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Abstract 
The use of Geographic Information Systems (GIS) and remote sensing technologies for the development of water 
quality management programs and for post-implementation assessments has increased dramatically in the past 
decade. This increase in adoption has been made more accessible through the interfaces of many popular 
software tools used in the regulation and assessment of water quality. Customized applications of these tools will 
increase, as ease of access and affordability of directly monitored and remotely sensed datasets improve over 
time. Concurrently, there is a need for inclusive participatory engagement with stakeholders to achieve solutions 
to current watershed management challenges. This paper explores the potential of these GIS and remote sensing 
datasets, tools, models, and immersive engagement technologies from other domains, for improving public 
participation and stakeholder engagement throughout the watershed planning process. To do so, an initial review 
is presented about the use of GIS and remote sensing in watershed management and its role in impairment 
identification, model development, and planning and implementation. Then, ways in which GIS and remote 
sensing can be integrated with stakeholder engagement through (1) leveraging GIS and remote sensing datasets, 
and (2) stakeholder engagement approaches including outreach and education, modeler-led development, and 
stakeholder-led involvement and feedback, are discussed. Finally, future perspectives on the potential for 
transforming public participation and stakeholder engagement in the watershed management process through 
applications of GIS and remote sensing are presented.  
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1.  Introduction 

The sustainable management of water resources is an important goal for communities around the world. In 
most cases this is attempted, and in some cases achieved, by appropriate regulation of discharges from 
watersheds and governance to ensure compliance with these regulations. Watershed management and 
regulation to protect water quality have been recognized as both a social and technical undertaking 
(Korfmacher, 2001). In the United States (US) where water quality protection is a major component of 
environmental regulation, there are multiple approaches to manage water quality. For example, (a) numeric and 
descriptive load allocations or assimilative limits of pollutants in impaired waterbodies known as Total Maximum 
Daily Loads (TMDLs; Box 1); (b) category 4b pollution control programs (Monschein & Reems, 2009; Box 2); and 
(c) watershed management plans (e.g., North Carolina Department of Environmental Quality (NCDEQ), 2021; 
New York State Department of Environmental Conservation (NYSDEC), 2021; Texas Commission on 
Environmental Quality (TCEQ), 2021), such as nine element (9E) plans (United States Environmental Protection 
Agency (USEPA), 2013; Box 3). 
 
The TMDL program has achieved considerable success in regulating water quality pollution and assigning clean-
up responsibility to those entities that contribute the greatest point source pollutant loads by explicitly tying 
loads to water quality standards. The category 4b program (so named for the regulation that allowed for this 
program), requires the identification and control of pollution loads within the watershed (NCDEQ, 2021). 
Watershed management plans are more participatory in design and allow the identification and mitigation of 
nonpoint source pollutant loads within the watershed, rather than focusing on water quality standards or 
objectives that have to be met within the impaired waterbodies (e.g., NCDEQ, 2021; NYSDEC, 2021; TCEQ, 2021).  
Watershed planning within a water quality management approach requires a thorough understanding of 
hydrologic processes, pollutant discharge and transport, and pollutant load allocations in time and space. 
Effective communication before and during the implementation of water quality restoration actions is critical 
for stakeholder buy-in and continued participation. Remote sensing datasets and Geographic Information 
System (GIS) tools can be used separately or jointly, to convey technical information in a way that can be more 
easily understood and appreciated (see Boxes 1, 2 and 3 for specific examples). Remote sensing data, viewed 
and analyzed through GIS software applications, can help to define the spatiotemporal water quality patterns 
within a watershed in a manner that the use of each technology alone might not provide. This has led to the 
embedding of remote sensed data acquisition, processing, and analysis capabilities in many GIS platforms. Users 
can often select the source of the data (satellite, aerial, or drone) and the specific tools with which the data is 
analyzed or viewed (e.g.,QGIS, ESRI ArcGIS, ENVI, Google Earth Engine, etc.). 
 
 

Box 1: GIS and remote sensing for developing and implementing Total Maximum Daily Loads (TMDLs). 

This Box demonstrates how GIS and remote sensing can be used to enhance the stakeholder engagement process in TMDL 
implementation as introduced in Section 1. 
 
Background 
The US Clean Water Act (CWA; Public Law 92-500; United States Code section 303(d)(1)(C)) requires listing of all 
waterbodies that fail to meet minimal water quality standards. Under this law, each jurisdictional entity (e.g., state or tribal 
regulatory agency) is required to develop a water quality management plan that identifies the major pollutants that impact 
receiving waters. Similarly, the total pollutant mass that can be safely assimilated by the environment (without causing an 
exceedance of water quality objectives) must be determined.  
 
When the mechanism of achieving load reduction is through the quantification of load allocations and assimilation limits, 
this pollutant quantity is typically referred to as the TMDL. During TMDL development, the USEPA recommends that a 
comprehensive watershed strategy be undertaken, involving close stakeholder partnership with water quality management 
volunteer groups (e.g. citizen science collaboratives, contractors, local governments, and/or other state and federal 
agencies). Although few stakeholders are familiar with the scientific support and ecotoxicity research for the water quality 
standard or numeric objective for each pollutant, the fact that there is a compilation of accepted evidence often suffices. 
 
TMDL Workflow 
In developing a TMDL, the level of impairment of the water body is first evaluated. All contributing sources (point source 
(PS) and non-point source (NPS)) are then identified. Each source is allocated only a portion of the maximum allowable 
load, so that the net reduction in the load may meet the applicable water quality criteria. Natural background sources, 
seasonal variability, and Margin of Safety (MOS) (Nunoo et al., 2020) are all considered in the pollutant allocations.  
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Box 1 (continued) 

TMDL Monitoring 
Monitoring programs are generally designed to systematically collect data over key temporal and spatial scales to provide 
empirical evidence of the water quality impairment and its potential source, establish the current environmental status of 
the system, and quantify trends in local hydrometeorology, pollutant loading, anthropogenic factors and relevant water 
quality (American Society of Civil Engineers/Environmental and Water Resources Institute Total Maximum Daily Load 
Analysis and Modeling Task Committee (ASCE/EWRI TMDL-TC), 2022). Public access to information on data collection 
procedures and technologies helps to justify the activity and can lead to enhanced public support and aligned effort to 
improve the accuracy and precision of the acquired data.  
 
As part of a TMDL effectiveness monitoring plan, additional parameters may be monitored simultaneously along with the 
primary water quality parameter(s) of concern to help explain trends in the data and compare before/after conditions. One 
of the common covariates for pollutants is streamflow. Precipitation and air temperature can also be useful supplemental 
factors to consider in statistical analysis to analyze changes in pollutant loading over time. In addition, land-use data can 
be included in subsequent analyses to explain data variability. Monitoring biological and habitat data can provide additional 
supporting information to the observed trends in certain water quality parameters (USEPA, 2017). 
 
Role of GIS and remote sensing in modeling for TMDL development  
Numerical models are typically used during the process of TMDL development to represent the linkage between pollutant 
sources and water quality targets. A typical TMDL modeling workflow can be specified as follows (ASCE/EWRI TMDL-TC 
2022): 

1) Conducting preliminary assessment: GIS and remote sensing tools can assist in data compilation for an initial 
assessment to establish the basis of an impairment, and to determine the need for a TMDL.  

2) Establishing the TMDL: Depending on the available data, more sophisticated models may be constructed to evaluate 
event-based and temporal aspects of the impairment.  

3) Modeling the system: Once the problem has been identified, a detailed TMDL model (such as a process-based 
model) can be constructed to evaluate the system response to both critical conditions and continuous long-term 
systemic changes. Geospatial information on the geography, land use, hydrology and loading, are vital in this step 
(Figure B1). 

4) Evaluating model results: Once model results are available, GIS-based tools can be helpful to present this 
information to engaged stakeholders (Figure B1). 

5) Implementing the TMDL: Once the timeline for TMDL implementation has been determined, GIS can be useful for 
engaging with stakeholders, reaching consensus on appropriate strategies for controlling pollutant loads, and 
developing market-based solutions for estimating and trading pollutant load allocations (Figure B1).  

 

 

Figure B1: Example of the use of a GIS-based model user interface to enhance stakeholder access to model data and 
improve technical review of model simulation outputs. This application from the BASINS TMDL decision support system 
utilizes the open source MapWindows GIS platform to characterize the hydrograph and land use for the watershed, 
delineate pollutant point sources, and identify municipal sewerage in the study area. 
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Box 2: GIS and remote sensing in 4b pollution control programs. 

This Box demonstrates how GIS and remote sensing can be used to enhance the stakeholder engagement process in a 4b 
pollution control program. 
 

Background 
In limited settings, the mechanism of achieving load reductions may be through watershed management by implementing 
4b pollution control programs (Monschein & Reems, 2009; NCDEQ, 2021). This occurs when load reductions within the 
watershed are likely to result in attainment of water quality standards without having to resort to an explicit TMDL, such 
as in the case of pathogens and emerging contaminants, or when load reductions of other pollutants or implementation of 
management actions result in collateral pollution abatement. In such cases, the relationship between loads and 
impairments, as well as stakeholder action is unintuitive. Convincing stakeholders that such programs are in their best 
interest may be challenging, in which case using GIS tools can be helpful.  
 

Workflow for 4b Programs  
For these programs, the jurisdictional agencies must show through their monitoring and modeling programs that without 
the explicit implementation of a TMDL, load reduction may be achieved (e.g., Adkins & Monschein, 2009; Bresler et al. 
2009; Flynn et al. 2009; Stevens et al. 2009). GIS-based tools are useful for conveying such important information for the 
4b program (Figure B2). 

 
Figure B2: GIS layers, remotely sensed innovative use of GIS, and remote sensing imagery in a web dashboard can be used 
to contextualize and convey watershed information for nitrate pollution management: a) spatial distribution of water 
quality in Chesapeake Bay’s subwatersheds, b) amount of suspended matter in Chesapeake Bay, before and after a heavy 
rainfall event (Source: NOAA, 2022), c) aerial true color imagery (Source: USEPA, 2022), d) example of a warning advisory, 
and e) example of a planning dashboard based on data, GIS and models.  
 

Monitoring for 4b programs 
The monitoring requirements for a 4b program are similar to those needed for a TMDL program and co-exist with TMDLs 
that have been completed or involve pollutants that will be mitigated by other pollution control methods (Adkins & 
Monschein, 2009; Bresler et al., 2009; Flynn et al., 2009; Stevens et al., 2009). These monitoring requirements also apply 
when physical processes such as critical conditions occur that cause non-attainment of water quality standards or 
objectives that cannot be readily mitigated.  
 

Role of GIS and remote sensing in 4b programs 
The biggest challenge for 4b programs is to convince stakeholders that such a program will actually result in the attainment 
of water quality objectives without explicitly managing the pollutant of concern. This requires a clear enumeration of point 
and nonpoint source loads, and a spatially explicit representation of the loads and watershed-wide practices to first educate 
stakeholders about the impairment. For example, atrazine impairment in the Little Arkansas River sub-basin has been 
handled effectively with stakeholder engagement and implementation of voluntary Best Management Practices (BMPs) 
under a 4b program, rather than by implementing TMDLs, because the stakeholders did not want their participatory actions 
to cool off under a regulatory imposition (Flynn et al., 2009). 
 

In the authors’ opinion, using GIS to enumerate loads and existing BMPs, and linking these to water quality datasets through 
visual portals would help in stakeholder education and outreach to local farming communities. Using high-resolution 
(<10m2 per pixel) remote sensing datasets to monitor the health of agricultural fields and inform the application of 
herbicides would make the 4b program more effective. 
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Box 3: GIS and remote sensing in 9-element (9E) plans. 

This Box demonstrates how GIS and remote sensing can be used to enhance the stakeholder engagement process in a 9E 
watershed management plan. 
 

Background 
Watershed management plans are participatory in design and allow the identification and mitigation of nonpoint source 
pollutant loads within the watershed rather than focusing on water quality standards or objectives that have to be met 
within the impaired waterbodies (e.g., NCDEQ, 2021; NYSDEC, 2021; TCEQ, 2021). In cases where impaired waters occur 
or a watershed spans multiple counties, state and regional jurisdictions, transboundary compacts such as the Chesapeake 
Bay Program (USEPA, 2010) are required to meet quality objectives. In the case of international boundaries, cooperation 
between nations must be facilitated under the auspices of treaty-bound collaborative programs such as the US-Canada 
Binational Toxics Strategy (USEPA, 2016a), or the US-Mexico Border 2025 program (USEPA, 2021a). Such transboundary 
problems will require ground-up stakeholder engagement to be successful (Medema et al., 2016). 
 

Workflow for 9E programs 
Watershed planning allows for a holistic addressing of nonpoint source pollution within the watershed, by engaging with 
stakeholders early and throughout the implementation process. These plans typically comprise six steps (USEPA, 2013): 

1) building partnerships by identifying key stakeholders and understanding the impairment issues; 
2) characterizing the watershed by collecting available data including identifying the sources of pollution; 
3) finalizing goals and identifying solutions by describing management actions that will be needed to achieve load 

reductions in critical areas within the watershed; 
4) designing an implementation program by first estimating resource needs and identifying funding sources, 

subsequently developing a stakeholder engagement plan and a project schedule, and finally quantifying interim 
goals and milestones and identifying indicators to measure progress;  

5) implementing the watershed plan including monitoring and stakeholder engagement; and 
6) measuring progress and adaptively managing the watershed. 

 

Monitoring for 9E programs 
Since the focus of this program is on watershed-wide nonpoint sources of pollution, GIS and remote sensing data resources 
can be effective in identifying and quantifying loading from these sources (as we discuss in Section 2.2 below). Monitoring 
is aimed at quantifying nonpoint sources of pollution, as well as comparing the impacts of the 9E plan on key indicators of 
progress. While these typically include water quality measurements, this type of monitoring program may also involve 
tracking demographic, and socio-economic indicators over time (such as land use changes), water consumption and 
recycling, loading processes and patterns, and ecosystem-level changes.  
 

Role of GIS and remote sensing in modeling for and in implementing 9E programs 
By combining spatially disaggregated socio-economic and land use/land cover datasets (e.g., georeferenced physical 
surveys of the environment) with geolocated stakeholder engagements (e.g., surveys and interviews), it may be possible 
to deduce data limitations and identify potential management actions to address these deficiencies. We support this 
statement with the following high-level example: stakeholders are more likely to behave with some type of bounded 
rationality (e.g., not recognizing the utility of voluntary load reductions, inconsistent behavior over time, responding to 
changing conditions with inertia, etc.) rather than as unbounded rational entities (Venkatachalam, 2008). Thus, 
understanding their behavioral response to existing conditions and proposed policies in different locations within a 
watershed or larger region would allow planners to understand how rational and irrational players work within a system, 
and how different typologies of stakeholders interact within the system and react to policies (Barnes et al., 2011). These 
georeferenced engagements will also allow planners to better understand the geospatial patterns in the motivations and 
aspirations of stakeholders, plan appropriate data collection strategies, and propose spatially explicit management plans. 
 

By engaging with stakeholder entities such as beneficial users, water rights holders and polluters to seek structural and 
non-structural solutions to water quality impairments, there is considerable scope for a spatially explicit engagement 
approach. While developing a monitoring program for 9E planning activities, planners may find ways to seamlessly integrate 
in-situ monitoring, citizen science and remote sensing data products, to obtain a watershed-wide window into the pollution 
problem. Within a 9E plan, building and maintaining partnerships within the watershed is a necessary first step. Therefore, 
monitored key water quality, socio-economic, demographic and ecosystem indicators, and their comparison with 
performance milestones must be presented to stakeholders through easily accessible visual interfaces.  
 

For distributed hydrologic and water quality models, real-world socio-environmental datasets can be introduced to develop 
so-called “serious games” (Medema et al., 2016). Serious games are a set of powerful participatory engagement 
technologies that allow facilitators to create an atmosphere of trust between stakeholders and system managers, that can 
help to document the outcomes of collaborative or confrontational approaches to watershed management (Medema et 
al., 2016). GIS and remote sensing data can be combined with advanced visualization to develop games reflecting the real 
world more realistically. When combined with proposed policy trajectories, the outcomes of these games may provide 
planners insights into how management actions will impact watershed-wide outcomes. These games will also allow 
stakeholders to experience first-hand, how their own actions could dictate outcomes, and will thus help to make the 9E 
planning experience feel truly participatory with grassroots stakeholder involvement. 
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For TMDL development and performance assessment in the US, the use of GIS and remote sensing technologies 
has increased dramatically in the past decade. Many popular software tools used for developing TMDLs have 
adopted GIS and remote sensing in their interfaces. There is growing consensus within the scientific community 
that broader participation of multidisciplinary experts from different domains is needed to develop solutions to 
the most challenging water quality problems (e.g., Eakin et al., 2017; Ganjali & Guney, 2017; Sayles & Baggio, 
2017; Flood et al., 2018; Jean et al., 2018; Bathke et al., 2019; Medema et al., 2019; Dhiman et al., 2020; 
Alamanos et al., 2021). The GIS and remote sensing-based visualization and analysis approaches apply not only 
to TMDLs but also to broader watershed planning and water quality management programs. In the past decade, 
there have been significant advances made in the ease of access and affordability of remotely sensed datasets 
collected by satellites and/or airborne sensors (e.g., through Google Earth Engine, USGS earth explorer, NASA 
earth observatory (NASA, 2022), etc.). These datasets are being routinely incorporated into water quality and 
watershed model user interfaces, which have the potential to revolutionize participation in water quality 
management planning and provide a means of tracking implementation performance and outcomes. Further, 
new technological advancements in citizen science, virtual and augmented reality, and effective engagement 
with stakeholders are pushing the boundaries on what can be achieved by tapping into the potential of the 
populace.  
 
The objective of this paper is to explore how GIS and remote sensing – from data sources to methods – can be 
combined with cutting edge stakeholder engagement practices to deliver net societal benefits including 
ecosystem, economic and human health benefits for watershed management. We argue that the application of 
GIS and remote sensing has the potential to enhance watershed management by synergistically improving both 
the technical development and stakeholder engagement aspects of water quality management (Figure 1). For 
example, by providing geospatial data sources covering various domains within immersive interfaces, 
engagement with a wide variety of stakeholders is possible. This widespread engagement can potentially 
influence policy makers and key players, enhance citizen science efforts, strengthen socio-political-industry ties, 
and foster community buy-in and community ownership of shared water resources for a sustainable, equitable 
and resilient future. The data and interfaces can also potentially help drive more representative water system 
models and derive optimal solutions. In Figure 1, impairments and their sources, and socio-economic conditions 
within watersheds can be identified by a combination of remote sensing, in-situ monitoring, and stakeholder 
engagement to create a database of geospatial information that can be used to develop online data dashboards 
and inputs for numerical models using geospatial software. Such software can be used to evaluate alternate 
management scenarios and design management practices that can then be monitored post-implementation 
using remote sensing. This monitoring data can also be fed to the data dashboard, which can be subsequently 
used for immersive engagement for equitable and inclusive watershed management. 
 

 
Figure 1: GIS and remote sensing technologies will result in better technical developments and enhanced stakeholder 
engagements that will improve the overall watershed management process.  
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The paper is arranged as follows: Section 2 discusses the use of GIS-based datasets, tools, and remote sensing 
technologies in watershed management. In Section 3, the discussion centers on various stakeholder engagement 
technologies, and ways to adopt participatory and immersive approaches developed in other fields to water 
management. Section 4 provides a roadmap for how GIS and remote sensing data and tools can be combined 
with emerging stakeholder engagement practices to transform the management of watersheds. Finally, our 
principal arguments are summarized in Section 5. 
 

2. Use of GIS and remote sensing in watershed management 

A large variety of GIS software tools exist for communicating spatial data passively (e.g., maps, figures, data, 
etc.) and actively (e.g., web maps, tools, etc.). The most popular tools are those that organize and display spatial 
data products in maps (De Freitas et al., 2013) and communicate the results of modeling in both space and time 
to illustrate the impact of potential watershed management decisions (Stewart et al., 2008). These tools have 
more recently been combined with web-based Graphical User Interfaces (GUIs) to convey information to a broad 
audience. Invoking GIS functionality through GUIs is useful in both legitimizing the stakeholder engagement 
process, as well as enhancing participation in watershed management programs. We believe that with emerging 
water quality issues, the use of GIS and remote sensing data sources should also be more integrated into 
watershed and water quality models for greater fidelity of these models.  
 
For many impaired waterbodies in the US, TMDLs have been developed for a variety of pollutants. Some of these 
pollutants include sediments, pathogens, nutrients, metals, dissolved oxygen, temperature, pH, mercury, 
pesticides, and organics (USEPA, 2017). Use of active and passive remote sensing (see Box 4), to assess or 
determine the degree of environmental impairment caused by a pollutant, is limited to substances or conditions 
that directly or indirectly influence or change the optical (reflected) and/or thermal characteristics of the water 
surface. For example, changes in chlorophyll-a and turbidity result in strong optically active changes that may 
be observed by multispectral imagers. In contrast, total phosphorus and nitrogen do not result in significant 
change in optical activity and rely on correlation with other optically active constituents (Gholizadeh et al., 2016). 
In such cases, regression models have been developed between the surrogate indicators and variables based on 
in-situ measurements concurrent to satellite overpass (Gholizadeh et al., 2016). In addition, the thermal band 
of satellite data can be used to directly estimate the surface temperature of waterbodies. As the optical 
properties of the water column can change spatially and temporally, multi-temporal satellite data and multi-
point in-situ measurements are required for these applications (e.g., Choi et al., 2014). Robust methods for water 
quality measurement using active and passive remote sensing for inland waters, remains an open challenge in 
the widespread adoption of GIS and remote sensing tools for watershed management. 

2.1 Towards curated, open and commercial data 

In the context of watershed management, it is important that searchable and easily retrievable digital 
geographical records of land holdings, loadings, watershed monitoring, and implementation measures be 
maintained. Remote sensing data can provide information required to describe the variability of loading from 
urban and suburban land areas (Box 4). This information can be applied to develop a library of loading rates and 
mean concentrations of pollutants in the waterbody during extreme hydrological events such as floods or 
droughts (Hantush, 2005). Within a watershed, remote sensing data can be used for land use and land cover 
(LULC) classification. For instance, Landsat, Sentinel-2, and Spot imagery are commonly used to classify land use 
types (Owojori & Xie, 2005; Johnson & Iizuka, 2016; Mohajane et al., 2018; Naikoo et al., 2020). Because land 
use is a significant driver of water body impairments and can be clearly communicated to stakeholders through 
maps, it has potential for guiding conversations with planners during both pre- and post-watershed 
management action implementation. For example, LULC change scenarios based upon stakeholder workshops 
have been used to evaluate the impact of load reduction plans on water body impairments (Ahmadisharaf et al., 
2020). 
 
In recent years, national-level GIS tools have become available for understanding the impact of watershed 
management decisions on water quality outcomes. The Catchment Land Use and Environmental Sustainability 
model (Semadeni-Davies et al., 2016; Semadeni-Davies  et al., 2020) is a GIS based modeling system that can 
define the impact of land use changes on water quality. This modeling system’s GIS interface makes 
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communication of model inputs and outputs easily understood through data visualization in maps (Elliot et al., 
2016). Agricultural water districts and other local agencies are increasingly making use of the web to provide 
their customers and other watershed stakeholders with access to their data. This is not only for good public 
relations, but can also facilitate coordinated watershed activity. Organizing and displaying data through maps 
can allow greater transparency in communicating risk assessments or displaying model results (Harris et al., 
2017), such as communicating sediment sources through maps within a participatory model of watershed 
sediment transport (Cho et al., 2019). 

2.2 Role in impairment identification 

Remote sensing can be a valuable tool in impairment identification, as we discuss here. Remote sensing 
techniques provide spatial and temporal variation of water quality parameters and make it more effective and 
efficient to monitor waterbodies and estimate water quality issues. Satellite imagery have been successfully 
applied to monitor inland and coastal waters for more than 50 years (Anding & Kauth, 1970; Seyhan et al., 1986; 
Ferrari et al., 1996; Handcock et al., 2006; Schaeffer et al., 2012). They have been used to monitor stakeholder 
driven indicators such as Fowler’s Sneaker Depth index, and index analogous to Secchi disk depth, which is a 
citizen scientist metric used to assess water clarity in the Chesapeake Bay (Crooke et al., 2017). Commercially 
available data like Planetscope and Worldview provide spatial details on less than a meter resolution on a daily 
to even sub-daily scale. Hyperspectral imagers can be used to track water bodies and resolve many other types 
of impairments (e.g., Olmanson et al., 2013; Kudela et al., 2015).  
 
Regulation such as the US Clean Water Act (CWA) require various agencies to identify designated uses of their 
waters and develop science-based water quality criteria, to ensure the protection of the designated uses. The 
vastness and remoteness of most waterbodies make it hard to monitor them effectively with conventional in-
situ methods. Unlike the European Union Water Framework Directive, the CWA is silent on how to choose 
sampling sites, monitoring frequency, pollutants to sample, analysis process and method, and data sharing 
(Habermann & Ward, 2001). The lack of guidance on monitoring creates an obvious problem where impairments 
go undetected until a critical situation is reached with obvious markers. Even with the guidance, the scale and 
scope of monitoring required may overwhelm the monitoring system. Further there may be uncertainty around 
the background reference of the pollutants of concern to establish a criterion in the first place. For example, 
algal blooms happen in coastal waters naturally without any loading from the watersheds (Vargo, 2009), but to 
trigger a remediation action, the impact of nutrient loading has to be established. Schaeffer et al. (2012) have 
demonstrated a method based on remotely sensed data to develop a reference criterion and monitoring criteria 
for algal bloom in Florida’s coastal waters that could trigger remedial actions. It is important to note that in order 
to detect and track pollutants in marine environments, prior understanding of marine dynamics including ocean 
current direction and magnitude, direction and speed of surface winds is important. In addition to optical data, 
satellite remote sensing provides information about marine dynamics. For instance, information on sea surface 
winds can be derived from altimeters, which collect wave height data and synthetic aperture radar (SAR) that 
measures the sea surface roughness pattern (Kudryavtsev et al., 2012).  

2.3. Role in model development 

The availability of GIS and remotely sensed data has improved model development, facilitated data collection, 
and provided techniques for combining spatial heterogeneous information. Spatially distributed, parametric 
watershed and water quality models require topographic, hydrological, soil, land use and meteorological forcing 
information as input data. These data, obtained either by traditional gauging or remote sensing, are available 
online in the US from federal agencies such as National Oceanic and Atmospheric Administration (NOAA), 
National Aeronautics and Space Administration (NASA), the United States Geological Survey (USGS), and the 
United States Department of Agriculture (USDA), or posted on local agency web portals. By collecting data over 
large and remote areas, remote sensing technology has provided inputs for distributed models (see Box 4). These 
technologies have augmented data gathering and the ability to monitor water quality conditions in large 
watersheds. They additionally provide LULC information which helps with estimation of directly connected 
impervious areas and can be used for the development of detailed information on soil characteristics that can 
impact infiltration and runoff calculations in hydrologic models. Remote sensing data can also provide high 
resolution spatial precipitation data that significantly benefit development of hydrologic models (Kirschbaum et 
al., 2017; Maggioni & Massari, 2018). 
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GIS and remote sensing tools can be used to process data model inputs (e.g., parameters, forcings), and also 
synthesize spatial data from model outputs for water quality management applications (Kang, 2002; Kang & 
Park, 2003). Some GIS-based integrated model interfaces can help with preprocessing of input data, mapping, 
and visualization of modeling results (Table 1). For watershed and water quality modeling applications, GIS and 
remote sensing data sources are invaluable throughout the modeling pipelines. Initial spatial overlays can help 
to select and organize data for input to water quality models. Examples of initial preprocessing of water quality 
models using GIS are presented by Shafique et al. (2003), Ramirez et al. (2005), Viers et al. (2005) and Ramirez-
Avila et al. (2017). To initialize and run these models, detailed information on local conditions, such as nutrient 
loading from farms and municipal waste discharges are often needed from local stakeholders or from direct field 
surveys (ASCE, 2022; Benham et al., 2006). 
 

Table 1: Non-exhaustive list of watershed and water quality modeling suites with GIS capabilities 

Model Acronym Capability Reference 

Agricultural Nonpoint Source Pollution AGNPS Interface Young et al. (1994) 

Annualized agricultural Nonpoint Source Pollution 
Model 

AnnAGNPS Interface Bingner et al. (2003) 

Generalized Watershed Loading Functions GWLF Interface Haith et al. (1992) 

Loading Simulation Program in C++ LSPC Interface USEPA (2016b) 

Storm Water Management Model PCSWMM Interface Smith & Banting (2005) 

Soil and Water Assessment Tool ArcSWAT Interface Arnold et al. (2012) 

Agricultural Policy/Environmental eXtender 
Model 

ArcAPEX Interface Gassman et al. (2009); 
Teet et al. (2021) 

Better Assessment Science Integrating Point and 
Nonpoint Sources 

BASINS Model integration USEPA (2019) 

Watershed Analysis Risk Management 
Framework 

WARMF Model integration 
and decision support 

Herr & Chen (2012) 

Stream Network Watershed Scale Model CCHE1D Model integration Wu & Vieria (2002) 

Interactive Windows Interface to HSPF WinHSPF Model integration Duda et al. (2001) 

GIS-based Phosphorus Loading Model GISPLM Model integration Walker (1997) 
 

 
Subsequently, GIS can play an important role in developing and implementing remediation plans or pollutant 
reduction strategies, such as siting structural Best Management Practices (BMPs) and targeting non-structural 
BMPs in high-impact areas. The types of data that are required for developing and running watershed and water 
quality models are listed in Table 2, and links to these data can be found in the literature (Benham et al., 2006; 
Borah & Bera, 2003, 2004; Borah et al., 2006; Quinn et al., 2019). Data required to generate novel scenarios 
under which the impacts of management actions need to be investigated may, in rare circumstances, be 
obtained by synthesizing data from multiple sources, including other watershed simulation models. This can be 
a time-saver for some hydrometeorological data inputs to models since significant processing is often needed 
to transform raw data into formatted model input. 
 
Occasionally, TMDLs are developed for watersheds within ungauged streams and where little ancillary data is 
available (ASCE/EWRI TMDL-TC, 2022; Zhang & Quinn, 2019). In such cases, data from an adjacent or reference 
watershed or stream with similar conditions may be used to develop the model (Wallace et al., 2018). The 
geographic and hydrologic properties of the target watershed typically need to be scaled and adjusted to 
emulate the characteristics of the reference watershed (Doherty & Hunt, 2010; Wallace et al., 2018). This is 
where GIS tools can serve in an effective role, not only in providing the model with essential data to perform 
simulations, but in elucidating the assumptions made in such an analysis more transparently to stakeholders. As 
reported by Wallace et al. (2018), geoprocessing algorithms can be applied to scale reference watershed land 
use patterns to the target watershed areal coverage, while retaining proportions of land use cover within the 
reference watershed. These assumptions can be carried over in proportion to the sediment and nutrient loads 
generated from the target watershed. By overlaying scaled maps of the two watersheds, the inherent 
proportionality assumption can be conveyed to stakeholders visually. 
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A reduction in the cost of imagery and processing software, and the increasing access to simple GUIs for popular 
image processing tools (e.g. ERDAS, ENVI and ArcGIS Image Analyst), has led to more frequent use of satellite 
images in watershed-scale modeling studies and TMDLs (ASCE/EWRI TMDL-TC, 2022) (Box 4). This contrasts with 
the limited operations from the past, in which remote sensing analysis and model development were 
independent tasks. 
 

Table 2: Hydrological, meteorological and geographical data requirements for watershed and water quality model 
development amenable to representation in GISs (Quinn et al., 2022). 

Type Data category Discrete Continuous Sources 

Geographical Topography  * Terrestrial and aerial surveys 

 Bathymetry  * Terrestrial and aerial surveys 

 Land use and land cover *  Surveys, satellite imagery 

 Vegetation and soil type *  Terrestrial surveys, satellite imagery 

 Stream bottom and bank 
roughness 

*  Surveys 

 Best management practice 
location and type 

*  Terrestrial surveys, satellite imagery 

Pedological Soil permeability and infiltration 
capacity 

*  Surveys, experiments  

Meteorological Air temperature  * Measurements, models 

 Wind speed and direction  * Measurements, models 

 Humidity  * Measurements, models 

 Rainfall  * Gauges, radar, satellite imagery, models 

 Heat budget  * Measurements, models 

 Ice cover and melt  * Measurements, satellite imagery, models 

 Soil heat budget  * Measurements, models 

Hydrological Groundwater table elevation  * Gauges, radar, satellite, models 

 Soil moisture  * Surveys, models 

 Streamflow  * Surveys, satellite 

 Baseflow  * Gauges, models 

 Water stage  * Gauges, rating curves, models, satellite 
altimetry 

 Water quality  * Surveys, measurements, models, satellite 
imagery 

Water 
resources 

Hydraulic structures and 
diversions 

*  Surveys 

Water operations *  Surveys 

Reservoir elevation and storage *  Surveys 

Note: * signifies whether the data is discrete or continuous. 

 

2.4. Role in planning and implementation  

Applications of GIS and remote sensing have significant potential for supporting planning and implementation 
decisions (Zhang & Quinn, 2019). During pre-implementation modeling, water quality data from remote sensing 
at high-spatial resolutions can be used to parameterize and calibrate watershed models (Fisher et al., 2018). As 
highlighted, GIS-based systems have been developed to integrate a suite of watershed and water quality models 
and provide frameworks for decision support (Table 1). GIS workflows in these models can be used as a pre-
processor and post-processor to TMDL modeling (ASCE/EWRI TMDL Analysis and Modeling Task Committee, 
2017).  
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Remote sensing and GIS are becoming important tools in the development of management and load reduction 
plans aimed at improving the quality of impaired waterbodies (Giardino et al., 2010; Fink et al., 2020). By using 
remote sensing and GIS data for land use zoning and effective siting of BMPs, system managers could inhibit or 
slow down pollutant movement to a waterbody (Zaidi, 2012). Several GIS software interfaces with water 
resources models have been developed for such applications, such as ArcSWAT (Winchell et al., 2007) and 
InfoSWMM (Innovyze, 2017) (see Table 1 and Martin et al. 2005 for additional examples). 
  
Remote sensing data is very valuable for extreme event risk management. To understand and quantify water 
quality and manage risks caused by extreme events, it is crucial to study the hydrologic cycle and its changes 
over time. The performance of hydrological modeling is a way to assess the accuracy of the representation of 
the hydrological cycle (Jiang & Wang, 2019). Global coverage of satellite-based images with their high spatial 
resolution and metronomic return periods can help to address the deficiency in in-situ data. For example in-situ 
data can be used to calibrate and verify geospatial statistical models of water color and associated water quality 
(Choi et al., 2014). Such models can serve as early warning for critical events such as harmful algal blooms, while 
the integration of near-real time remote sensing based statistical models with online data portals can serve as 
a communication channel for decision making (Dhiman et al., 2020). 
 
On-line modeling systems, such as the USEPA Cyanobacteria Assessment Network (CyAN) smartphone app 
(USEPA, 2021b), can provide public access and interactive interfaces for community decision making. Data 
collected via the CyAN app can help local and state water quality managers make faster and better-informed 
management decisions related to cyanobacterial blooms. This app has a standardized approach for early 
identification of algal blooms using a set of satellites including Ocean Land Color Instrument (OLCI) on Sentinel-
3, Sentinel-2, and Landsat for over 2,000 of lakes and reservoirs within the US. Thus, the maturity of the internet, 
coupled with easy access to freely available data sources and the proliferation of smart apps and programming 
interfaces, has allowed system managers and decision makers to have unprecedented access to remote sensing 
and GIS data for watershed decision support. 
 
 

Box 4: Remote sensing sensor types, platforms, and datasets. 

In this Box, the different types of remote sensing data that are applicable to watershed and water quality modeling and 
stakeholder engagement are discussed. It is important to note that the different types of sensors listed here collect data 
at various spatial scales, spectral resolutions and temporal return periods. However, with increasing maturity of 
technologies and the emergence of new ones, the number, and the spatial, temporal and spectral resolution of various 
sensors are increasing exponentially (Kuenzer et al., 2014). While they provide diverse windows into the natural world, the 
types and attributes of data they collect are not interchangeable. 
 
Active sensors 
These include technologies wherein electromagnetic signals are bounced off the planet’s surface and their echoes are 
picked up by on-board scanners. 

1) RaDAR: Radio Detection and Randing (RaDAR) technology is useful for measuring the thickness of precipitation 
clouds and the intensity of rainfall events by bouncing high-frequency (tens of gigahertz) radio waves off the surface 
of atmospheric obstructions. Missions such as NASA’s Global Precipitation Measurement (GPM) core observatory 
include instruments such as the Dual Frequency Precipitation Radar for this purpose (World Bank, 2022).  

2) Microwave imaging: By slightly lowering the frequency of radio waves that are used for scanning the cloud surface 
into the microwave bandwidths, the dynamic range of brightness of reflectances and rainfall intensities can be 
significantly increased (Bauer & Bennartz, 1998). An example of microwave precipitation detection is the microwave 
imager onboard the GPM core observatory. Active microwave sensing can also be used to measure the elevation of 
topography by measuring the distance between the sensor platform and the surface from which the signal is 
bounced. This application is known as microwave altimetry (JARS, 1996).  

3) LiDAR: Light Detection and Ranging (LiDAR) is categorized as active remote sensing, which registers laser pulses that 
strike and detect an object, then determine the range (or distance) between the instrument and the object. The 
physical properties of an object are detected based on the interaction with the LiDAR radiation (Diaz et al., 2013). 
LiDAR has several applications in agricultural monitoring, forest planning and management, forest fire management, 
environmental assessment, flood and pollution modeling, watershed and stream delineation, ecological and land 
classification, land and river surveying, coastlines management and glacier volume changes. As such, it has utility 
for data acquisition in support of water quality modeling, especially in terms of extracting high-resolution Digital 
Elevation Models (DEMs). For example, high-resolution DEMs from LiDAR have been used to build decision support 
models for simulating field-scale implementation of conservation practices to achieve TMDLs and communicate 
management options to stakeholders (Srinivas et al., 2020). Access to this technology through modern smartphones  
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Box 4  (continued) 
has potential for collaborative citizen science and could result in greater participatory planning activities with 
stakeholders more actively involved in model data acquisition activities. Particularly in urban settings, where every 
citizen with a LiDAR-equipped smartphone can capture highly detailed photogrammetry of small local areas, this 
technology could be used to augment models built using LiDAR topographies at the cityscape with nested, high-
resolution detail as needed. 

 
Passive sensors 
These include technologies wherein airborne or spaceborne platform contain sensors which pick up radiated 
electromagnetic signals from the Earth surface and the atmosphere.  

1) Multispectral imagery: Multispectral sensors typically capture the visible, near infrared, and shortwave infrared 
images in several broad wavelength bands (typically 3-10 bands) using passive remote sensing (i.e., by measuring 
the solar radiation reflected from objects on the earth and in earth’s atmosphere). In recent years, the long-term 
multispectral imagery from platforms such as the Landsat, managed by the USGS/NASA, have been made available 
at no cost to users. Landsat based National Land Cover Database (NLCD) (Xian et al., 2011) has been commonly used 
for parameterizing hydrological models (Karpouzli & Malthus, 2003). Landsat is also increasingly used for remote 
sensing of water quality (Ross et al., 2019).  

2) Hyperspectral imagery: Passive hyperspectral sensing acquires a narrow spectral bandwidth (2-10 nm), but a greater 
number of spectral bands (more than 100 contiguous bands) usually in the range from visible to shortwave infrared 
(VIS-SWIR) (400-2500nm). The higher spectral resolution of the hyperspectral imaging allows the user to better 
identify, characterize, quantify, and detect objects smaller than the spatial resolution (subpixels) (Wang et al., 2013). 
Hyperspectral imaging could be successfully used for acquiring data for TMDL modeling and evaluating 
management action outcomes for watersheds at different scales. Since hyperspectral data combines spatial and 
spectral information, the high cost of acquisition and the large size of the datasets are the key challenges for 
stakeholder utilization. These data processing challenges have meant this technology is still largely unused by the 
research community. The operating instruments used to acquire hyperspectral data are also costly and need 
specialized handling, particularly when mounted on airborne platforms. Several platforms, such as the NASA 
Airborne Visible Infrared Imaging Spectrometer (AVIRIS) are equipped with hyperspectral sensors, partially 
alleviating data acquisition problems. However, these platforms commonly have limited spatial swath and low 
resolution. If standardized workflows can be developed to deal with the large datasets from hyperspectral 
platforms, this would be a valuable addition for water quality modeling. Robust data quality control and assurance 
are key to the adoption of this technology for both pre- and post-planning applications. This is because, unlike in 
the case of multispectral imagery, hyperspectral image processing tools are still nascent, and many approaches of 
varying quality are possible.. Notwithstanding these challenges, the narrow spectral bands are especially useful for 
extracting water quality information, which has the potential to be conveyed through GIS layers to stakeholders as 
multiple overlays of various types of impairments. 

 
Airborne data collection 
Unmanned aerial systems (UAS) have driven down the cost of scene-based image acquisition. This includes the use of 
unmanned aerial vehicles for supporting urban stormwater management (McDonald, 2019), detecting algal blooms (Kislik 
et al,. 2018), and measuring relevant water quality parameters such as total suspended solids (Guimarães et al., 2019) and 
turbidity (Ehmann et al., 2019). The UAS are capable of providing necessary input data for watershed, hydraulic and channel 
evolution models, and data for calibrating these models and for enumerating localized sources of pollution within a 
watershed. However, the need for trained operators and stringent privacy laws currently limits the use of UAS as a source 
of water quality and pollutant loading data around the world (Sibanda et al., 2021).  
 
Satellite-based data collection 
Satellite-based remote sensing can provide alternatives to land-based observations of key watershed processes such as soil 
moisture content, surface water elevation, groundwater, precipitation and evapotranspiration rates, and land cover land 
use. Use of this information together with streamflow observations can improve the performance of hydrological models 
(e.g., Ines et al., 2006). In McCabe et al. (2017), a comprehensive review of hydrological variables and satellite missions 
indicates the potential of remotely sensed data for watershed management. 
  
The water quality estimations at large scale from satellite remote sensing are relatively limited, largely due to a lack of 
training data. To close this knowledge gap, AquaSat has proved the largest matchup dataset (over 600,000 pairs) between 
ground-based total suspended sediment, dissolved organic carbon, chlorophyll a, and SDDSecchi disk depth measurements 
and spectral reflectance from Landsat 5, 7, and 8 (Ross et al., 2019). With the operational land surface temperature 
products from both Landsat (Cook et al., 2014) and the Moderate Resolution Imaging Spectroradiometer (MODIS) (Hulley 
& Hook, 2011), surface water temperature is much more available in time and space, as compared to other water quality 
variables. Furthermore, medium resolution sensors (e.g., MODIS, MERIS) are commonly used for monitoring chlorophyll-a 
over large inland water bodies (Sayers et al., 2015).  
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Box 4 (continued) 
Data processing and access 
Over the past decade, many competing technologies have emerged to transform aerial and satellite-based imagery into 
usable analysis-ready data products. The USGS Earth Explorer engine and NASA Earth Observatory provide searchable 
access to thousands of raw satellite reflectance images, and analysis ready data products. In the private sector, Google 
Earth Engine began as an ambitious data assimilation and analysis platform within the philanthropic arm of Google.org. 
The success of the platform and the easy access to software tools for geoprocessing of data has led to a plethora of 
innovative environmental applications. The OpenET platform based on Earth Engine and its customizable Application 
Programming Interface (API) launched in early 2022 (https://openetdata.org/api/) and will enable users to request 
evapotranspiration data via both scripted queries and the graphical user interface for integration with other applications 
for irrigation scheduling, farm management, water use reporting, and water management.  
 
These data analysis and sharing tools have been standardized for multispectral imagery. There are now a large number of 
data web portals and user interfaces such as the USGS Earth Explorer, NASA Earth data, and Google Earth Engine. These 
platform-based applications provide near-real-time processing of global Landsat imagery. For example, long-term data 
records from these platforms have been used in deforestation and reforestation analysis (Hansen et al., 2013), land cover 
(Wickham et al., 2014), daily crop evapotranspiration estimates for irrigated agriculture (Beamer et al., 2013), mapping 
surface water (Pekel et al., 2016; Zhao & Gao, 2018), water quality (Olmanson et al., 2013), among other uses. 

 

 

3. GIS and remote sensing in stakeholder engagement for watershed 
management 

The advent of customizable dashboards on agency and stakeholder-maintained web portals in recent years has 
created an opportunity to tailor simulation model outputs and the results of associated analysis to the individual 
needs of the stakeholder (Di Luzio et al., 2004). Here, the stakeholder is defined broadly as anyone involved in 
the discharge of a pollutant or impacted by the discharge of a pollutant by other entities in the watershed. An 
agency can be a stakeholder as in the case in the San Joaquin River Basin in California where the US Bureau of 
Reclamation as the purveyor of water supply pumped from the Sacramento San Joaquin Delta has responsibility 
for a portion of the salt load imported to the Basin through this conveyance (CVRWQCB, 2004). In this case the 
State Water Resource Control Board apportioned responsibility for salinity management in the salinity and 
boron TMDL in direct relation to the average annual salt load imported relative to the salt load measured at the 
single compliance monitoring station in the San Joaquin River (CalEPA, 2002; CVRWQCB, 2004; Quinn et al., 
2018; Quinn, 2020; Quinn & Oster, 2021). The stakeholder role is distinct from the regulator – the regulator 
typically sets water quality objectives (Hoffman, 2010) and enforcement with the power to set fines or other 
financial incentives to encourage compliance. The regulatory framework has bearing on the form of stakeholder 
engagement practices and the participatory goals that are realistic. Obviously the greater the police power 
exerted by regulator, the lower the requirement to achieve results by collaborative behavior and cooperation. 
 
GIS-based analysis and the use of remote sensing to contextualize data visualization can be incorporated in these 
dashboards for stakeholder decision support (Figure 1). In combination with these web-based tools, the increase 
in participatory planning and immersive engagement approaches in recent years (see below) means that, in our 
opinion, the full potential for stakeholder engagement using GIS and remote sensing in watershed management 
is nascent and waiting to be unleashed. Being able to see one’s own property or contribution to impairment on 
a GIS map or analysis can sometimes be sufficient for a stakeholder to feel “represented.” This could be as simple 
as providing a scanned high-resolution map or terrain image as a backdrop to model-based analysis. By 
geographically collocating such information with stakeholders represented in a watershed management 
process, underrepresented stakeholders can be identified. In this way, GIS can be used to overcome threats 
posed by detractors of watershed management initiatives that are critical of the authenticity of stakeholder 
representation (Hall, 2016).  

3.1. Leveraging GIS and remote sensing data and tools 

Gainful stakeholder engagement can be achieved by incorporating geospatial information through immersive, 
visual mediums (Figure 2). In Figure 2, we expand on the overarching themes presented in Figure 1. Both in-situ 
data collection as well as remote sensing can be augmented by citizen-science programs such as the Fresh Water  
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Figure 2: Data sources, GIS and remote sensing-based stakeholder engagement framework, technologies for participatory 
engagement and beneficial outcomes for water quality management. 

 
Watch (Hadj-Hammou et al., 2017) for calibrating and validating computer models (Figure 2: first row). In 
contemporary settings, such models will involve multiple GIS layers containing physical, loading and land use 
information relevant to watersheds and water management (Figure 2: second row). The model results from 
watershed and receiving water quality models can be applied in conjunction with GIS-based socio-economic and 
geopolitical data to develop data portals and insightful local, regional and global analyses (Figure 2: third row). 
This can subsequently be used to engage with stakeholders at various levels (Figure 2: fourth row), for example 
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using of immersive visual tools such as the WeTable (Yusuf et al., 2018), GWWebFlow, or serious games that 
include a spatial component (Mayer et al., 2001). These tools can also engage the public directly through citizen-
science programs like the Fresh Water Watch (Hadj-Hammou et al. 2017), potentially leading to positive 
outcomes (Figure 2: fifth and sixth rows). In Figure 2, dashed lines indicate outcomes that may be difficult to 
achieve at one level of stakeholder engagement, while the same outcome may be a natural consequence of 
engagement at a different level. For example, through immersive serious game play and citizen-science 
programs, outcomes such as the understanding of complex interlinked water quality and management 
processes can result (Mayer et al., 2001), perhaps by the development of fuzzy cognitive maps in stakeholder 
groups. These outcomes can help to forge a sound industry-community-government nexus.  
 
Additionally, through stakeholder trust, potentially built by deeply immersive engagements, regional and global 
teleconnection between individuals or local communities can be developed. Such connections across local 
neighborhoods, communities, not-for-profit and private entities, and various social groups lead to trust in the 
engagement process by inclusive representation of major stakeholder groups (Hall, 2016). The equitable 
representation of vested parties will result in consideration of justice, equity, diversity, and inclusivity (JEDI) 
principles in sustainable watershed management (Box 5) more readily than if underrepresented and 
underserved stakeholders were not involved. The State of California (USA) has made the inclusion of 
disadvantaged communities in resource planning decisions a high priority and has tailored the use of GIS and 
remote sensing technologies to provide easy access to information such as nitrate levels in rural domestic wells 
and hazardous algal bloom maps to those with internet access. An allied effort is underway in the State to 
increase web access targeted at those in underserved rural communities. 
 

Box 5: The Justice, Equity, Diversity and Inclusivity (JEDI) principles in stakeholder engagement 

The JEDI principles as introduced in Section 3.1 are discussed in this Box. 
 
In the US, TMDL outcomes and watershed protection plans require stakeholder participation and acceptance for success; 
ultimately selected stakeholders have the authority to reject or adopt these vehicles for environmental protection. 
Stakeholders are usually identified and invited using emails and announcements on local government agencies’ websites 
and a self-selecting group of motivated participants from local government, academia, and the local environmental groups 
engage in the process of developing the watershed protection plans. While the inclusion of entities such as American Indian 
tribes, citizen groups, and community service organizations is encouraged by current watershed protection plan 
development guidelines (USEPA, 2020), a structured framework for the integration of JEDI (justice, equity, diversity, and 
inclusion) principles has not been established. The four components of JEDI applied to water or environmental systems 
may be thought of as: 

1) Justice: The right to an equitable, safe, healthy, productive, and sustainable environment for all members of a 
community. 

2) Equity: Impartiality and fairness in the procedures, processes, and allocation of resources. 
3) Diversity: Including a broad demographic mix (including race, age, gender, ethnicity, cultural background, 

geography, etc.), within a group or organization, which reflects the makeup of the community. 
4) Inclusion: Ability of diverse individuals to participate fully in all aspects, including decision-making processes. 

 
Inclusion of the JEDI principles in the science and communication framing can provide an essential point of access for 
marginalized communities to engage with scientific communication, preventing critical gaps in stakeholder representation. 

 

 
 
Furthermore, a more innovative participatory approach is needed to overcome critical communication barriers 
(e.g., language, environmental/scientific literacy), creating an opportunity for individuals to understand and 
engage with the planning process through immersive and experiential learning. GIS and remote sensing based 
platforms are particularly suitable for such learning, as geospatial data is naturally ingested and contextualized 
visually by humans. This is because human beings are able to anchor geospatial inputs to fixed anchor points 
and use specific parts of the brain to analyze this data for high-level operations (Epstein et al., 2017). Scientists 
may need to develop models and tools that specifically facilitate such interventions. For example, stakeholder 
selection strategies can be based on social media microtargeting to include underrepresented communities in 
the affected regions. Such engagement can be designed to include stakeholders in decision making through use 
of GIS-based decision support tools (Assaf & Saadeh, 2008) by documenting stakeholder needs in different 
subareas of the watershed (Soutter et al., 2008) and soliciting their participation at various levels.  
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Levels of engagement range from unidirectional participatory facilitation such as (1) outreach to collect data on 
impairment, local practices, and needs (Eakin et al., 2017; Ponce-Romero et al., 2017), and (2) education about 
water quality management plans and tools designed for personal and community contribution to the program 
(e.g., De Freitas et al., 2013; Sun et al., 2015; Daniels et al., 2018; Yusuf et al., 2018; Quinn & Oster, 2021), to 
fully bi-directional participation such as  (3) modeler-led engagement (e.g., Swick, 2007; Estalaki et al., 2016; 
Criollo et al., 2019; Alamanos et al., 2021; Balestrini et al., 2021), and (4) stakeholder-led engagement (e.g., 
Petherick 2014; Hadj-Hammou et al. 2017; Vaneeckhaute et al. 2021). The methodologies associated with these 
approaches are described in Section 3.2. Such interaction and engagement provide managers with a deeper 
understanding of environmental issues most important to local communities. This, in turn, allows organizations 
responsible for the socio-political and regulatory infrastructure to be explicitly recognized (Sayles & Baggio, 
2017), supports better watershed-level sustainable water use practices, and provides resilience to uncertainty 
(Eakin et al., 2017).  
 
The fully bi-directional engagement approach can facilitate the development of fuzzy cognitive maps for 
stakeholders, illustrating how their actions affect water quality, and how management actions are often needed 
as a consequence of their own activities (Eakin et al., 2017). Such cognitive mapping can occur without explicit 
recognition of the decision space using GIS-based visualization combined with other participatory information 
gathering (Voinov et al., 2018). Rendering of socio-economic, political, preferential and water quality datasets 
upon remotely sensed imagery sometimes helps stakeholders recognize the complexity of water quality 
management program objectives and encourages managers to develop multi-criteria strategies cognizant of 
these multi-scale watershed-wide challenges (Wardropper et al., 2015; Eakin et al., 2017; Yusuf et al., 2018). By 
identifying key actors who are the principal polluters or major water users in a watershed and geolocating their 
actions, sustainable and targeted management solutions providing greater accountability may be achieved 
(Franks et al., 2014). 

3.2. Stakeholder engagement approaches 

While outreach and education have historically been the most commonly practiced engagements, the methods 
of engagement have modernized substantially owing to GIS based tools. GIS and remote sensing data sources 
have also allowed watershed managers to adopt more innovative and deeper forms of engagement that include 
(1) outreach and education, (2) modeler-led engagement, and (3) stakeholder-led involvement and feedback.  
 

3.2.1. Outreach and education 

Recently, modelers and nodal agencies such as the California Central Valley Region State Water Resources 
Control board (Quinn & Oster, 2021) and the National Marine Fisheries Service (Daniels et al., 2018) have 
developed online portals through which model-generated basin-scale water quality information can be viewed 
in innovative ways as well as downloaded for interested stakeholders to understand the system better. In the 
case of the River Assessment and Forecasting Tool for water temperature in the Sacramento River (Daniels et 
al., 2018), historic water temperature hindcasts and periodically updated forecasts in the Sacramento River can 
be viewed in multiple graphical formats such as on a spatio-temporal grid, as a snapshot in time across space, 
or as multiple timeseries. It can also be downloaded by water operations managers to better manage reservoir 
and water operations to aid in multipurpose water use in the system.  
 
More recently, some nodal agencies have created powerful online visualization tools that allow model results 
to be superimposed on familiar backgrounds such as regional maps, which allows both practitioners and policy 
makers the ability to visualize model predictions in familiar settings (Aquaveo, 2017). With dedicated software 
development expertise, agencies such as the USGS have been able to extend this type of geospatial visualization 
to a variety of groundwater flow and water quality and quality flow models such as GWWebFlow (USGS, 2022; 
HAWQS, 2020)). Around the world, such Web-GIS approaches are facilitating engagement and high-level 
information sharing between government, nodal agencies and stakeholders providing a unique, essential link 
between modelers and watershed water quality managers (Dhiman et al., 2020). Web-based easy-to-use GIS 
tools that allow local landowners to see the impacts of their water use or loading actions can also help develop 
stakeholder trust and encourage voluntary contributions to load reduction (De Frietas et al., 2013). 
 
In participatory watershed management programs, some environmental decision support systems are powered 
by stripped-down, reduced complexity models that are lean versions of mechanistic models that support web-
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based visual analytics. These tools retain much of the pedigree of the models from which they are derived and 
allow stakeholders to “play with” the model with some assurance of the model’s capability to simulate system 
dynamics and some of its complexity (Sun et al., 2015). For these approaches, the key is to allow stakeholders 
control of the derived “model” through a series of knobs and levers – variable parameters and actions within 
set physically plausible ranges – that they can modify to experience the outcomes for themselves. This type of 
approach will allow stakeholders to construct and analyze what-if scenarios, and brainstorm potential 
management ideas.  
 
Human Computer Interface technologies that are immersive, such as serious games or the WeTable (Yusuf et 
al., 2018), allow stakeholders to engage at a more direct level with remote sensing and geospatial data. 
However, for these techniques to be most effective, adequate training should be provided by the nodal agencies 
or facilitators engaged by them. These types of tools are better suited for face-to-face and large-scale 
community engagement, than personalized web-based engagement, and to a large extent, require active 
modeler-led involvement.  
 

3.2.2. Modeler-led engagement 

Several tools and approaches have been developed to facilitate modeler-led involvement, and these typically 
involve showing stakeholders geospatial data, analysis and inferences and engaging with them to develop 
solutions. For example, the FREEWAT suite of tools allows stakeholders to investigate the implication of water 
management policy on groundwater quality. This is supported by a backend data management and visualization 
system known as AkvaGIS which is based on QGIS (Criollo et al., 2019). Such integration with open-source tools 
fosters continuous development and refinement of software tools and facilitates a strong developer and user 
community. Another approach, known as Greenprinting (Swick, 2007), combines GIS tools and stakeholder input 
to create scenarios to help communities plan watershed conservation actions. By systematically analyzing public 
goals, quality of life, natural hazards risk and water quality benefits at a fine spatial scale, the Greenprinting 
approach allows communities to build spatial maps of priorities and implementation strategies. By visualizing 
these priorities and strategies on a map of the region, teleconnections between different localized regions, and 
the interactions of multi-level regulatory frameworks can be better understood. These types of approaches are 
stakeholder centric, even though the underlying models and approaches must be led primarily by the modelers. 
 

Box 6: Contextualizing citizen science 

Citizen science is a powerful stakeholder engagement approach that deserves to be fully contextualized in diverse 
governance settings. While this information may not pertain directly to the use of GIS and remote sensing in watershed 
management, it is essential to understand how powerful this approach can truly be; therefore, some background is 
presented in this Box.  
 

Background 
While the true potential of these types of approaches has not yet been realized in the US, in many Latin American and 
African countries, these approaches have proved essential to sustainable water and water quality management amid 
administrative milieus suffering systemic resource shortages and general lack of public trust (Capdevila et al., 2020; 
Quinlivan et al., 2020; Weingart & Meyer, 2021). In European nations, these approaches augment existing monitoring, 
modeling and implementation programs by nodal agencies, and allow communities to develop pride about their 
participation in protecting and fostering their watersheds (Datashift, 2015; Balestrini et al., 2021). Even within the US, 
several private grassroots, and not-for-profit organization led efforts such as river restoration campaigns and conservation 
groups are applying social and political pressure on local and regional governments and nodal agencies to manage the 
nation’s waters more effectively (Sneddon et al., 2017). 
 

Applications in nations with and without robust water management frameworks 
Two initiatives exemplify the bookends of these approaches – full-fledged public-driven management and augmentation 
of government efforts. In the former case, participatory budgeting is an approach being employed in many South American 
countries to allow communities to decide the budget allocation for water quality management programs. Citizen oversight 
councils are promulgated to ensure that there is public accountability for the use of funds. This approach has the twin 
benefits of greater community accountability and reduced corruption, as well as delinking financial spending cycles with 
election cycles. In countries such as Brazil, this approach has been shown to effectively end corrupt water pricing practices 
in small communities, as well as improve flood risk mitigation (Petherick et al., 2014). In England, the Fresh Water Watch, 
a citizen water quality monitoring program, complements data collection by the Environmental Agency, particularly in 
small, neighborhood lakes and ditches, and in periods outside the regular agency-led monitoring cycles (Hadj-Hammou et 
al., 2017). 
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3.2.3. Stakeholder-led involvement and feedback 

An emerging alternative to modeler led involvement is full-fledged stakeholder-led involvement. In these 
approaches, the emphasis is on citizen participation and citizen science (see Box 6). There are opportunities for 
citizen science to integrate with remote sensing in a way that facilitates information gathering and stakeholder 
input (e.g., Bardar, 2022). For example, Secchi-depth measurements obtained through networks of citizen 
scientists have been applied to validate satellite products of water quality (Deutsch et al., 2021; George et al., 
2021; Menon et al., 2021). In addition, water level measurements from citizen scientists have been integrated 
with lake surface area measurements from remote sensing to develop water storage estimates (Little et al., 
2021) and remote sensing has been used to validate observed flood heights from citizen scientists (Graham & 
Butts, 2005). There are also ways for citizen scientists to derive their own water quality estimates without the 
need for special equipment through smart phone apps that can estimate water quality based upon analysis of 
pictures from smartphones (Malthus et al., 2020). Each of these examples demonstrates the utility of citizen 
science data to enhance remote sensing data by validating or deriving new information pertinent to a TMDL 
process. 
 

4. Potential for transforming stakeholder engagement 

As we have shown in Figure 2, conventional approaches to remote sensing data and GIS integration in 
stakeholder engagement for water quality management only have limited potential to result in multiple benefits 
to water quality management. These approaches have traditionally included some form of stakeholder outreach 
such as through public comment periods, or through web-based interactive tools, which result in the one-way 
transfer of information about the physical and environmental water quality processes and management actions 
(Estelaki et al., 2016). Alternately, participatory modeling has involved presenting stakeholders with alternate 
model scenarios (Estalaki et al., 2016), or has engaged them through web data portals (e.g., Daniels et al., 2018; 
Quinn & Oster, 2021; USGS, 2022), workshops or serious games (e.g., Mayer et al., 2001). The more immersive 
engagement experiences can also result in bi-directional information exchange and deeper cognitive 
development among stakeholders, as well as improve group cognition of complex processes and management 
actions. The primary needs of managing stakeholder engagement are better and more intuitive tools for big data 
management and more fully integrated engagement with stakeholders. 
 
These types of approaches require the management of “big water data” and have resulted in proprietary 
systems such as the Source Apportionment GIS System (SAGIS) for load source cataloging (Ponce-Romero et al., 
2017). Such systems should be able to combine and link diverse sources of spatially distributed data ranging 
from physical and ecological datasets to socio-economic metrics. For example, health risk has been linked with 
water pollution data by combining municipal health indicator datasets with regional water quality data to 
develop management priorities in three cities in China (Zhang et al., 2017). By compiling records with space and 
time stamps on targeted water quality interventions with regulatory promulgations such as land acquisition, 
incentives for load reduction and direct management actions, nodal agencies in Wisconsin’s Yahara watershed 
have been able to quantify the efficacy of management actions. The key idea behind these linkages is to create 
socio-spatial datasets that can be meaningfully combined with water quality and watershed-wide datasets 
(Yusuf et al., 2018). This type of combination of traditional and non-traditional sources of GIS data can help 
agencies identify data discrepancies and exploit opportunities to improve monitoring programs through better 
data resource management. These analytical links are constrained by stakeholder diversity, locality-specific 
environmental concerns, and legislative constraints. Local, state and federal policies designed to encourage 
start-ups and technology innovation in the water data sector can help realize the power of these diverse 
datasets. Some potential benefits include: 

1) Sustainable management of watersheds that include private firms and polluters as keystone players in 
a voluntary management process, provided social and economic risks due to impairment can be 
translated to business costs (Franks et al., 2014). It may even be possible to encourage business 
strategists to create opportunities to minimize these costs. By providing local and regional governments 
with diverse datasets and the links between them, positive actions such as requiring commercial 
polluters to build diversity into their workforce, predictive risk-assessment of their loading practices 
and engagement with stakeholders can be realized. With a diverse, risk-savvy and engaged commercial 
structure, local polluters can be challenged to convert resource management costs into opportunities. 
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2) Two-way coupling between management actions and biophysical processes can influence and 
incrementally change the mental cognitive maps of key stakeholders. Such two-way couplings can 
foster local-to-regional networks of cooperation and collaboration across multiple counties, 
watersheds, and even in transboundary watersheds to achieve greater productivity and cooperation 
(Sayles & Baggio, 2017). 

 
More fully integrated engagement with stakeholders is often difficult even in well-designed engagement 
scenarios, such as in the Hueco Bolson transboundary aquifer between the US and Mexico (Mayer et al., 2021). 
Alamanos et al. (2021) suggest various approaches to create more fruitful engagement such as: dividing 
stakeholders into groups based on their aspirations and responses to proposed management measures; 
adopting a sliding scale of educational and dissemination efforts required to bring different groups of 
stakeholders to the same level of problem understanding; finding connections on technical, social, cultural and 
economic levels with stakeholders to build trust; and finding financial resources and facilitation approaches to 
break barriers and foster lasting partnerships. Various approaches have been tried in the past across fields to 
make the stakeholder engagement process more fruitful and immersive and these can provide a basis for 
regional water quality management: 

1) In-person and web-based public participation through the use of GIS layers in visually intuitive 
interfaces in coastal inundation management (Yusuf et al., 2018). 

2) Stakeholder-led user-interface and decision support tool design using georeferenced data sources and 
demographic data supported by mathematical process-based models to optimize the collection and 
disposal or organic solid waste (Vaneeckhaute et al., 2021). In this approach, the interface and decision 
support system were created using stakeholder inputs to prioritize and focus on their needs and 
applications. 

3) Top-down citizen generated data, which requires long-term policy commitment, infrastructure and 
stable sources of funding (Hadj-Hammou et al., 2017; Balestrini et al., 2021).  

4) Bottom-up citizen generated data and stakeholder-led engagement, where data is collected by citizens 
which focuses on what matters most locally (Datashift, 2015; Balestrini et al., 2021), and where the 
stakeholders themselves organize and convene water quality management programs (Petherick et al., 
2014). This, in the spirit of democratization of science, has the potential for improved scalability and 
sustainability, provided it is guided by a rigorous scientific process (Maccani et al., 2020). Maccani et al. 
(2020) identify several necessary conditions to make this approach work: new monitoring or 
participatory technology that is as off-the-shelf as possible, easy to understand and use; participatory 
tools that are compatible with prevailing cultural values, widespread visibility and coverage; and 
champions of the approach who are well regarded within the communities. For these types of 
approaches, researchers and practitioners facilitating the citizen science may themselves benefit by 
observing and learning local practices by stakeholders, i.e., the so-called “train-the-trainer” paradigm 
applies (Maccani et al., 2020). 

5) Both top-down unidirectional and bottom-up bi-directional citizen-generated data and modeler- or 
stakeholder-led engagement approaches can benefit by identifying messaging narratives that resonate 
with the target communities, and by adaptively nudging such narratives in the direction of desired 
outcomes (Maccani et al., 2020). Obviously, this is easier to do in a top-down or modeler-led approach 
than in a bottom-up setting. The Bristol municipality identified local matters of concerns and 
investigated how citizen-generated data could help bridge infrastructure data gaps. Using this 
information, they developed strategies, analytical and model user interfaces and a number of public 
engagement activities designed to guide actions such as narrative design, data publishing and 
governance designed to enhance urban infrastructure projects. Known as the Bristol Approach, this 
form of top-down engagement puts stakeholders at the center of sustainable urban design and 
incorporates contemporary needs and aspirations of the citizens (Bristol City Council, 2019). A similar 
approach could be applied to improve watershed management programs in the US. 

6) Exploiting the potential of game theory in spatially distributed water supply management. Ganjali and 
Guney (2017) identified keystone or important actors that were principal levers of change, and they 
allocated costs and utilities to various parties in water quality management. Using an approach gleaned 
from an extensive survey, Ganjali and Guney (2017) provide a roadmap for improving water quality 
management by combining game-theoretic insights from the outcomes of serious games with spatially 
distributed physical and socio-economic data. 
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5. Summary and Conclusions 

The use of GIS and remote sensing in TMDL modeling and analysis has evolved rapidly in the past decade to the 
point that both are available to practitioners using state-of-the-art watershed and water quality modeling tools. 
These tools, such as BASINS (USEPA, 2019) and other integrated modeling approaches, can provide information 
about the watershed that facilitates visual identification of stakeholder locations, pollutant sources, hydrologic 
connectivity, and load allocations. In addition to scene imagery, LiDAR surveys are being used to develop digital 
elevation models of land surfaces. Popular watershed models such as SWAT (Neitsch et al., 2011) have extensive 
user communities which has led to continual updating of these models with new capabilities and easier use of 
remotely sensed data that can now be invoked from within the model user interface. Free access to planetary 
scale data and powerful spatial analysis and assessment tools such as Google Earth Engine, and the provision of 
free remotely sensed imagery by governments and the private sector under data sharing agreements, has led 
to significant innovation, with respect to data availability and use. The proliferation of low-cost drones and the 
simultaneous development of low cost and powerful image processing and quality control software has made 
these tools affordable for watershed management applications. 
 
Recently, Internet-based technologies have become a practical medium for management of data, analysis 
techniques, and tools to support TMDLs (Hantush, 2005). These technologies are geared to eliminate data 
sharing limitations. The coupling of the internet, and tools of global access, including smartphone technology 
and low-cost data acquisition tools like phone-based LiDAR systems, will herald a new digital democratization of 
remote sensing and GIS data. Coupled with participatory engagement approaches tweaked for specific cultural 
and systemic milieus, GIS and sensing data and tools have potential to usher in the principles of JEDI-based 
stakeholder involvement in watershed management. 
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