what-is-a-container-and-why-should-you-containerize-your-model/8139
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containerization of the model that is deemed to be ready for publication, whether the model was already 
containerized for development purposes or not.  
 

5. Future perspectives 

Containerizing simulation models makes them more portable across different compute environments, 
facilitating team-based development, and also enhances their interoperability, reusability and reproducibility 
after they have been published. However, use of containerization software like Docker requires a learning phase 
that is not negligible. Projects like Code Ocean (https://codeocean.com/) and Whole Tale 
(https://wholetale.org/index.html) propose to ease the containerization process by providing an interactive GUI 
for containerizing and running code, and adding new functionality. Code Ocean provides a simple browser-based 
interface that allows developers to configure the software environment and upload code and data, and enables 
users to run the model online. When the project is ready for publication, the platform will produce a compute 
capsule containing the code, data, results, metadata and the computational environment and a corresponding 
DOI. Subsequent users are then able to visit the Code Ocean link embedded in the article and easily run the 
model (Clyburne-Sherin et al., 2019). Currently, Code Ocean offers commercial services to companies and 
publishers, and a limited monthly compute time is available for academics that sign up to the service. Along 
similar lines, Whole Tale is a web-based platform that facilitates the creation of executable research objects that 
include code, data, and software environment, as well as the scientific narrative that frames the project and its 
findings (Brinckman et al., 2019). 
  
Code Ocean and Whole Tale are exciting developments that support the adoption of good computing practices. 
However, these applications only are able to run a limited list of simulation platforms so far, and do not yet 
include NetLogo. As these applications develop and gain functionality, we encourage the use of more mature 
tools like Docker for most users. Irrespective of the specific tool used, adopting the practice of containerizing 
simulation models is a path for the production of scientific software of high quality, easing the processes of code 
review, validation, evaluation, result reproduction and model reuse. 
  
As the use of scientific software continues to find expanded applications in the community, attention to practices 
that favor its transparency, reproducibility and reusability becomes essential. Therefore, we propose the 
consolidation of containerization as a future standard for the publication of high-quality scientific software. 
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