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Abstract

The impact of environmental factors on human health outcomes is well established. It is therefore not surprising
that interventions aimed at improving human health are often environmental-based, such as restoring riparian
vegetation for flood mitigation, with a view to reducing associated infectious disease transmission. Yet the risks
and benefits of these interventions on the environment itself are rarely measured, or weighed up against potential
health gains. One of the challenges with such an evaluation is the requirement for cross-sectoral support from
decision makers in both the health and environmental sectors. To facilitate this support, cross-sectoral models
are required that simultaneously estimate the impact of proposed environmental interventions on both sectors.
Despite their obvious value, a systematic search of the peer-reviewed literature did not identify any model that
concurrently models the impact of environmental intervention on both environmental and human infectious
disease related outcomes. In this paper, we conceptually explore potential approaches for designing such a
model, using leptospirosis as a case study to highlight the various data sources, spatial scales, temporal scales and
required system behaviour that would need to be integrated for a cross-sectoral model of this complexity. By
comparing these system requirements against the strengths and limitations of individual modelling techniques,
we demonstrate the potential benefits of a hybrid-ensemble approach that uses component models from
different frameworks. By combining the strengths of the different techniques to tackle this wicked problem, such
a modelling approach supports the prioritisation of environmental interventions that optimise the overall benefit
by considering impacts on both human health and the environment.
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1. Introduction

There has long been recognition of the impact of environmental factors, including land-use and ecosystem
health, on human health outcomes, particularly in relation to infectious diseases (Cunningham et al., 2017;
Harrison et al., 2019; Pienkowski et al., 2017). The notion of ecosystem services (World Health Organization,
2005) provides a unifying framework for emphasising the value of environmental interventions (i.e. changes to
the environment that are designed to benefit human health and/or the environment) to improvements in
human wellbeing (including social, mental and physical health). Well-functioning ecosystems deliver supporting
ecosystem services (e.g. photosynthesis, nitrogen cycling) that in turn improve human wellbeing via provisioning
ecosystem services (e.g. water, food, fibre), regulatory ecosystem services (e.g. water quality, natural hazard
mitigation, disease regulation), and cultural ecosystem services (e.g. spirituality, education, recreation) (World
Health Organization, 2005). Environmental interventions could therefore potentially offer benefits for both the
environmental and human health sectors.

However, implementing such environmental interventions and evaluating the outcomes brings with it a number
of challenges, including fostering collaboration between sectors (e.g. environment and health), particularly in
the face of uncertainty regarding the relative benefits for each sector; assessment of potential risks and the
overall financial costs across sectors (e.g. the environmental sector paying for interventions that improve human
health, but with little benefit for the environment). To overcome some of these challenges, models that
simultaneously model outcomes for both sectors are required to assist decision-makers in prioritising
interventions that maximise the overall gains across both sectors. Environmental interventions aimed at
improving either human health or the environment have sometimes resulted in positive outcomes for one
sector, but negative (often unpredicted) outcomes for the other.

For instance, reforestation in New York State, USA, led to growth in the deer population and subsequently an
increase in tick-bites and cases of Lyme disease in humans (Barbour & Fish, 1993). In the reverse situation,
draining swamps and wetlands has been used as control measures for malaria (i.e. improving human health),
but destroys biodiversity hotspots and refugia (Keiser et al., 2005). In other cases, such as deforestation, changes
to land use may provide temporary economic benefit, but lead to long-term negative environmental and human
health effects (Hahn et al., 2014). There are however scenarios with the potential to benefit both sectors, such
as improved wastewater treatment and pathogen reduction from wetland restoration (Bateganya et al., 2015),
avoided increases in diarrhoea and acute respiratory infection from preventing deforestation (Pienkowski et al.,
2017), and improvements to mental and physical health with the provision of biodiverse urban greenspaces (Lai
et al., 2019; Stanhope et al., 2020).

Gaining cross-sectoral support for proposed interventions requires evidence of potential benefits for the
outcome of focus (e.g. an infectious disease), and an integrated risk assessment that adequately considers
possible positive and adverse effects across sectors before implementing the intervention. Pre-intervention
assessments also need to consider the appropriate spatial and temporal scales of influence. Both the natural
environment and human health domains represent complex systems, and the decisions related to such systems
are often classed as wicked problems. Due to various cognitive, social, and cultural biases decision makers can
find it difficult to reason about such complex situations, especially when part of the system is outside of their
field of expertise (Sterman, 2002; Gregory, 2012),

To facilitate this cross-sectoral reasoning (Elsawah et al., 2020), modelling techniques are commonly used to
help structure and optimise decision-making by capturing the relationships between the system’s components.
These can involve simple linear relationships, or more complex interactions, such as nonlinearity, time lag,
feedback loops, and various types of uncertainties. Modelling the estimated impact of proposed environmental
interventions on both the health and environmental sectors requires models that are able to handle this
complexity, and will likely involve a combination of process models examining the mechanisms of the systems,
as well as pattern models that explore correlations between factors (Scoones et al., 2017).

Throughout our paper, we avoid the use of the term “integrated model”, owing to its varied meaning, e.g.
models that integrate across different sectors, or that integrate different modelling techniques (Kelly et al.,
2013). Instead, for clarity, we refer here to models that include components from both human health and
environmental sectors as “cross-sectoral models”, and those that combine different modelling techniques as
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“hybrid models”. The term “ensemble model” is used to refer to models composed of independent sub-models,
which may or may not be of the same type.

Within the public health discipline there have been calls for a greater focus on systems thinking and modelling,
over traditional linear methods (Carey et al., 2015; Rutter et al., 2017). Furthermore, the emergence of the
Ecohealth, One Health (Harrison et al., 2019), and Planetary Health (Whitmee et al., 2015) approaches to human
health reflect a growing recognition of the link between humans and their environment. In this paper, we build
on this body of work by reviewing literature on the use of cross-sectoral models for simultaneously modelling
the impact of environmental interventions on the environment and infectious diseases in humans. Using
leptospirosis (a zoonotic infectious disease) as a case study of a human health outcome, our paper contributes
to the broader literature by outlining the requirements and considerations for a cross-sectoral model to
concurrently examine the effect of proposed environmental interventions for both the human health and
environment sectors. Finally, we discuss the processes required for framing such a complex multi-sectoral
problem, examine characteristics of potential modelling techniques that could be used, and determine the
suitability of each technique and combination of techniques for providing solutions to such wicked problems.

2. Literature Review

To identify potential modelling techniques that have previously been used to concurrently modelled the impact
of environmental interventions on both human infectious disease and the environment, we conducted a
systematic literature search. We focused on infectious diseases because there are often direct links between
the environment, the vector/reservoir, and the risk of infection in humans. Details of the systematic search are
reported in the Supplementary Material.

No studies were identified that concurrently modelled the impact of environmental interventions on both
human infectious disease and the environment. We did however identify studies that evaluated the human
infectious disease outcomes of environmental interventions, without consideration for the environmental
outcomes. For example, Pienkowski et al. (2017) explored the relationship between deforestation and various
health outcomes, and the potential role of protected areas for environmental conservation on human disease
risk. Similarly, the link between land use change and disease was considered by Vanwambeke et al. (2007). From
the alternative perspective, evaluating the effect of disease interventions on the environment, Rydzanicz et al.
(2009) considered the positive environmental effects of different vector control methods. These examples
demonstrate the importance of considering cross-sectoral implications of interventions, and highlight the need
for the application of more advanced modelling techniques that allow for multiple objectives and outcomes to
be evaluated simultaneously.

Cross-sectional modelling is not a new approach for the health nor environmental sectors, with previous studies
simultaneously investigating economic outcomes with infectious diseases outcomes in humans (Aragrande &
Canali, 2020; Grace et al., 2017), or livestock (Choudhury et al., 2013), and others simultaneously looking at
environmental and economic outcomes (Shelton & Dalzell, 2017; Tallis et al., 2008). We argue that equivalent
work is required at the nexus between environment and infectious diseases. While the absence of these papers
in our search is not conclusive evidence that such work has not been undertaken, it does suggest that these
studies are rare, and that guidance on suitable modelling techniques for doing so is potentially required.

3. Leptospirosis

To explore how a cross-sectoral impact modelling technique could be developed to estimate the effect of
environmental interventions on both environmental and human health outcomes, we have used leptospirosis
in Fiji as a case study. Leptospirosis was chosen because transmission is strongly driven by environmental factors,
and the complex interactions between humans, animals, and their environment (Lau & Jagals, 2012), with
multiple exposure pathways that vary between socio-ecological niches (Lau et al., 2017; Mayfield et al., 2018b).
Furthermore, leptospirosis can result in significant physical, mental, and social impacts on affected persons and
populations (Bharti et al., 2003).
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Leptospirosis is a zoonotic disease, caused by Leptospira interrogans (World Health Organization, 2003), and is
transmitted to humans via direct contact with infected mammals (including rodents, livestock, and wildlife), or
contact with water and soil contaminated with Leptospira from the urine of infected mammals (Bharti et al.,
2003). Leptospirosis is one of the most common bacterial zoonosis worldwide, causing more than 1 million
severe infections annually, and is particularly common in tropical and subtropical regions, especially in
developing countries (Bharti et al., 2003; Costa et al., 2015). Leptospirosis is an emerging infectious disease in
many contexts; epidemics are increasing in frequency, severity, and distribution with recent unprecedented
outbreaks resulting from the combined driving forces of climate change and extreme weather events (e.g.
flooding, cyclones), population growth, urbanisation, poverty, and agricultural intensification (Lau et al., 2010).
The Pacific Islands, including Fiji, are particularly prone to leptospirosis outbreaks because of the tropical
climate, frequent cyclones and flooding, and close contact with animals, amongst other factors (Lau et al., 2010;
Togami et al., 2018).

Models to predict, prevent and manage outbreaks of infectious diseases, like leptospirosis, are needed to ensure
that limited resources are used in a cost-effective manner, with consideration of both synergies and possible
adverse impacts of interventions across sectors. Multi-sectoral intervention strategies have been recommended
for effective control of leptospirosis (Naing et al., 2019), but evidence is lacking for the effectiveness of such
interventions on both leptospirosis and environmental outcomes. Only a few studies have specifically assessed
the impact of actual interventions such as livestock control (Ryu et al., 2017), or modelled the potential impact
of interventions such as rodent control (Holt et al., 2006) or the use of prophylactic antibiotics during the post-
flooding period (Schneider et al., 2017). Most studies have only assessed risk factors and drivers of transmission,
and used results to develop recommendations for interventions that are likely to work (Dhewantara et al., 2020;
Mayfield et al., 2018a; Nwafor-Okoli et al., 2010).

Recommended strategies to reduce human leptospirosis include reducing human exposure through behavioural
change and managing environmental drivers of transmission and outbreaks (see Table 1). If such interventions
are to be ranked and prioritised, their environmental and human health impacts need to be estimated using
various modelling techniques that also consider other factors, such as climate and human behaviour (as
indicated in Figure 2). We focus primarily on environmental-based interventions rather than other types of
interventions because they are more likely to affect both human health and the environment. Our approach
does not dismiss the importance of other preventative measures, such as behavioural or medical interventions.
On the contrary, evaluating the environmental-based interventions provides decisions makers an opportunity
to optimise strategies by considering environmental approaches together with other options.

Table 1: Examples of potential interventions to prevent leptospirosis

Intervention category Examples
Rodent control e Improving sanitation in homes and communities (Lau et al., 2012b; Suwanpakdee et
al., 2015)

e Education regarding garbage systems (Naing et al., 2019)

Reducing human exposure e Protective footwear and clothing (Sarkar et al., 2002)
through behaviour change e Increasing awareness of disease to reduce exposure (Lau et al., 2012b)
e Avoiding contact with rodents and polluted fresh water (Lau et al., 2012b)

Managing environmental e Improved management of livestock (e.g. moving piggeries further away and downhill
drivers of transmission and from houses) (Lau et al., 2012b)
outbreaks e Flood mitigation (Kawaguichi et al., 2008; Lau et al., 2012b; Mayfield et al., 2018a)

which can be achieved through environmental interventions upstream including re-
meandering, adding coarse sediment, reopening side channels, removing dams,
decreasing bank slopes, adding floodplains and riparian wetlands (Nilsson et al.,
2018), floodplain conservation (Kousky & Walls, 2014), as well as engineering controls
(e.g. check dams (Abbasi et al., 2019))
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Figure 2: High level conceptual framework of how candidate environmental interventions may lead to both human health and
environmental outcomes, with consideration for other (human and environmental) influences.

4, Model design process

To describe the requirements for a cross-sectoral impact model, we apply a holistic approach, starting first with
a big picture view of the system to be captured, and then singling out the component of interest (leptospirosis
incidence, i.e. rate of new infections). This component is then refined by describing potential drivers and
expected model outputs, as well as data availability for our case study. We also consider the system behaviours
that the model is expected to demonstrate, such as dynamic interactions and data integration from various
sources. The model design process would in principle continue by deciding on model families, functional forms,
and specific processes for defining and estimating parameters. Having explored a selection of different
modelling techniques available, and their pros and cons, we also consider a hybridisation of modelling
techniques.

Before decisions on appropriate modelling techniques can be made, the first step in the design process is to
describe the main system components and links using a qualitative conceptual framework (Argent et al., 2016).
A qualitative conceptual framework should be developed through reviews of the literature and consultation
with experts and stakeholders from all relevant fields (e.g. infectious disease, public health, environmental
health, ecosystem services, ecosystem health, agriculture, social services), be biologically plausible, and consider
relevant spatial and temporal scales. Our conceptual framework (Figure 2) consists of four main components:
i) candidate environmental interventions, ii) potential human health outcomes resulting from these
interventions, iii) potential impact of the interventions on the environment, and iv) other factors (human,
animal, and environment) that could influence human and environmental outcomes.

5. Model requirements

This section details the requirements of a model for leptospirosis infection risk, and what additional
requirements are needed to be able to integrate such a model into a cross-sectoral analysis. We focus on spatial
and temporal scales, data sources, and system behaviour, as summarised in Table 2, and described below.
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Table 2: Model requirements for evaluating the impact of environmental-based interventions on environmental and health

outcomes for leptospirosis in Fiji

Parameter Value

Description

Source

Spatial scale Regional or village level

Dependent on the intervention
being evaluated

Weeks to months for
outbreak prediction

Temporal scale

Months to years for
environmental changes

Dependent on the intervention
being evaluated

Potential inputs Socioeconomic data

Occupational, behaviour

and lifestyle data

Agricultural data

Land use / land cover data

Biodiversity data

Pollution data

Including poverty, education,
urbanisation, access to clean water,
availability of electricity

Including farming and other
outdoor occupations, recreational
activities.

Livestock presence or absence
within a village, or agricultural
density within a region. Subsistence
farming. Veterinary services.
Animal vaccination programs.

Forest, agricultural or
residential/commercial
Species richness, or
abundance/persistence of
particular species

Primarily water quality

Government census data

Government census data,
household surveys

Government census data

Satellite and remote
sensing data

Field survey or local expert
knowledge

Environmental monitoring
data

Potential outputs Probability of leptospirosis

outbreak

Predicted infection rates

Environmental impact

What is the probability of an
outbreak occurring within a village
or region?

What is the likely impact on
infection rates within a village or
region?

What is the impact on species
survival for animals and plants?
What is the impact on biodiversity?

What is the expected change in
water quality?

Model predictions

Model predictions

Model predictions

Model behaviours Feedback loops

Interactions and inter-
dependencies

Model transparency

Model uncertainty

Model is required to represent
feedback loops for simulations
covering multiple time steps

Model is required to represent key
variable interactions, such as the
link between urbanisation and
poverty

System is required to provide
information on the influence of
each variable on predicted
outcomes

Quantification of input variables
and prediction uncertainty. Model
structure error addressed through
credible justifications rather than
explicit quantification
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5.1 Spatial and Temporal Scales

The appropriate spatial scale is a critical consideration in the development of hybrid, cross-sectoral impact
models. In particular, aligning the relevant or available scale (both spatial and temporal) from models originating
from different sectors can be challenging (Elsawah et al., 2020). Previous models of the potential benefits of
different environmental interventions for leptospirosis have been implemented at scales as fine as sub-village
levels in Fiji (Lau et al., 2017) and American Samoa (Lau et al., 2012a; Lau et al., 2012b). There is also evidence
to show that the relative importance of drivers for leptospirosis prevalence varies across space (Mayfield et al.,
2018a). Environmental variables therefore need to be available at a scale that reflects these variations, with
previous work suggesting a 250 m resolution may be appropriate (Mayfield et al., 2018a).

The spatial and temporal scales of influence for the environmental interventions may depend on the location
for which the model is developed, including the geography, land-use, and distance to other towns/villages. For
instance, if flood mitigation is one of the environmental interventions being investigated, the temporal scale
should consider the frequency and timing of flooding in the region. Similarly, moving piggeries downbhill from
the community may reduce human leptospirosis in that community (Lau et al., 2012b), but may also have a
downstream negative environmental impact, due to the increased risk of Leptospira entering the waterways
and exposing downstream communities. The spatial range of the study should therefore include communities
downstream that may come into contact with Leptospira within the period that Leptospira can survive in the
environment (potentially weeks under optimal conditions). If multiple potential interventions are being
considered within the model, these may also influence the relevant spatial and temporal scales.

Determining which intervention, or combination of interventions, would optimise overall outcomes for both
human health and environment necessitates a model capable of handling data on different spatial and temporal
scales. For example, the leptospirosis outcome(s) can be considered at the individual, community, regional, or
national levels (Lau et al.,, 2016). In contrast, the environmental outcomes may need to be assessed at a
catchment or ecosystem scale, while sociodemographic data are generally assessed based on census areas and
political boundaries. Datasets used as inputs for the leptospirosis component would therefore need to cover a
larger geographic area if used to evaluate the flow-on effects on the environment, rather than just on disease
outcomes.

5.2 Data sources

Both the environmental and infectious disease literature indicate multiple sources of available information for
quantifying model inputs. Sources include satellite data (Mayfield et al., 2017; Wang et al., 2017), questionnaires
(Lau et al., 2016; Sturrock et al., 2013), or field surveys on infection prevalence (WoldeKidan et al., 2019), with
most studies combining data from multiple sources. For both the environmental and human aspects, when
empirical data are not available or cultural context is important, information can also be elicited from experts
or local populations (Mayfield et al., 2020a; Scoones et al., 2017). This is equally applicable for determining what
factors to include, the relationships between the system components, and quantifying the strengths of the
relationship.

Focusing on the illustrative case study area of Fiji, data for modelling leptospirosis are available at four levels:
regional (environmental, geography, socioeconomic, and livestock), village (urbanisation, livestock presence,
and domestic animal presence), household (household construction, and animal presence), and individual
(demographics, occupation, and behaviours) (Lau et al., 2016). Excellent government data are available for Fiji
covering agricultural use (both commercial and subsistence farming), and a range of infrastructure information
such as urbanisation, and the availability of metered water and electricity. Census data are also available
covering many demographic factors such as ethnicity, poverty levels and education. High resolution geographic
data (50 m) on the physical environment, such as slope, elevation and distances to roads or waterways are freely
available from sources such as the Fiji Ministry of Lands and Mineral Resources, Fiji Ministry of Agriculture,
Landcare Research Institute, Fiji National Census, and the World Bank. For simple correlation or exploratory
studies, data on past climatic variables, such as rainfall and temperatures, are also freely available for most
countries. However, if the model is required to examine future scenarios under expected changes in climatic
conditions, connections to other climate data sources may be required.
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Much of the data needed to integrate the leptospirosis component more broadly with environmental outcomes
are similar to that mentioned above, although the range of potential environmental impacts necessitates a
number of additional datasets. While the same satellite data used in the leptospirosis component could provide
geo-referenced information on land-use and vegetation cover, including for historical time steps, more detailed
environmental data on other indicators, such as biodiversity or ecosystem health (Jenkins et al., 2016; Jenkins
et al., 2010) would require ground surveys or local expert knowledge. As such, a mix of quantitative and
qualitative data would likely be used when integrating the health component with wider environmental
outcomes.

The same is true for natural hazards such as floods, where local knowledge and data on previous floods may be
suitable for examining correlations in the status quo, however, more complex hydrological models would be
needed to examine the full range of effects on flood risk that result from environmental interventions (Paquette
& Lowry, 2012). Ideally, the expected impact of an intervention would be evaluated using empirical evidence.
For leptospirosis in Fiji, data linking leptospirosis risk with key drivers such as agriculture and flooding risk are
available at the household and village levels (Lau et al., 2016).

53 System behaviour

The modelling technique used for the cross-sectoral impact will be expected to adequately capture certain
system behaviours. For infectious diseases, interactions between explanatory variables can affect the predicted
outcome. For example, the degree to which poverty affects the risk of leptospirosis has been shown to be
disproportionally higher in urban areas compared to rural areas (Lau et al., 2017). Feedback loops are also
important for any model looking to predict the outcomes over time, rather than as a static snapshot (e.g.
capturing the effect of an immune memory from past infections on the risk of new infections). It would be
beneficial for the model to also include explicit representation of disease testing and detection characteristics,
given the important role of detection errors (for example caused by sampling bias or errors in laboratory tests)
in both model calibration and evaluation of interventions.

In addition to structural features of the model, model predictions will also need to capture a number of spatial
and temporal dynamics, consistent with a pattern oriented modelling approach (Grimm et al., 2005). Long term
prediction of leptospirosis occurrence is unlikely to be precisely accurate, but the time series and spatial
distribution should adequately capture peaks associated with seasonal conditions and disease clusters (Stephen
& Karesch, 2014). For management purposes, it is important that relationships between disease occurrence and
key interventions are adequately captured in terms of impact lag and total number of cases. Short term
predictions or forecasts are also expected to be sufficiently accurate to at least support prioritisation of
intervention resources, though this accuracy is understood to be conditional on data that adequately capture
the situation at the time.

Even with future improvements in modelling and computational power, it is likely that significant uncertainty
will remain around model predictions. Optimisation methods are also likely to be used to explore the effect of
different interventions and performance under different assumptions. This raises issues around computational
efficiency — the model needs to run quickly enough that reasonably large numbers of model runs are possible.
It is expected that input and prediction uncertainty will need to be explicitly quantified, but structural error will
be more likely to be dealt with through credible justifications rather than a multi-model ensemble approach. A
computationally efficient model, however, leaves this open as a possibility.

The construction of the model and its application should aim to identify ranges of parameters and drivers that
would need to be explored in order to evaluate robustness of any intervention. Robustness in this context refers
to “a measure of the insensitivity of the performance of a given strategy to future conditions” (Maier et al.,
2016). The management of uncertainties and unknowns is a challenge for preventing and managing infectious
diseases, including epidemics (World Health Organization, 2015). As is the case with most epidemiological
studies, uncertainty can result from random or systematic errors (Burns et al., 2014). However, when predictions
are being made, uncertainties may also relate to future politics, climate, socio-economic and technological
change (Maier et al., 2016). While strategies for managing uncertainty in models have recently been used in
some epidemiological studies (Li et al., 2019) their use remains uncommon, especially in public health.
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6. Potential modelling techniques

Modellers have a wide array of potential techniques to choose from when deciding how best to design a model.
The variation in the underlying approaches for different modelling families, which include empirical data-based,
conceptual-based, agent-based and rule-based (Jakeman et al., 2006), means that each approach has its own
set of strengths and weakness that make them more or less suited to predicting the outcomes of interventions,
and more broadly within a cross-sectoral model. Here we describe the characteristics of four different
representative methods: multivariable regression, artificial neural networks (ANNs), BNs, and system dynamics
(SD). While the list of described methods is not exhaustive, those presented here have been selected toillustrate
the relevant characteristics of the various approaches. Multivariable regression and ANNs (Hastie et al., 2009)
are representative of simple and complex data-based methods, respectively (Jakeman et al., 2006). BNs (Fenton
& Neil, 2013) are described to show the advantages of conceptual-based models that look to incorporate the
structure of the system (Jakeman et al., 2006; Kelly et al., 2013). Finally, SD modelling (Sterman, 2000) is offered
as example of a dynamic approach that incorporates both the structure and dynamics of the system (for
example, over time) (Jakeman et al., 2006; Kelly et al., 2013).

Multivariable regression, such as generalised linear models (GLMs), is widely used and understood, but has
limited ability to model causality or incorporate unknowns and uncertainties (Hastie et al., 2009). This results in
poor capacity to disentangle the intricate associations between risk factors, drivers, triggers, and outcomes
(Burns et al., 2014; Landuyt et al., 2013). Another disadvantage of multivariable regression models is that they
rely on high quality empirical data, and it can be difficult to quickly update them during rapidly evolving
epidemics and/or a changing environment (Lau et al., 2017). More complex data-based algorithms, such as
ANNs, have benefited in recent years from a surge of research on deep learning approaches (Hinton, 2018).
Although ANNs are able to handle interactions between the predictors and non-linear relationships in the data,
their lack of transparency makes them less suited than other models for situations where understanding the
mechanisms within a system is a key objective (Mayfield et al., 2020b).

In BNs (Fenton & Neil, 2013) the structure of the network can be used to represent the causal relationships
between variables. Using Bayes’ theorem of conditional probability, BNs determine probabilities from cause to
effect using forward propagation, from effect to cause using backward propagation, and characterise both
magnitude and direction of associations, whilst explicitly accounting for and representing uncertainty in these
relationships. BNs are particularly useful for facilitating scenario analysis as they can capture the probability of
events under complex scenarios, conduct predictive as well as diagnostic analyses, and perform sensitivity and
trade off analysis to determine the best leverage points within systems for reducing risk (Landuyt et al., 2013).
However, BNs also have certain limitations when modelling complex systems: they are not dynamic models and
cannot easily incorporate feedback loops, meaning they have limited utility for modelling continuous system
behaviour over time. Although dynamic BNs (that incorporate a time component) have been used, they become
unwieldy after a few discrete time steps, because the nodes of the BN need to be replicated for each time step.
Dynamic BNs are therefore generally considered impractical for modelling complex systems (Uusitalo, 2007).
While both BNs (Lau et al., 2017; Mayfield et al., 2018b) and regression (Lau et al., 2016) have been used
previously to model the risks of leptospirosis infection, neither option easily allows feedback loops to be
included.

SD (Sterman, 2000) modelling is increasingly being applied in the environmental health field (Currie et al., 2018).
SD modelling is based on continuous time, where the state of variables (stocks) change in a continuous way
rather than displaying abrupt changes. These changes are modelled using difference and differential equations
or infinitesimal accumulation processes (integration) over time to represent the interconnections in a system.
SD models consist of stocks (that represent accumulations within systems, e.g. number of infections), flows (that
represent the movement of material or information, e.g. number of new infections/unit time) and auxiliary
variables (that control flows, such as the infection rate over time in % per unit time). The components are linked
to form feedback loops: reinforcing feedback loops cause growth or decline within systems, while balancing
loops cause goal seeking and stabilising behaviour. Combinations of reinforcing and balancing loops, and shifts
in their dominance over time, result in complex system behaviour (e.g. growth, collapse, oscillations, or erratic).
SD models have been used to build susceptible-infected-recovered (SIR) models of disease transmission
(Bjgrnstad et al., 2020).
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Many decision-making scenarios will require a geographic map of the output at a spatial scale relevant to the
problem at hand. While there are spatially-explicit methods, such as geographically weighted regression
(Mayfield et al., 2018a; Mayfield et al., 2018b) that consider the influence and importance of variables over
space, any of the above-mentioned methods can be combined with a geographic information system (GIS) to
display the model outputs and create risk maps (Dhewantara et al., 2019; Mayfield et al., 2017). At a basic level,
BNs capture uncertainty through probability distributions, and uncertainty in SD and regression models can be
explored through Monte Carlo analyses.

7. Ensemble and Hybrid modelling

The modelling techniques described in Section 6 illustrate that each has certain characteristics and behaviours
that will be either an advantage or disadvantage depending on the problem being addressed (Kelly et al., 2013;
Mayfield et al., 2020b). While each modelling option has its own strengths, such as incorporating expert data
(BNs) or facilitating feedback loops (SD), none offer the complete set of characteristics to achieve the required
balance of complexity, data sources and system transparency described in Section 5. Hybrid modelling (Hamilton
et al., 2015; Voinov & Shugart, 2013) will therefore be needed to combine the strengths of each modelling
techniques. This reasoning is in line with the ‘system of systems’ approach (Nielsen et al., 2015) which is gaining
momentum as an overarching framework for designing models that are able to represent the inter-
connectedness of different systems (such as disease transmission and the natural environment). One suggested
approach for combining these complex systems uses a tiered architecture to link component models at different
levels of abstraction, such as at the systems and process levels. This approach allows for more detailed process
models to be included as components of a larger system level model to support high level decision making (Little
et al., 2019).

There are numerous successful examples of hybrid-ensemble models, where the output from one model is used
to provide input(s) for another, without either necessarily being implemented using the same modelling
approach. Li et al. (2019) combined a spatially explicit, agent-based model with existing climate, species
distribution modelling and land-use change models to look at the impact of various climate and socio-economic
scenarios on the spread of Lyme disease. Xu et al. (2019) used a spatially-explicit agent-based model to predict
the transmission of lymphatic filariasis in American Samoa over time. Holzkdmper et al. (2012) developed an
integrated decision support tool for catchment management where complex process models were coupled and
used to generate probability distributions for various scenarios using Monte Carlo simulations. These
distributions were then used to parameterise a user-friendly BN suitable for use by decision makers. BNs have
also been combined successfully with state and transition models as a way to incorporate feedback loops (Chee
et al, 2016).

The examples above demonstrate how a hybrid modelling approach could be beneficial for predicting the impact
of environmental-based interventions on both environmental and leptospirosis outcomes as well as
incorporating the varying complexities and data sources that arise in the course of cross-sectoral modelling
challenges. For example, no single technique can easily incorporate the expert opinion on predicting ecological
impacts of restoring a riparian zone, with the complex feedback loops and relationships required to evaluate the
impact of the same intervention on flooding risk. An additional method (or combination of methods) may be
required to predict the end effect of flood reduction on leptospirosis risk in the community.

For infectious diseases, transmission can often depend on stochastic random, often exogenous events, such as
extreme weather events or natural disasters. In this context BNs could be useful for causal risk assessment, but
data needed to parameterise the models are often unavailable for novel or rare scenarios (such as a major flood).
One approach to modelling this scenario is to incorporate uncertainty using a Monte Carlo simulation model
and use this analysis as the input to a BN (e.g. Borsuk et al., 2012; Holzkdmper et al., 2012). The approach can
also be applied in other data-poor scenarios where models such as SD models can assist by producing probability
distributions to parameterise BNs and reduce rather than amplify uncertainty (e.g. Hafezi et al., 2021). Such
model generated distributions help avoid cases where the BN is left in a state of maximum uncertainty (uniform
probability distributions). The Monte Carlo simulations with the SD models are carried out by specifying
probability distributions for uncertain variables using three parameters: type (e.g. normal, Weibull, triangular),
mean, and variance. Parameters could also be determined from empirical data, expert opinion, or some
combination of these.
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An example of how this might be applied to combine the disease risk model into the wider cross-sectoral model
could involve a hydrological flood model used to parameterise a BN (e.g. Goodarzi et al., 2021) linked with a GIS
(e.g. Mayfield et al., 2018b; Sahin et al., 2019). In a separate component, a model for predicting the impact of
an infrastructure intervention on flooding throughout the catchment area could be developed using SD (e.g. Mai
et al., 2020; Rehman et al., 2019). The predictions of this model could then be used to parameterise a BN,
incorporating additional local knowledge of specific areas. BNs would also be suitable for incorporating local
expert knowledge on the predicted effects of the intervention on local ecology (e.g. Tantipisanuh et al., 2014).
For the final component, GLMs are suitable for preliminary investigations on the drivers of leptospirosis, which
could inform model designers about which variables are most relevant to include (Lau et al., 2012a). Any of
these methods can be linked with a GIS to provide spatially-explicit inputs and mapped outputs (e.g. Mayfield
etal., 2017; Sahin et al., 2013). Specific geospatial models, such as geographically weighted regression or Kriging,
can be used where data are spatially correlated (Mayfield, 2018a; Viroj et al., 2021).

One final advantage of a hybrid modelling approach is that it easily facilities different levels of user engagement
for different components. For example, a hydrological model may be purely data driven and developed by expert
modellers using a complex systems approach and then included as a component in an ensemble model (Mussap
etal., 2017). For other components, the use of local knowledge might be critical for integrating the social-cultural
factors, and therefore require a participatory approach with local residents working together with data
modellers (Scoones et al., 2017). In these scenarios a conceptual-based modelling technique such as BNs or SD
might be employed. Yet another component might look at the effects of an intervention on biodiversity and
require that data be elicited from experts using a structured process (Mata et al., 2016). Other components
might look to explore trends in available empirical data, making use of techniques such as ANNs.

8. Conclusion

Despite the increasing recognition of the links between the health of the environment and infectious disease
transmission, models that facilitate cross-sectoral decision making by allowing for a collaborative evaluation of
environmental interventions are rare. The use of cross-sectoral models in other areas, such for optimising
environmental and economic factors, is not uncommon, and indicates a willingness in the modelling community
to tackle models spanning multiple domains. However, the complexity of quantitatively representing wicked,
cross-sectoral, and multi-dimensional problems means that no individual modelling technique will be ideal for
representing every component within the system. The case study presented here provides an illustration of the
range of data and system behaviours required by even a simple representation of such a problem. By comparing
these system requirements against the strengths and limitations of individual modelling techniques, we
demonstrate that no single modelling technique is likely to meet all these requirements. Instead, hybrid-
ensemble approaches that use component models from different frameworks are a more likely candidate as
they can take advantage of the strengths of each technique. Exploration of novel modelling approaches are
needed to develop models that can concurrently benefit human health and the environment, thus promoting
cross-sectoral collaboration and optimising the use of limited resources.
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