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Abstract 
Landscape fire regimes are created through socio-ecological processes, yet in current global models the 
representation of anthropogenic impacts on fire regimes is restricted to simplistic functions derived from coarse 
measures such as GDP and population density. As a result, fire-enabled dynamic global vegetation models 
(DGVMs) have limited ability to reproduce observed patterns of fire, and limited prognostic value. At the heart of 
this challenge is a failure to represent human agency and decision-making related to fire. This paper outlines 
progress towards a global behavioural model that captures the categorical differences in human fire use and 
management that arise from diverse land use objectives under varying socio-ecological contexts. We present a 
modelled global spatiotemporal distribution of what we term ‘land-fire systems’ (LFSs), a classification that 
combines land use systems and anthropogenic fire regimes. Our model simulates competition between LFSs with 
a novel bootstrapped classification tree approach that performs favourably against reference multinomial 
regressions. We evaluate model outputs with the human appropriation of net primary production (HANPP) 
framework and find good overall agreement. We discuss limitations to our methods, as well as remaining 
challenges to the integration of behavioural modelling in DGVMs and associated model-intercomparison 
protocols.  
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Code availability 
Supplementary material, including model code & outputs, as well as data used to produce our results, are made 
freely available via Figshare under an MIT open-source licence: https://doi.org/10.6084/m9.figshare.c.5523840. 
Code is also shared on Github for convenience: https://github.com/OliPerkins1987/Fire_GBM. 
 

 

1.  Introduction 

In the Anthropocene, landscape fire is best understood as a coupled socio-ecological process, driven by complex 
interactions between biophysical and socio-economic factors (Pausas and Keeley, 2019; Kelley et al., 2019). For 
example, the Amazonian fires of 2019 were caused by a combination of international trade conflict between the 
USA and China (Fuchs et al., 2019; Taheripour et al., 2019) and national-scale political change (Stewart et al., 
2020), but also a regional drought (Dong et al., 2021). Although much debate has focused on such destructive 
fires, and in particular so-called ‘mega-fires’ (e.g., Adams et al., 2020; Pliscoff et al., 2020), humans continue to 
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use fire as a management tool for diverse purposes across land systems (Smith et al., 2022; UNEP, 2022). For 
example, fire is used to rejuvenate pastures and deter pests in livestock systems (Kull, 2004; Jakimow et al., 
2018), to prepare fields and dispose of residues in agriculture (Van Vliet et al., 2012; Liu et al., 2019), to manage 
fuel loads in fire prone environments (Laris, 2002), and as a weapon in land tenure disputes (Suyanto et al., 
2004). 
 
Human approaches towards fire suppression are similarly diverse – spanning industrial fire suppression and 
exclusion (Silva Sande et al., 2010) to traditional fire knowledge and community fire practice amongst indigenous 
populations (Mistry et al., 2005), to the growing ‘pyro-diversity’ narrative amongst conservationists (Bowman 
et al., 2016). Humans also have multiple indirect impacts on fire regimes – by altering fuel loads through logging 
and grazing (Cochrane, 2009; Archibald, 2016), by fragmenting landscapes with roads and croplands (Archibald 
et al., 2012), and by draining peat swamps (Page and Hooijer 2016).  
 
In each case above, fire regimes emerge from a combination of local land use objectives, policy goals and wider 
economic developments playing out in the landscape. Furthermore, although climate attribution studies have 
found that climate change increases the likelihood of weather patterns associated with extreme wildfire events 
(Goss et al., 2020), multi-faceted human impacts on global fire regimes entail that the direct relationship 
between climate change and fire remains poorly quantified (van Oldenborgh et al., 2020; IPCC 2022). 
 
In this context, it is perhaps unsurprising that the first Fire Model Intercomparison project (FIREMIP) found 
simplistic approaches to representing anthropogenic impacts on fire are a substantial shortcoming in dynamic 
global vegetation models (DGVMs; Teckentrup et al., 2019). Current approaches to modelling anthropogenic fire 
are limited to analytic functions derived from GDP and population density data (Teckentrup et al., 2019). As a 
result, representations of human activity were found to be both the largest single cause of disagreement 
between burned area outputs of different DGVMs, and between model outputs and remote sensing 
observations (Forkel et al., 2019). Not only do current DGVMs have limited ability to reproduce observed 
patterns of fire use, but they also have little predictive power, as they do not represent the underlying processes 
that drive human-fire interactions (Rabin et al., 2015, 2018).  
 
This paper contributes to improving this situation by presenting progress on behavioural modelling of 
anthropogenic impacts on wildfire regimes at the global scale. Importantly, this work incorporates the 
underlying land-system processes that drive human-fire interactions (Pyne 2001; Lauk and Erb 2016) by 
characterising the categorically different anthropogenic fire use and suppression systems that emerge under 
differing land use systems and socio-ecological contexts. Specifically, we present a novel approach to modelling 
the global spatiotemporal distribution of what we term ‘land-fire systems’ (LFSs) from 1990 to 2014. Our LFSs 
are derived by combining classes of land use systems and anthropogenic fire regimes (AFRs), each of which are 
discussed and defined below (Section 2.1).  
 
With LFSs defined, we take a novel approach to model their spatial and temporal distribution by combining a 
suite of classification trees and a simple simulation of competition. As anthropogenic fire is closely linked to land 
use (Archibald 2016; Andela et al., 2017), we evaluate our approach with indicators from the human 
appropriation of net primary production (HANPP) framework. HANPP, which is derived from data independent 
to our model, provides a multi-dimensional, spatially explicit and functional view of human-ecosystem 
interactions (Haberl et al., 2014; Gingrich et al., 2015). 
 
Our spatiotemporal modelling of LFSs is an important step towards defining and spatially allocating agent 
functional types (Arneth et al., 2014) in a global model of anthropogenic fire impacts. We anticipate a close, 
though not exact, relationship between our LFSs and agent functional types. Our ultimate intention is for this 
model of anthropogenic fire impacts to be coupled with the JULES-INFERNO fire-enabled DGVM (Best et al., 
2011; Mangeon et al., 2016). This eventual goal informs several choices regarding model development, from 
spatial resolution to our choice of forcing data sets. These restrictions and their implications for future modelling 
are addressed in the discussion. 
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2. Methods 

Modelling the spatiotemporal distribution of land-fire systems (LFSs) involved several steps (Figure 1). First, we 
drew on the global Database of Anthropogenic Fire Impacts (DAFI; Perkins et al., 2021; Perkins and Millington 
et al., 2021a) to define each LFS through a combination of theory and empirical data (sections 2.1, 2.2). Second, 
we sourced appropriate secondary data sets as independent variables to drive the model (section 2.2). Third, 
we assessed the representativeness of data in DAFI (section 2.3.1) and weighted these data to address sampling 
biases. Fourth, using this weighted data, we developed a single classification tree for each LFS (section 2.3.2, 
2.3.3). Fifth, the output probabilities of these trees were used to drive a simple representation of competition 
for land (section 2.3.4). Finally, model outputs were evaluated against land use efficiency data from the HANPP 
framework (section 2.4). 
 

 
Figure 1: Overview of methods used in this paper to define and evaluate a global land-fire system  distribution function. DAFI 
is the Database of Anthropogenic Fire Impacts, HDI is the Human Development Index, PET is potential evapotranspiration, 
HANPP is the Human Appropriation of Net Primary Production.   
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2.1  Definition of land-fire systems 

Land use systems are defined based on land use intensity and land management practices (Foley et al., 2005; 
Václavík et al., 2013). For example, Dou et al. (2021) classified 24 land systems across Europe distinguishing 
high-, medium- and low-intensity use of forests, arable lands and grasslands (among others). We extend this 
concept and define land-fire systems (LFSs) as the fire use and management practices that emerge from a 
combination of local land user objectives and wider socio-cultural attitudes towards fire. Specifically, we use a 
conceptual framework that cross-references land use systems with ‘anthropogenic fire regimes’ (AFRs) to define 
and categorise global LFSs (Table 1).  
 
We consider three primary land uses that dominate land systems globally – forestry, livestock and crops – in 
addition to a combined ‘non-extractive’ (recreational, residential or conservationist) land use system. Our AFRs 
are classified based on previous work that identifies differences in fire practices dependent on industrialisation 
and attitudes towards fire (e.g., Pyne, 2001; Seijo & Gray, 2012; Lauk & Erb 2016). These AFRs are: 
  
• Pre-Industrial – active use of fire and limited mechanisation in land management; 
• Transition – adopting elements of both pre-industrial and industrial regimes; 
• Industrial – fire use replaced by mechanisation and chemical fertilisers;  
• Post-Industrial – deliberate or unintentional re-introduction of fire to a landscape as an ecological process.  
 
By cross-referencing AFRs with land use systems, the LFSs produced are categories of distinct fire- and land-
management strategies that represent human behaviour and can be applied globally. 
 
 
Table 1: Land-fire systems (LFSs) conceptualised as a combination of four land use systems (LUSs) and four anthropogenic fire 
regimes (AFRs). Italics give exemplar papers describing the activities and fire regimes of each LFS. 

 LUS 

 AFR Non-Extractive Forestry Livestock Crops 

Pre-Industrial Unoccupied  
N/A 

Hunter-Gatherer 
Fowler & Welch, 
2018 

Pastoralism 
Solomon et al., 2007; 
Johansson et al., 2019 

Swidden 
Araki, 2007; 
Jakovac et al., 2017 

Transition Limited or Contested 
Management 
Sletto 2008; de Torres 
Curth et al., 2012 

Logging 
Nepstad et al., 1999; 
Dennis et al., 2001 

Extensive Ranching 
Eloy et al., 2017; Jakimow 
et al., 2018;  

Small-Holdings 
Kumar et al., 2015; 
Liu et al., 2019 

Industrial Pyro-Exclusion 
Pavleichik & Chibilev 
2018; Suhs et al., 2020  

Managed Forests 
Kalies et al., 2016; 
Steen-Adams et al., 
2017 

Intensive Ranching 
Taylor, 2003; Bendel et 
al., 2020 

Intensive Farming 
McCarty et al., 
2009; Hall et al., 
2016 

Post-Industrial Pyro-Diversity 
Govender et al., 2006; 
Fernandes et al., 2016 

Abandoned 
Gomez-Gonzalez et 
al., 2018 

Abandoned or Subsidised  
Hadjigeorgiou et al., 
2011; Varela et al., 2018 

Abandoned 
MacDonald et al., 
2000; Dara et al., 
2019 

 

2.2  Materials used 

Our method for modelling the global spatiotemporal distribution of LFSs is empirical, using data from a recently 
completed and first global database of anthropogenic fire impacts (DAFI; Perkins et al., 2021; Perkins and 
Millington 2021a). Currently, DAFI comprises 1809 case studies from 504 academic papers, government and 
NGO reports. As previous work has emphasised the central role of land use in anthropogenic impacts on fire 
(Andela et al., 2017), DAFI presents data on anthropogenic fire use, suppression, and policy within its underlying 
land use context. Data on the distribution of LFSs in DAFI therefore provided the dependent variables for our 
modelling. DAFI is freely available online (Perkins & Millington, 2021a). 
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DAFI data were combined with secondary data sets, which were used as independent variables in subsequent 
models (Table 2). Our initial choices for independent variables began with data found to be valuable in modelling 
global patterns of land use by Malek and Verburg (2020). We augmented these initial choices with factors likely 
to be important for determining fire use. Additional variables were primarily those that could capture the ‘dual-
constraint’ hypothesis of the biophysical drivers of fire (Krawchuk et al., 2009). Specifically, we used net primary 
production to capture cases where a lack of vegetation leads to a lack of fuel for fires to burn - ‘the fuel 
constraint’ - and potential evapotranspiration to capture cases where fuel is too wet to burn - ‘the moisture 
constraint’. Data for both of these variables were drawn from the JULES DGVM (Best et al., 2011) to facilitate 
later integration of our model outputs.  
 
Additionally, given the importance of politics to fire use and management (Carmenta et al., 2017, 2019), we also 
experimented with the ‘Human Freedom Index’ (Cato Institute, 2020). This was identified as a possible candidate 
to capture the relative importance placed on individuals’ subsistence livelihoods or societal economic 
development within policy frameworks. Finally, as DAFI revealed that biodiversity conservation is a substantial 
driver of anthropogenic fire use (Perkins et al., 2021), data on the location of protected areas (UNEP-WCMC, 
2020) and species’ richness (IUCN, 2015) were included as possible predictors of the distribution of AFRs in non-
extractive land use systems. A detailed overview of the pre-processing of secondary data sets that was 
conducted is given in Supplementary Material A; the resulting processed data sets are made available as 
Supplementary Material B. 
 
 
Table 2: Overview of secondary data sets used as predictor variables in this study. Only variables used in the final model are 
shown. All data were resampled to the resolution of JULES-INFERNO (1.875o x 1.25o). 

Variable type Variable name Spatial resolution Temporal range Source 

Socio 
economic 

Population density 0.04o 2000-2020 CIESIN, 2017 

Gross Domestic Product 0.08o 1990-2015 Kummu et al., 2018 

 Human Development Index 0.08o 1990-2015 Kummu et al., 2018 

 Market access+ 0.08o 2000 (1990-2015) Verburg et al., 2011) 

 Human impact mask 1km2 2016 Jacobson et al., 2019 

Land cover & 
Land use 

Fractional land cover 
(anthropogenic) 

0.25o 1990-2020 Hurtt et al., 2020 

 Land cover composition 
(natural) 

1.875o x 1.25o 1990-2020 Clark et al., 2011 

Biophysical Potential evapotranspiration 1.875o x 1.25o 1990-2014 Best et al., 2011 

 Ecosystem net primary 
production 

1.875o x 1.25o 1990-2014 Clark et al., 2011 

 Topography 30m N/A Van Zyl et al., 2001 

Key: + single year of data extrapolated to other years from other secondary data (see Supplementary Material A). All data sets 
have an annual temporal resolution. 

 
 

2.3  Global distribution of land-fire systems 

Before using DAFI as the basis of our model, we first assessed the global representativeness of these data. 
Weights were then applied to address any sampling biases in DAFI (section 2.3.1). Using these weighted data, 
the determination of the distribution of each LFS was done in two parts (Figure 2). The first part in the fractional 
allocation of cells to each LFS was to divide each grid cell (1.875o x 1.25o; section 2.3.1) of a global raster map 
into the fractional coverage of each land use system. This was done using a combination of prescribed inputs 
and classification tree models (section 2.3.2). The second part was to allocate the fractional coverage of each 
AFR within each land system present in the cell. This was done using classification trees trained with predictor 
variables from secondary data sets sampled at the locations of DAFI case studies, and the LFS recorded in DAFI 
as the target variable (section 2.3.3).  
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Figure 2: Process of allocating a grid cell proportionally by land-fire system (LFS) through the combination of land use systems 
(LUSs) and anthropogenic fire regimes (AFRs). All AFRs were distributed using the classification tree method set out in the 
main text, whilst the fractional coverage of LUS was determined through a combination of external forcing and inter-system 
competition. The fractions of a grid cell occupied by crops (C) and livestock farming (L) were determined from forcing data 
(Hurtt et al., 2020). Forestry (F) and non-extractive (N-E) LUSs were determined through a combination of JULES-INFERNO 
plant functional type outputs and statistical functions (see sections 2.3.2 & 2.3.4). The unoccupied fraction (Un) was 
determined by a classification tree, as with the AFRs, whilst the urban fraction (Ur) was also driven by CMIP6 forcing data. All 
fractional coverage was non-spatial within a cell. 

 

2.3.1  Data representativeness check and weighting 

The first potential source of bias in DAFI was the imbalance of the database towards few studies that reported 
results relating to the same LFS from multiple sites in close proximity. This imbalance is reflected in the large 
difference between the median and maximum number of locations reported in a single source (1 and 84 
respectively). For example, Araki (2007) reported fire use in shifting cultivation across 51 different villages in the 
Muchinga region of Zambia. Although this information is valuable for understanding variability in anthropogenic 
fire use, concentrations of case studies in localised areas could skew results at the global extent. Therefore, four 
locations were randomly sampled when a source reported data from more locations (for the same LFS in the 
same country) than the overall mean number per source (3.7). Additionally, case studies that reported policy or 
other information at the country level were excluded as they likely lacked spatial specificity. Consequently, from 
an initial set of 1809 case study locations, 1170 were used for modelling. 
 
The global representativeness of the chosen 1170 case studies from DAFI were assessed by comparing the 
distribution of values for the human development index (HDI) and potential evapotranspiration (PET) at 
locations for DAFI case studies against their respective global distributions. HDI was chosen to represent the 
availability of social and economic resources as it is focused on the fundamentals of human development across 
the broad base of a population (UN, 2020). Furthermore, HDI was chosen over GDP as fire is often conceptualised 
as a land management strategy used in the absence of alternative industrial tools such as machinery (Carmenta 
et al., 2019; Cammelli et al., 2020). PET was used as a proxy for the ‘dual-constraint’ hypothesis (Krawchuk et 
al., 2009), which describes the global biophysical variation in fire regimes. 
 
To conduct this comparison, values of the reference variables were sampled from raster grids at the locations 
of DAFI case studies (Table 2). As our eventual goal is to work with the JULES-INFERNO DGVM, secondary data 
were first aggregated to that model’s coarse resolution for global runs: 1.875o x 1.25o. The means of the 
distributions in DAFI were found to be substantially different from the global values (t-tests: all p < 0.0001; Figure 
3). The source of bias is that DAFI oversamples data from fire-prone areas - where anthropogenic fire use is more 
likely - and from economically poorer areas - where people have tended to use fire because other land 
management approaches are unavailable.  
 
Therefore, a process of ‘raking’ (Lovelace et al., 2015) was used to weight DAFI such that it more closely reflected 
the global distributions of HDI and PET. First, the 25th, 50th and 75th percentiles of the global distributions of 
HDI and PET were calculated. Each DAFI case study was then allocated to a quartile of the global distribution for 
the two reference variables. Where DAFI was found to over- or under-sample a particular quartile of the global 
distribution, data were down- or upweighted. For example, if 27.5% (respectively 22.5%) of DAFI case studies 
were in the second quartile of the global PET distribution, then those case studies would receive an PET weight 
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of 0.909 (respectively 1.11). The weights for HDI and PET were multiplied together to produce a final case study 
weight. Trimming thresholds were applied at values of 0.7 and 3 to avoid excessive emphasis being placed on a 
single data point (Elliot, 2008).  
 
The central tendency of the weighted data was found to approximate the global distribution of HDI (t-test:  
p = 0.47). For PET, a bias persisted as areas of very low evapotranspiration (principally the Northern Boreal Forest 
and Arctic Circle) remained under-sampled. These areas have very low human impacts on fire regimes, and when 
they were excluded, the distributions had converged acceptably (t-test; p = 0.82). This process was repeated for 
each of our four land use systems.  For each land use system, the global values of HDI and PET were filtered to 
include only cells that contained >1% of the land use system in question, and this subset of the data was 
compared against DAFI case studies containing an LFS from the relevant land use system. Similar results were 
achieved at the land system level as for the data overall (t-tests: all p > 0.05). These weighted data formed the 
basis of subsequent modelling. 
 
 

 
Figure 3: Distribution of data in the database of anthropogenic fire impacts (DAFI) by quartile of two reference variables, 
potential evapotranspiration (ET), and the human development index (HDI). DAFI oversamples low HDI (poorer) locations 
where anthropogenic fire is a dominant land use strategy and higher ET environments, which are more likely to be more fire 
prone. LQ, LMQ, UMQ, UQ refer to lower, lower middle, upper middle and upper quartiles. Dashed line represents an equal 
proportion of values across quartiles. 

 

2.3.2  Modelling the spatiotemporal distribution of land use systems  

To ensure our model outputs could be consistently integrated with JULES-INFERNO, we needed to consider the 
two ways in which land cover types are defined in the DGVM. First, the distribution of vegetation within ‘natural’ 
ecosystems is calculated based on competition between plant functional types (PFTs; Harper et al., 2016). 
Second, the presence of anthropogenic land systems (currently crops, livestock farming and urban) is 
determined through prescribed inputs. These inputs to JULES-INFERNO are currently typically the standardised 
land cover inputs for the CMIP6 (Coupled model intercomparison project simulations; Hurtt et al., 2020). CMIP6 
was the standardised model protocol that informed climate projections for the IPCC AR6 (Eyring et al., 2016). 
JULES-INFERNO then only allows grass PFTs to occupy anthropogenic or ‘disturbed’ portions of a grid cell (Burton 
et al., 2019). Therefore, for the land use system component of our LFS distribution modelling, the fraction of 
each grid cell covered by crops, pasture, rangeland, and urban areas were taken directly from the CMIP6 forcing 
data. In these forcing data, Hurtt et al. (2020) divided grazing lands into planted pastures and ‘rangelands’ (semi-
natural grasslands). We assumed that livestock land use systems dominated in both land cover types. The 
consequences of this division for model outputs are discussed in section 4.3.   
 
The remaining fraction of the grid cells were then allocated between forestry, non-extractive land uses, and 
‘unoccupied’ – the absence of any human land management. To do this, classification trees were used (Krywinski 
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and Altman, 2017). Classification trees have been widely applied in agent-based modelling (Rounsevell et al., 
2012) - their advantages include simplicity and an ability to represent categorically different behaviours. For the 
classification trees allocating non-extractive and forestry land use systems, the target variable was the 
respective land use system in DAFI. However, given that DAFI does not include case studies without at least one 
anthropogenic fire impact, it could not form the basis of the ‘unoccupied’ model. Therefore, the dependent 
variable for the ‘unoccupied’ model was the ‘very low (anthropogenic) impact areas’ defined by Jacobson et al. 
(2019). The full process used for defining the classification tree models is presented in section 2.3.3. 

2.3.3  Modelling the distribution of anthropogenic fire regimes 

Multinomial regression has frequently been used for statistically-derived distribution of land use/cover types 
(e.g. Millington et al., 2007; Lin et al., 2014). Here, we adopted an alternate approach based on a suite of 
classification tree models, in which a classification tree was defined for each LFS (Figure 4). The principal benefit 
of this approach was that it allows the socio-ecological niche of each LFS to be defined individually, and for that 
niche to be evaluated both quantitatively and relative to our understanding of process. For example, although 
soil composition and hydrology may play a role in determining the suitability of a given region for intensive 
agriculture (Malek and Verburg, 2020), including this as a variable across our LFSs risks making it a proxy for the 
trend towards lower economic development in tropical regions. Because only a sub-set of independent variables 
need be included in a given tree, the effect of these variables can be separated from each other, and isolated to 
where they are warranted from a process perspective. Our approach therefore substantially reduces multi-
collinearity concerns. Furthermore, grounding the foundations of the model in both empiricism and process 
should make future projections robust.  
 
Some LFS had few (< 20) instances in DAFI, meaning that several AFRs accounted for less than 10% of cases in 
some land use systems. This risked the classification-tree algorithm returning a null tree predicting all absence 
cases, which is little use for our modelling purposes. Therefore, for each LFS, a training set was developed with 
50% presence and 50% absence cases of the relevant LFS. Absence cases were up-sampled to the number of 
presence cases in the initial training data and 20% of the resulting data were first held back as a testing set. On 
this training set, an initial process of variable (or ‘feature’) selection was conducted to identify viable predictor 
variables. In this process an initial tree was learned against the training set with no restrictions on the number 
of nodes it contained. This was then ‘pruned’ based on misclassification of data points, to identify a simpler 
model, less prone to out-of-sample prediction variance due to overfitting (Mingers et al., 1989). The pruned 
trees were then evaluated against the testing set, to assess trade-offs between parsimony and predictive 
accuracy.   
 
As classification trees are known to be sensitive to small changes in the training data (Krywinski and Altman 
2017), bootstrapping of the training data is commonly employed to improve the stability of their out-of-sample 
prediction. In machine learning algorithms such as the random-forest, an ensemble of differing tree structures 
then forms the final model (Breiman, 2001). However, given our goal is to build a global, process-based 
behavioural model, we wanted to avoid the lack of interpretability associated with random-forests (Haddouchi 
and Berrado, 2019) and thereby to ensure each of our trees were robustly grounded in process. Therefore, 
rather than using bootstrapping to develop an ensemble of tree structures, we used it to identify the most robust 
single structure across samples.  
 
Having conduced an initial variable selection, therefore, we made 1000 bootstrap samples of the full data set 
used for variable selection – the training and test data with equal proportions of presence and absence cases 
(section 2.3.1). Using a subset of variables defined during variable selection, a classification tree structure was 
learned on each sample and pruned to the level identified as robust against over-fitting during variable selection. 
From these 1000 trees, the most frequent tree structure was identified and chosen as a final model. In some 
cases, two variables formed the initial model split approximately 50% of the time. In these instances, 
convolutions of variables were attempted to define a single variable that consistently formed the first split. For 
example, HDI was multiplied by the logarithm of GDP for the Small-Holdings (transitional crop) LFS and the single 
resulting HDI-GDP hybrid variable was subsequently found to be valuable in seven other cases.  
 
In addition to defining a resilient tree structure, the added advantage of our approach is that it creates a 
numerical distribution of values for the thresholds and output probabilities of a tree, based on their values for 
each bootstrapped sample. This allows a degree of data and sampling uncertainty to be captured and expressed. 



O. Perkins et al. (2022) Socio-Environmental Systems Modelling, 4, 18130, doi:10.18174/sesmo.18130  

 
 

 
 
 

9  

For this study, we took 100 random deviates for each set of tree split thresholds and their associated output 
probabilities and present this as a quantification of parameter uncertainty.  
 
The process described above created a single classification tree structure per LFS, where each split in the tree 
was given a numerical distribution and each node an associated set of output probabilities. The outputs of each 
classification tree are best interpreted as the probability that a given LFS is the dominant type in the fraction of 
a grid cell occupied by the relevant land use system. This allows, for example, that Swidden (i.e. pre-industrial 
crops) and Managed Forests (i.e. industrial forestry) could be the dominant LFS in their respective land use 
fractions of a single model cell.  

2.3.4  Simulating competition between LFS 

To produce maps of the fractional coverage of each LFS in each model grid cell we take a two-step process 
(Figure 2). The first step of combining the outputs of individual classification trees was to assign fractional 
coverage of each grid cell to each of our four land use systems (Figure 2b). Crop, pasture, rangeland and urban 
areas were derived directly from CMIP6 land cover (Hurtt et al., 2020). The remaining vegetation area was then 
allocated based on outputs of classification trees for forestry, unoccupied and non-extractive areas of a cell. 
Forestry was calculated as: 

          𝐹𝑜𝑟𝑒𝑠𝑡𝑟𝑦𝑖 = 𝑇𝑟𝑒𝑒𝑐𝑜𝑣𝑒𝑟𝑖 ∗ (1 − 𝑁𝑜𝑛𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒𝑖) ∗ (1 − 𝑈𝑛𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑𝑖 )   (1) 

 
Where  𝐹𝑜𝑟𝑒𝑠𝑡𝑟𝑦𝑖  is the proportional allocation of the ith grid cell to forestry. The remaining area covered by 
grass, shrubs and trees falling outside human land use was allocated between unoccupied and non-extractive 
land systems. This was done by summing the output probabilities of their two respective classification trees and 
dividing by the total. For example, the fraction of the ith grid cell allocated to non-extractive land uses was 
calculated as:  

        𝑁𝑜𝑛𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒𝑖 = 𝑉𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛𝑖 ∗
𝑁𝑜𝑛𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒𝑖  

𝑁𝑜𝑛𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒𝑖 +  𝑈𝑛𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑𝑖  
         (2) 

 
where 𝑉𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛𝑖  is the fraction of the grid cell not allocated to extractive land uses. Having allocated each 
grid cell fractionally between land use systems, LFS distribution within each corresponding grid-cell fraction was 
then calculated (Figure 2c). This was done by representing ‘competition’ between LFSs using output probabilities 
of the trees for each AFR: 

                                                 𝐴𝐹𝑅𝑖𝑗 =
𝑝(𝐴𝐹𝑅𝑖𝑗) 

∑ 𝑝(𝐴𝐹𝑅𝑗)⁄                                        (3) 

 
where 𝐴𝐹𝑅𝑖𝑗  is the fractional coverage of the ith AFR in the jth cell, and 𝑝(𝐴𝐹𝑅𝑖𝑗) and ∑ 𝑝(𝐴𝐹𝑅𝑗) are the 

probability of the classification tree for the ith AFR and for all AFRs respectively.   
 
Before calculating the fractional coverage by AFR using equation (3), a threshold (θ) of 0.1 was applied: output 
probabilities from a given classification tree less than this threshold were set to 0. The θ parameter was applied 
to prevent very small output probabilities for a given AFR from influencing LFS distributions inappropriately. This 
occurs because we used simple tree structures to avoid overfitting, and so the smallest output probability of a 
given tree was typically 0.05-0.1. For example, the Swidden LFS could be projected to occupy a small-fraction of 
cropland in the intensive USA corn belt (where such a land management strategy simply does not exist). This θ 
value will eventually become a free parameter when this model is coupled with JULES-INFERNO. After applying 
equation (3) to classification tree outputs, the relevant AFR and land use system fractions were multiplied 
together to produce LFS fractions within each cell.  

2.4  Model Evaluation 

Model outputs were evaluated in two ways. First, the classification-tree based approach set out above was 
compared against a reference (and more parsimonious) multinomial regression approach using the area under 
the ROC curve or ‘AUC’ – a standard measure of classification accuracy (Melo, 2013). To ensure a fair 
comparison, one multinomial regression was fit per land use system. A brief description of the multinomial 
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model is available as Supplementary Material F. Second, model outputs were compared against independent 
data in the form of global maps of Human Appropriation of Net Primary Production (HANPP; Kastner et al., 
2021).  
 
HANPP is a measure of the intensity of land use. It quantifies the extent of human domination of an ecosystem 
and therefore also provides a measure of land use as a planetary boundary to socioeconomic development 
(Vitousek et al., 1997; Running, 2012; Haberl et al., 2014). The HANPP framework has been used to analyse long-
term trajectories of land systems (Krausmann et al., 2012, 2013), disentangle processes of area change, 
intensification and efficiency gains (Gingrich et al., 2015), and understand impacts on biodiversity (Haberl et al., 
2005) and other ecosystem services (Mayer et al., 2021). HANPP quantifies the effects of land use and land-
cover conversions (HANPPluc), as well as of biomass harvest (HANPPharv) on terrestrial net primary production 
and is thus a multi-dimensional indicator for land-use intensity (Erb et al., 2013).  
 
The ratio between HANPPharv and HANPP gives the fraction of appropriated biomass that can be used for 
human purposes related to the overall land-use pressure on ecosystem productivity. The resulting metric – 
HANPP efficiency (HANPPe) – provides a measure of land use efficiency. HANPPe has been shown to be useful 
to depict land-use transitions, in particular from the agrarian to the industrial mode of subsistence (Fetzel et al., 
2014; Niedertscheider et al., 2014). While production increases in agrarian societies tend to rely on expansions 
of existing land-use practices, and thus result in a stable HANPPe, industrialisation-based production increases 
are usually associated with increases in plant productivity that result in strong, often sudden, increases in 
HANPPe.   
 
Here, we use global maps of HANPP to derive HANPPe for 1990, 2000 and 2010 (Haberl et al., 2007; Kastner et 
al., 2021). The compilation of these maps relied on the integration of census statistics (FAOSTAT, 2021) with 
information on potential ecosystem net primary production derived from a model run with the LPJ-GUESS DGVM 
(Smith et al., 2014) assuming a hypothetical no-land-use situation. Therefore, HANPP calculations were based 
on separate data from those used to develop the LFS distribution, with the exception of the land-use information 
which were derived from related CMIP6 and Hyde data sets (Goldewijk et al., 2017; Ellis et al., 2020; Hurtt et al., 
2020). Model evaluation using HANPPe focused on the crop land use system, where HANPPe dynamics are most 
pronounced. Therefore, cells with less than 10% cropland in the CMIP6 land cover data were excluded from 
evaluation. Since HANPPe should increase with industrialisation, we expected HANPPe to increase from pre-
industrial, to transitional, to industrial crop LFS.  

2.5  Model simulations and code 

We ran our model from 1990-2014. These years represent the beginning of the time-period covered by DAFI 
(1990) and the end of CMIP6 historical simulation runs (2014) respectively. Analysis code to create tree 
structures is written in R version 4.0.1. Principal packages used were ‘tree’ version 1.0.4 (Ripley, 2019) for 
classification trees and ‘tidyverse’ version 1.3.0 (Wickham et al., 2019) for data manipulation and processing. 
Code to integrate tree models into a cohesive simulation is written in Python 3.8, using the ‘Agentpy’ framework 
version 0.0.1 (Formatti, 2021). Code is made available as Supplementary Material C and Github (Perkins and 
Millington, 2021b). 
 

3.  Results 

3.1  Model outputs 

Overall, our model suggests that in 2014, 54.15% of the Earth’s land surface was in either transitional or 
industrial fire regimes (Figure 4). By contrast, just 9.37% of the planet was occupied by the pre-industrial AFR 
and 12.70% was occupied by the post-industrial AFR. The largest shift globally between 1990 and 2014 was an 
increase in industrial and post-industrial AFRs. The Industrial AFR grew from 22.47% of the global land surface 
in 1990 to 27.61% in 2014 (Figure 5). This increase was predominantly driven by an increase in the industrial 
crops LFS. The industrial crops LFS increased from 40.20% to 50.70% of cropland area globally (Figure 6). There 
was a smaller increase in the industrial livestock LFS, which increased from 31.95% to 35.00% of livestock land 
use systems globally. This picture of increased land use intensity is complemented by unoccupied areas of the 
land surface decreasing from 23.23% to 17.78% over the study period.  
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By contrast, the largest change in non-extractive LFSs was the increase of the post-industrial AFR (‘Pyro-
Diversity’), which grew by 6.69%. However, the industrial (‘Pyro-Exclusion’) AFR also grew by 4.48% in the non-
extractive land use system. Furthermore, the distribution of AFRs within the non-extractive land use system was 
more static than in extractive land use systems. In 1990, the four non-extractive AFRs occupied between 20.93% 
and 29.54%, whilst by 2014, this range had changed only to 16.12% to 32.05%.  
 

 
Figure 4: Fractional coverage of the global land surface by anthropogenic fire regime (AFRs) in 2014. The transition and 
industrial AFRs form the largest share of global land surface coverage.   

 
 

 
 
Figure 5: Fractional coverage of global land surface by anthropogenic fire regimes (AFRs) from 1990-2014. Shading represents 
95% confidence interval around the mean, derived from bootstrapped numerical distribution of classification tree thresholds. 
The largest change in AFR distribution is an increase in the industrial AFR, accompanied by declines in the pre-industrial AFR 
and unoccupied areas.   
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Figure 6: Change in global land-fire systems (LFSs): A) distribution of anthropogenic fire regimes (AFRs) in the cropland and 
non-extractive land use systems through time and B) AFR by Continent. Together, model outputs point to a substantial increase 
in the intensive crops LFS in Asia and South America. The accompanying decline in shifting cultivation (pre-industrial crops) is 
particularly acute in Asia. The increase in post-industrial regimes, particularly in Europe and North America, points to land 
abandonment, but also the growth of ‘pyro-diverse’ land management strategies (Fernandes et al., 2016). 
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Beneath this global picture, there is substantial regional heterogeneity. For example, at the continental level, 
whilst the pre-industrial AFR decreased from 17.24% to 10.50% in Asia across the study period, the pre-industrial 
AFR remained broadly static in Africa (18.64% to 16.95%). By contrast in Europe and North America, a prevailing 
trend is the growth of the post-industrial AFR, which increase from 11.48% to 17.47% in Europe and 20.21% to 
26.40% in North America. The decline in unoccupied area was most sharp in South America - from 26.37% to 
18.13% of the land surface - reflecting rapid deforestation of the Amazon. A complete set of model outputs, 
including maps for all years and LFSs, are made available as Supplementary Material E.  

3.2  Overview of model performance 

When compared to reference multinomial regression models, the classification tree approach demonstrates a 
slight improvement in quantitative performance. On average the classification trees achieve an AUC of 0.018 
higher than the multinomial models (Table 3). Classification trees perform particularly well for livestock and non-
extractive systems. Management practices in these systems have been found to drive substantial differences in 
fire regimes at both landscape and global scales (Bird et al., 2012; Rabin et al., 2015). Therefore, the classification 
trees’ improved performance in these land use systems will support robust projections of anthropogenic fire 
use and suppression when coupled with JULES-INFERNO.   
 
 
Table 3: Model performance of classification tree approach in comparison with reference multinomial regressions. Values are 
mean area under the ROC curve (‘AUC’), weighted by the number of DAFI case studies in each land use system. Although the 
better performance of the classification tree approach is modest in a purely quantitative sense, the approach also captures a 
more nuanced view of process that should aid the credibility and interpretability of future forecasts. 

Land use system Multinomial Classification trees 

Crops 0.807 0.785 

Livestock 0.742 0.761 

Forestry 0.899 0.915 

Non-extractive 0.729 0.785 

Overall 0.794 0.812 

 
 
Additionally, the classification tree approach captures a wider range of socio-ecological processes compared to 
the multinomial models (Figure 7): the most robust multinomial fits contained HDI and market access as 
independent variables (Table 4). By contrast, the classification trees are derived from a final set of seven 
independent variables, and therefore capture important inter-relationships between socio-economic and 
ecological factors that enable improved performance in critical areas (Figure 8). For example, the spatial 
distribution of the pre-industrial livestock LFS (‘Pastoralism’) is found to be concentrated towards higher altitude 
regions with less socio-economic development. As pastoralism is typically found in more marginal and 
sometimes harsher environments, such a parameterisation is consistent with prior knowledge of the process 
(Saladyga et al., 2013; Easdale and Aguiar, 2018).  
 
 
Table 4: Mean regression coefficients for the reference multinomial models. The industrial anthropogenic fire regime (AFR) 
was taken as a reference (zero values for all coefficients). Taken together, the model is indicative of a linear progression 
through the four AFRs in step with economic development. HDI is the human development index. 

AFR  Intercept HDI Market access 

Pre-industrial  11.495 -18.085 -1.261 

Transition 9.236 -15.254 11.486 

Post-industrial -5.524 5.149 9.307 
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Figure 7: Relationship of model outputs to predictor variables. A) Frequency of variables as primary or subsequent splits in 
classification tree models, and B) relationships of global fractional land surface coverage with the HDI & GDP hybrid variable 
(by anthropogenic fire regime (AFR)  for 2014 model output). Economic factors, represented by HDI & GDP as well as market 
access, dominate classification trees and play a substantial, though not exclusive, role in driving AFR distribution. Biophysical 
factors represented by potential evapotranspiration and ecosystem net primary productivity provide important second and 
third order effects, highlighting the socio-ecological dynamics at the heart of anthropogenic fire impacts. 
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Figure 8: Selected land-fire system (LFS) classification trees: A), pre-industrial livestock (‘Pastoralism’), B) post-industrial non-
extractive (‘Pyro-Diverse’), C) industrial crops (Intensive Farming). D) shows model performance for each compared to 
reference multinomial models. These trees illustrate how the approach enables representation of interactions between socio-
economic and ecological factors in the models. In A) both economic development and the more fertile conditions associated 
with lower altitude (DEM) serve to constrain the system. Conversely, in B) the combination of comparatively more prosperous 
and populated areas and lower NPP are conducive to the system (and at very high NPP, moisture can limit the ‘natural’ role 
of fire; McWethey et al., 2013). The intensive crops LFS (C) is found in wealthier areas, and also areas in the developing world 
where the hydrological cycle permits appropriate conditions for intensive agriculture. In two of three cases, capturing the 
additional ecological process leads to improved area under the ROC curve (AUC; D).   

 
 
Similarly, the presence of the post-industrial non-extractive (‘Pyro-Diverse’) LFS is found not only nearer to 
wealthier cities, but also outside of very high NPP environments – where fire does not play a substantial ‘natural’ 
role in the ecosystem and so its use in biodiversity conservation is not as widely adopted (e.g., Barnett et al., 
2016). By capturing the details of these processes, the classification tree approach achieves an average AUC 
0.038 greater than the multinomial models for these particular LFSs (Figure 8d).  
 
Finally, the Intensive Farming LFS is found to be influenced not only by socio-economic development, but also 
by PET in the classification tree approach. Specifically, at very high PET, intensive farming becomes much less 
likely. This may reflect the poorer soil quality typically found in such regions (Sanchez et al., 2003), mirroring 
findings of Malek and Verburg (2020). However, for this LFS, the reference multinomial (with a purely 
socioeconomic approach) performs better (AUC 0.845 vs. 0.787). This is addressed further in the Discussion. A 
complete set of classification trees used to define the distribution of LFSs is presented in Supplementary Material 
D.   

3.3  Model evaluation 

Overall, there is good agreement between model outputs and HANPPe (Figure 9). For example, in 2010, the pre-
industrial crops LFS (Swidden) has mean area weighted HANPP efficiency (wHANPPe) that is 41.68% lower than 
the industrial crops LFS and 36.67% lower than the transition crops LFS. This pattern is repeated in both 1990 
and 2000. Likewise, there is a similar, but smaller proportional increase in wHANNPe from the transition to 
industrial cropland LFS of 33.15% in 1990. However, the relative increase from transition to industrial AFRs 
decreases to just 7.78% in 2010. The trend is driven by increases in wHANPPe in eastern China, a region where 
wHANPPe has increased rapidly, but which remains in the transitional crops LFS (Small-Holdings) in model 
outputs (Figure 10). This temporal trend towards convergence in wHANPPe between the transition and 
industrial cropland LFS is assessed further in section 4.2. 
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Figure 9:  HANPP efficiency weighted by fractional cell coverage for the three productive crops land-fire systems. In all cases, 
mean HANPP efficiency increases in line with increasing land use intensity, although this trend becomes weaker between the 
transitional and industrial anthropogenic fire regimes through time. Metrics give mean and quantiles of the respective 
distributions.   

 
Figure 10: Drivers of converging HANPP efficiency (HANNPe) between crops land-fire systems (LFSs). A) Dominant cropland 
land fire-system in cells with > 10% cropland coverage & B) change in HANPPe between 1990 & 2010. Very large increases in 
land use intensity are reflected in increased HANPPe in China, but much of these areas remain within the transitional LFS 
(‘Small-Holdings’) in model outputs.   
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4.  Discussion 

4.1  Contribution to modelling of socio-ecological systems 

Our approach using a new conceptualisation of land-fire systems (LFSs) with classification trees represents an 
important step forward in modelling the impacts of human behaviour on global fire regimes. The use of 
classification trees is (modestly) quantitatively better than multinomial regression (Table 3, Figure 8), and 
produces a similar degree of predictive accuracy as other models of human behaviour at a global scale (e.g. land 
use change; Malek and Verburg, 2020). Furthermore, using an ensemble of classification trees, our approach 
provides two additional key benefits in underpinning a robust process-driven model.  
 
First, the approach enables explicit representation of socio-ecological processes, such as the relationship 
between net primary production and the emerging ‘pyro-diversity’ land management perspective. Because we 
have a unique tree for each of our defined LFSs, we can isolate these effects to where they are warranted from 
a process perspective. The specificity of the role of different independent variables in our approach should also 
improve the prognostic value of future predictions: we will be confident that any feedbacks diagnosed in coupled 
model runs are based on observed processes and not spurious collinearity effects. Conversely, the reference 
multinomial models suggest a linear progression through AFRs from pre-industrial to post-industrial. Specifically, 
the pre-industrial AFR is typified by low HDI and market access, the transition AFR by low HDI but high market 
access, the industrial AFR by high HDI but low market access, and the post-industrial AFR by high values for both 
predictor variables (Table 4). Such a linear conceptualisation has been criticised in the context of anthropogenic 
fire use for not capturing the nuance and diversity of how humans use and manage fire in diverse contexts 
(Coughlan and Petty, 2012).  
 
Second, our results show that the classification tree approach can represent systematic change within land 
systems, identified as a grand challenge in socio-ecological systems’ modelling (Elsawah et al., 2020). This can 
be seen in Figure 7 in which a clear threshold effect is seen in the industrial crops LFS at HDI-GDP ~6.5. However, 
our model is also able to reproduce more gradual change thanks to the bootstrapped distributions we apply to 
the threshold values in each tree. In the context of coupling our model with JULES-INFERNO, this represents a 
substantial advantage over multinomial regression, which would be more limited in projecting land systems’ 
responses to changes in socio-ecological circumstances. An example benefit of this nuance is that our model 
reproduces the noted rapid decline of swidden agriculture in Asia simultaneous with swidden’s persistence in 
much of sub-Saharan Africa (Figures 6 & 10; Van Vliet et al., 2012).   

4.2  Evaluation of model outputs 

The overall agreement between our model and independent data for the empirically-derived HANPPe measure 
(Haberl et al., 2007) establishes the credibility of the model outputs, particularly for delineating between the 
pre-industrial crop LFS and the industrial crop LFS (Figure 9). More fundamentally, the alignment between our 
LFS modelling and the HANPPe measure of land use intensity strengthens the case for a tight link between land 
use and anthropogenic fire. However, the apparent convergence of HANPPe in transitional and industrial AFRs 
from 1990-2010 warrants further exploration.   
 
In eastern China, we observe large increases in HANPPe, but model outputs to 2014 continue to place much of 
this region in the transitional crops LFS (Figure 10). Case studies in this region were assigned the transitional 
crops LFS in our model input data (i.e., DAFI) not on the basis of yields, but because they are areas of widespread 
burning of crop residues in arable regions (e.g. Sun et al., 2019). Indeed, residue burning in many parts of Asia 
has become so widespread as to have a substantial negative impact on air quality (Peng et al., 2016; Sembhi et 
al., 2020). This is indicative of a lack of cohesive fire management, and hence is classified in the transition AFR. 
By contrast, in the industrial crops LFS, residue burning is typically absent due to concerns around public health 
that drive legislation to restrict or ban it (Smil, 1999). To some degree, this tension may be resolved through the 
assignment of agent-functional types to our LFS. For example, Malek et al. (2019), identified distinct market-
oriented and subsistence-oriented small-holder land user types. We may find that such a sub-division in our 
Small-Holding LFS, to create a market-oriented small-holder agent class, would better represent high-yielding 
farming with limited associated management of fire use.  
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Fundamentally, however, the observed tension points to the nature of transitions in the land system – with 
multiple and often concurrent factors leading to varied, lagged, and non-linear responses in the system (Brown 
et al., 2018). More longitudinal and location-specific research is required to understand the drivers of change in 
fire practices and land use intensity and efficiency and the degree to which they are related.  

4.3  Future modelling challenges 

Two primary challenges in the modelling presented here relate to available data and the intended future 
coupling to existing models. Firstly, although the creation of global spatially disaggregated HDI and GDP data 
(Kummu et al., 2018) has been important in our ability to model the spatiotemporal distribution of LFSs, we also 
made multiple simplifications to our representation of human behaviour due to data constraints and concerns. 
Secondly, our focus on coupling with the JULES-INFERNO DGVM caused us to lose a degree of information, not 
only by working at JULES-INFERNO’s coarse spatial resolution (1.875 x 1.25 degrees), but also by refraining from 
using data sets that would have conflicted with JULES-INFERNO outputs yet otherwise may have added value to 
the model. These two related issues are now discussed further, in turn. 
 
Due to a lack of data, the primary simplification important for modelling global anthropogenic fire is the absence 
of an explicit representation of policy. This must be considered a substantial limitation as the inherently political 
nature of fire governance determining who can use fire, for what purpose and when, is often a proxy battle for 
the favoured land system and land tenure type in a given location (e.g., Kull, 2004; Trigg et al., 2012). To account 
for this, we initially experimented with the ‘Human Freedom Index’ (Cato Institute, 2020) as a measure of the 
degree of centralisation of a government system. However, this was dropped from the analysis, primarily 
because of concerns regarding the neutrality of the index (Plehwe, 2021). Furthermore, as we plan to use this 
model for future scenario-based projections, we were concerned that making projections about such an index 
for the shared socio-economic pathways (SSPs; Popp et al., 2017) would be an inherently subjective process. 
 
Therefore, a representation of government policy will need to be defined through theory in combination with 
information on fire policy (such as that gathered in DAFI). However, such a top-down parameterisation of policy 
impacts on the land system will need to be careful not merely to mirror or double effects already captured 
implicitly in existing data. For example, the consequences of political efforts to eradicate swidden in Southeast 
Asia (Mertz et al., 2009) are already seemingly captured in our empirical modelling. This question of circularity, 
and the degree to which empirical and strictly behaviourally-driven model components may be combined in a 
coherent manner will likely only become clear once coupling with JULES-INFERNO is completed and assessed.  
 
A further data-related simplification made during model construction was to remove variables representing 
species richness and the distribution of protected areas. These variables were moderately useful in defining the 
distribution of non-extractive AFRs but would have added substantial challenges to scenario forecasting – likely 
requiring complex assessments and calculations of future anthropogenic impacts on biodiversity globally. 
Together, these data issues reiterate the argument of Verburg et al. (2019) that a lack of future projections in 
land system modelling and its underlying data sets remains a major challenge.   
 
A second set of challenges in our approach is found in our planned model coupling with the JULES-INFERNO 
DGVM. As we plan for our model to be used in model runs following the CMIP6 protocol, we adopted the CMIP6 
land cover data as the primary driver of our land use system distribution (Figure 2). The consequences of this 
are perhaps most pronounced for the livestock land use system. One positive outcome was that pastoralism 
could be restricted to the ‘rangeland’ land cover class, as by definition this nomadic LFS cannot occur on 
managed pastures. However, a substantial resulting issue is the representation of land abandonment. For 
planted pastures, coherence demands the rate of abandonment must be driven by declining fractional coverage 
in the land cover data. Conversely, in rangelands, abandonment can occur without substantial change to land 
cover (Peco et al., 2006). Therefore, in this case abandonment need not be dictated from forcing data and can 
be represented behaviourally. Indeed, the post-industrial AFR for rangelands was among the best performing 
aspects of the model (AUC = 0.862).  
 
This tension in the relationship of CMIP6 land cover data with our land use systems points to similar structural 
challenges for modelling of future scenarios. Although CMIP6 land cover data for the recent past are derived 
from observations, for future scenarios they are based on Integrated Assessment Model  outputs (Hurtt et al., 
2020). Therefore, future projections from our model will be somewhat reliant on the assumptions of Integrated 
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Assessment Models to drive the distribution of land systems, whilst the distribution of AFRs will be driven 
entirely by our behavioural approach. This may cause issues with the coherence of future scenarios but is a 
necessary issue to tackle if behavioural modelling is to be integrated into the coupled model intercomparison 
project and associated protocols. Furthermore, by separating concerns between land use system distribution 
and AFR distribution, our modelling approach should be readily adaptable for modellers interested in other 
discrete aspects of anthropogenic land use such as water consumption or biogeochemical cycling.  
 
Finally, to allow seamless transmission of information between our models, we adopted JULES-INFERNO outputs 
as synthetic data sets for NPP and PET. However, data derived from remote sensing and field observations may 
have been preferable. This limitation may be at the heart of our model’s modest performance in predicting the 
industrial crops LFS. Although Malek and Verburg (2020) used soil type to capture the biophysical constraint on 
such intensive or market-oriented production, including such a data set in our model would have involved 
substantial enhancements to the ways in which JULES-INFERNO represents changes to soil biogeochemical 
composition due to agriculture (Osborne et al., 2015; Burton et al., 2019). Recognising this, and to ensure our 
model is readily integrable with other DGVMs, we plan to create a version of the model using only remotely-
sensed (empirical) inputs.   
 

5.  Conclusion 

We have presented a new approach to modelling the global distribution of land use systems and their inter-
relationship with anthropogenic fire regimes, through the concept of land-fire systems (LFS). Our spatiotemporal 
modelling of LFS distributions is an important step towards a substantial improvement in the representation of 
anthropogenic fire in dynamic global vegetation models. We have demonstrated how a reasonably simple 
empirical approach can capture complex non-linear interactions in land systems whilst being derived from just 
seven independent variables (with corresponding data sets). However, a major implication of this study is that 
effective large-scale behavioural land system modelling under the shared socio-economic pathways will require 
development of standardised and spatially disaggregated data sets, with associated future projections, across a 
range of socio-ecological indicators.   
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