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Abstract 
Sensitivity analysis is now considered a standard practice in environmental modeling. Several open-source 
libraries, such as the Sensitivity Analysis Library (SALib), have been published in the recent past aimed at 
simplifying the application of sensitivity analyses. Still, there remain issues in software usability and accessibility, 
as well as a lack of guidance in the interpretation of sensitivity analysis results. This paper describes the changes 
made and planned to SALib to advance the ease with which modelers may conduct sensitivity analysis and 
interpret results. We further offer our perspectives from the past 7 years of maintaining SALib for the 
consideration of those aspiring to launch their own software for sensitivity analysis, develop methodology, or 
those otherwise interested in becoming involved in a project like SALib. These include the value of a community 
of practice to foster best practices for sensitivity analysis, the potential for collaboration across different software 
(for sensitivity analysis) platforms, and the need to specifically support the software development that underpins 
computational science.  
 
Keywords 
sensitivity analysis; community of practice; software accessibility 
 
Code availability 
The SALib project is hosted on GitHub (at https://github.com/SALib/SALib) and is made available under the MIT 
license. Data, code, and figures for citation analysis conducted for this publication are found in Iwanaga (2021) 
accessible via https://doi.org/10.5281/zenodo.5523624. 
 

 

1.  Introduction 

The explosive growth and availability of computational power has increased the complexity of environmental 
modeling analyses, both in terms of the models themselves, as well as the data produced and collected. 
Sensitivity analysis (SA) is now considered a standard practice in modeling workflows as it can help navigate this 
complexity. At its core SA illuminates the behavior of a system by exploring and mapping the relationship 
between the inputs and outputs. Application of SA aids in identification of the relative magnitudes at which 
model factors drive results (factor prioritization); screening out non-influential parameters to reduce 
dimensionality of a model (factor fixing); better understanding how the input space relates to an interesting 
area of the output space (factor mapping); and supports meta-modelling (Saltelli et al., 2008). Application of SA 
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is also beneficial towards a wide range of contexts within scientific research and decision support beyond model 
analysis (Razavi et al., 2021; Wagener and Pianosi, 2019).  
 
A key difficulty in applying SA is that sufficient areas of parameter space must be explored for SA to be effective 
particularly for models with nonlinear behavior; a global analysis (GSA) is necessary as opposed to local (LSA; 
Saltelli and Annoni, 2010). Although use of GSA has been slowly increasing in recent years (Douglas-Smith et al., 
2020) there is some evidence that LSA remains the dominant form of SA in the literature (Ferretti et al., 2016; 
Saltelli et al., 2019). Past reviews have offered reasons for the hesitancy in adopting GSA as part of modeling 
practice. These include a lack of awareness of GSA itself (Saltelli et al., 2019); the relative complexity of the 
interpretation and implementation of GSA methods compared to LSA (Ferretti et al., 2016; Saltelli and Annoni, 
2010); a lack of awareness, accessibility or usability of available tooling to conduct GSA (Douglas-Smith et al., 
2020; Puy et al., 2021; Razavi et al., 2021); and a lack of guidance in the interpretation of SA results (Pianosi et 
al., 2020; Wagener and Pianosi, 2019). The computational cost of conducting such analyses may also be 
hampering uptake of GSA, especially as models become increasingly complex with large numbers of factors 
(Cuntz et al., 2015). 
 
The Sensitivity Analysis Library (SALib; Herman and Usher, 2017) is a Python package developed and released as 
a collection of easy-to-use and well-tested methods for GSA. Since its initial release (circa 2013) the library has 
evolved to offer not only a wide range of SA methods but to further reduce the friction in their application. 
Usability is one area of focus to encourage adoption of SA amongst modelers. Resolution of complex issues can 
be brought about quicker with tools that are trusted, intuitive, and simple to use (Razavi et al., 2021). In this 
paper we outline our efforts to address the above barriers to adoption and provide key lessons and perspectives 
to be considered by SA practitioners who are aspiring to launch their own software for SA, develop new SA 
methodology, or are interested in becoming involved in an SA-related project such as the SALib project. 
 
An overview of SALib is included in Section 2, followed by an outline of the improvements made since its initial 
release (Section 3). In Section 4, we then identify general changes planned for v2.0 with the overarching goal of 
improving interpretability of SA results, which also apply to other SA packages. A further discussion of the 
development of a community of SA practitioners, and its role in increasing the accessibility and applicability of 
the software, is also found therein. We conclude in Section 5 with opportunities to advance cross-language 
collaboration and funding support for open-source development in the SA community. 
 

2.  Overview of SALib 

SALib is perhaps the oldest openly developed sensitivity analysis library for the Python ecosystem and is unique 
in that it is developed and maintained by a handful of volunteers from a variety of disciplinary backgrounds. It 
provides well-tested implementations of common and emerging SA methods and test functions, written in the 
Python programming language. As a software package SALib is distributed through, and installable from, the 
Python Package Index (PyPI) as well as the Anaconda package repository (through the conda-forge channel; 
Conda-Forge Community, 2015). Tutorials and guides are available through the documentation (see Section 3.3) 
allowing those new to SALib, as well as SA, to quickly get started. 
 
Project code is publicly hosted on GitHub through which a community of practice has evolved (expanded on in 
Section 3.4). Community contributions have been essential for new methods, features, and bug reports, and 
have moved the library toward organized testing and versioning from its origins as an informally developed 
collection of scripts. Usability is a core focus, with use of the package intended to be accessible to anyone with 
a working understanding of Python. Currently available SA methods as of v1.4 are listed in Table 1. 
 
Evidence of the broad applicability of SALib, and SA more generally, can be seen in the citations of the earlier 
2017 paper describing v1.0 (Herman and Usher, 2017) and adoption of the software. Although dominated by 
the engineering fields, citations come from 17 areas of research (see Figure 1 and Figure 2). Since its initial 
release SALib has also been integrated into several disciplinary-specific tools and frameworks. These include (but 
are not limited to) an agent-based modeling framework (Agentpy; Foramitti, 2021); exploratory modeling 
frameworks (Rhodium and the EMA Workbench; Hadjimichael et al., 2020; Kwakkel, 2017); an urban energy 
simulation platform (CityEnergyAnalyst; Fonseca et al., 2021), and a probabilistic natural catastrophe impact 
model (CLIMADA; Aznar-Siguan and Bresch, 2019; Bresch and Aznar-Siguan, 2021). 
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Table 1: List of provided sensitivity analysis methods in SALib v1.4 

Method Approach References 

Sobol’ Variance Saltelli, 2002; Saltelli et al., 
2010; Sobol′, 2001 

Morris Elementary Effects 

 

Variance Campolongo et al., 2007; 
Morris, 1991; Ruano et al., 2012 

Extended Fourier Amplitude Sensitivity Test (eFAST) Variance Cukier et al., 1973; Saltelli et al., 
1999) 

Random Balanced Designs Fourier Amplitude Sensitivity 
Test (an RBD-FAST implementation also known as EASI) 

Density/moment-independent, 
given-data 

Plischke, 2010; Tarantola et al., 
2006; Tissot and Prieur, 2012 

Delta Moment-Independent Measure Density/moment-independent, 
given-data 

Borgonovo, 2007; Plischke et 
al., 2013 

Derivative-based Global Sensitivity Measure (DGSM)  Variance Sobol’ and Kucherenko, 2010 

Fractional Factorial Sensitivity Analysis  Variance Saltelli et al., 2008 

PAWN Density/moment-independent, 
given-data 

Pianosi and Wagener, 2018, 
2015 

High-Dimensional Model Representation (HDMR) Variance, given-data Li et al., 2010; Rabitz et al., 
1999 

 
 

 
Figure 1: Publications which cite SALib come from a wide variety of research areas although concentrated in the engineering 
fields. Note that the figure is in log scale. Data sourced from the Dimensions.ai platform in September 2021. 

 
 

  
Figure 2: (a) Yearly citations of the original SALib paper Herman and Usher (2017), from Google Scholar; (b) repository “stars” 
used as an indicator of use, interest, and popularity of the SALib project, from GitHub. Dashed lines represent use of 
incomplete data (partial year, ending April 2022).  
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One underlying reason for the increased use of SALib is that the Python language itself has seen an increase in 
general popularity, from teaching contexts to professional and scientific applications. Disciplinary specialists are 
likely hesitant to switch to another language due to the time commitment and learning curve involved. Still, we 
believe that the popularity of the Python language is not the sole reason for the current level of interest in SALib. 
For one, the package is open-source and permissively licensed (under the MIT license), allowing for its adoption 
with little restriction. The package structure simplifies use and application as evidenced by the incorporation of 
SALib into other Python packages. Community contributions since the initial release have further enhanced the 
accessibility and usability of SALib to meet their evolving needs (further explored in Section 3.4). Specifically, we 
believe that several key features of SALib are driving the increasing adoption and use of the SALib package, 
including its:  

• Open source and permissive licensing, 
• Focus on robust, tested implementations, 
• Supporting multiple workflows and user-interfaces for ease of application, 
• Improved documentation, including "cookbook” style examples, 
• Extensibility, and 
• Community. 

 

3. Toward improved accessibility 

An area of focus for SALib has been its usability – the ease at which SA methods are applied – as it increases 
accessibility, allowing researchers and practitioners to minimize the time from installation to results. A user-
centric approach to development has been adopted, whereby the contextual needs and concerns of the user 
and key barriers to their successful, and appropriate, application is identified and mitigated. In this section we 
outline the changes made (and user concerns addressed) since the initial release of SALib and detail the growth 
and benefits of a community of SA practitioners. 

3.1. Supporting a broad range of users 

Sensitivity analysis has wide applicability across the sciences. Users of SALib consequently come from a variety 
of disciplinary backgrounds with varying levels of programming experience. Contexts of its use may differ as 
well, from desktop analysis to applications on a supercomputer. SALib is structured along the three basic steps 
of (1) input sampling, (2) model evaluation (running the model, performed separately), and (3) post-processing 
of results (Pianosi et al., 2016). Applying these three steps is accomplished either programmatically (i.e., with 
code) or through a command-line (or terminal) interface. A Graphical User Interface (GUI) is a possibility but has 
not been explored in detail at this stage.  
 
The command-line user interface allows the use of SALib directly from a command prompt, useful in situations 
where user-written Python scripts can be tedious or disallowed. In the programmatic case, users can adopt two 
general software development paradigms: procedural and object-oriented. In this context, “paradigm” refers to 
the conceptual framework through which the functionality of SALib can be applied and is briefly described here. 
Adopting one paradigm over the other influences the way code is written in the application of SALib, with 
advantages and disadvantages to each.  
 
The procedural paradigm is the most common in the application of SALib as it is perhaps the most familiar to 
users with some programming experience. The procedural paradigm focuses on prescribing how the analysis is 
to occur in a step-by-step manner. In the context of SALib, adopting the procedural paradigm involves defining 
a “problem”: a simple associative array (a dictionary in Python terms) that details the number of variables, their 
associated names, and their value range (i.e., the variability space). Additional optional details that can be 
included are their distributions and whether any grouping of variables is to occur. This “problem” is then passed 
into individual SALib functions to generate samples and to conduct analyses (see left panel in Box 1). Care must 
be taken to always provide the defined “problem” with their samples and associated model results for the 
appropriate analyses to be conducted. On a related note, the design of the SA experiment is left to the user. 
Guidance on assessing the appropriateness of experimental design is not currently explicitly covered in SALib 
documentation, a limitation explored in more detail in Section 4. 
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Procedural programming is perhaps the most common programming paradigm and makes SALib accessible to 
those who may not be entirely familiar with Python or other programming paradigms. The examples provided 
as part of the library are primarily written in this procedural style, which are continually expanded. Code 
conforming to the procedural paradigm are perhaps the simplest implementations that still allow some degree 
of composability – the mix-and-matching of different functions to perform a SA – while still offering a 
standardized interface (via the functions) for users to interact with. 
 
A weakness of the procedural paradigm is that it arguably places too much onus on the user, requiring the 
preparation of input and intermediate variables, and their states to be manually tracked. Very few safeguards 
are in place to prevent inappropriate analyses from occurring and this leads to a cumbersome process that is 
often a source of errors, particularly when conducting multiple complex analyses. The Object-Oriented (OO) 
paradigm can potentially reduce the cognitive load placed on users. Here, cognitive load refers to the proportion 
of working memory that must be devoted to understanding and processing a task (Hermans, 2021; Sweller, 
1988). In this context, the load is due to the required knowledge of SA theory, the target model, SALib, and the 
application context. Too high a cognitive load may alienate novices, introduce errors, and in the worst case, 
discourage use of SA altogether. 
 
In very general terms, the OO paradigm focuses on encapsulating and abstracting data and associated functions. 
An Object-Oriented (OO) Interface was introduced in SALib v1.4 through which users may programmatically 
interact with most of the functionality offered by SALib. For users, the OO Interface simplifies use of SALib as it 
provides a single point of interaction that implicitly tracks the state of data for the user as it flows from one step 
in the workflow to the next. In practical terms this means the problem specification and the associated samples, 
model results, and results of analyses do not have to be stored in separate variables by the user and explicitly 
passed from one function to the other.  
 
The OO-based Interface is demonstrated in Box 1 with a method chaining approach which reflects the flow of 
data throughout the SA workflow. Use of the interface is demonstrated in comparison to code written in the 
procedural style. The Interface is created by defining an SALib Problem (with `ProblemSpec()`, see point 2 in Box 
1) which is assigned, by convention, to an `sp` variable. Here, `sp` refers to “SALib Problem specification” and 
provides a common interface to all available sampling and analysis methods. Printing the Interface displays a 
concise overview of the specification and available data (illustrated in Figure 3). 
 
For the SALib development team, the design and implementation of the OO Interface simplifies future 
development and maintenance activities. Contributors and maintainers are not required to write code 
specifically to attach individual methods to the OO Interface as this is handled automatically, reducing 
maintenance and contribution effort. Having a single common interface additionally offers the opportunity to 
provide checks to safeguard users from common errors. For example, an error is raised where the number of 
parameters and quantities of interest do not match the problem specification. Implementing such checks in the 
procedural implementation would require identical (or near-identical) lines of code to be inserted into each 
sampling and analysis function, thereby increasing the maintenance burden. 
 
An additional benefit is that the methods and associated documentation are made user discoverable through 
inspection via a REPL or modern Integrated Development Environment (see Figure 4). Users are then able to 
explore these as needed. The documentation itself has undergone significant changes to provide guided working 
examples using test functions which can help, to give one example, limit the potential for a mismatch between 
sampling and analysis methods. Further aspects of the documentation are explored in Section 3.3. 
 
The import of necessary functions becomes optional when using the OO Interface and removes the necessity 
for the user to track intermediate results. Calling individual methods separately is possible and doing so results 
in a workflow that is near-identical to the procedural code. Still, users may prefer the original procedural style, 
which may be simpler in cases where the model cannot be interacted with from Python directly; in cases where 
finer-grain control over operations is needed, such as when integrating SALib into another modeling or decision-
support framework; or cases where performance may be a key concern as the OO Interface introduces additional 
overhead. 
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Box 1: Demonstration of the procedural programming style compared with the Object-Oriented Interface using the Morris 
method on the Sobol’ G-function. 

Procedural Object-Oriented 

from SALib.test_functions import 

Sobol_G 

from SALib.analyze import morris 

from SALib.sample.morris import sample 

 

 

 

problem = { 

    'num_vars': 8, 

    'names': ['x1', 'x2', 'x3', 'x4',  

              'x5', 'x6', 'x7', 'x8'], 

    'groups': None, 

    'dists': None, 

    'bounds': [[0.0, 1.0],] * 8 

} 

 

X = sample(problem, N=1000, 

           num_levels=4) 

Y = Sobol_G.evaluate(X) 

Si = morris.analyze( 
         problem, X, Y, 

          num_levels=4,  

          num_resamples=100 

) 
 

 
 
 
 
 
 
ax = Si.plot() 

Si_df = Si.to_df() 

from SALib.test_functions import 

Sobol_G 

from SALib import ProblemSpec 

 

 

 

 

sp = ProblemSpec({ 

    'names': ['x1', 'x2', 'x3', 'x4', 

              'x5', 'x6', 'x7', 'x8'], 

    'groups': None, 

    'dists': None, 

    'bounds': [[0.0, 1.0],] * 8, 

}) 

 

 

(sp.sample_morris(1000, num_levels=4) 

   .evaluate(Sobol_G.evaluate) 

   .analyze_morris(num_levels=4,  

                   num_resamples=100)) 

 

# X = sp.samples 

# Y = sp.results 

# S = sp.analysis 

 

# sp.samples = X 

# sp.results = Y 

# sp.analyze_morris() 

 

print(sp) 

 

ax = sp.plot() 

sp.to_df() 

(1) Importing SALib. Specific sampling and analysis functions should be imported when using SALib procedurally. 

(2) Specifying an SALib problem as a Python dictionary, compared to the equivalent Object-Oriented (OO) Interface 
for the Sobol’ G-function. Optional entries allow parameter groupings (`groups`), and alternate distributions 
(`dists`, uniform being the default). An additional `outputs` entry (not shown) can also be provided to name the 
expected model outputs. When using the Interface, the `num_vars` is inferred from the number of elements in 
`names`. 

(3) The trifecta of sampling, model evaluation, and analysis with the Morris method. The default values for 
`num_levels` (for the Morris analysis) and `num_resamples` (for bootstrapping) are shown. In the case of the 
Interface, the `problem` specification, samples, and model results are automatically passed onto each step as 
necessary. A generic `.sample()` and `.analyze()` method is also provided for use with user-defined sampling and 
analysis methods (see Figure 4). Model evaluation and analysis can be parallelized with the OO Interface by 
adding an `nprocs` argument to the `evaluate` and `analyze` methods, and specifying the desired number of 
CPU cores to use. 

(4) It is possible to extract the stored samples, model results, and analyses from the Interface, and to provide pre-
existing samples and results for analysis. Methods to set pre-existing samples and results (`.set_samples()` and 
`.set_results()`) can also be used as part of the workflow shown in (3). Previously stored `results` are 
automatically cleared when providing `samples` to avoid data mismatches. 

(5) Print results and associated information (see Figure 3). 

(6) Produces an indicative plot. For experienced Python programmers, a matplotlib axes object is returned which 
can be further modified to adjust the plot. Conversion to a Pandas DataFrame for further analysis is also 
supported. 

 
 
 

 1 

 2 

 3 

 4 

 5 

 6 
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Figure 3: Using the `print()` function on the Object-Oriented Interface (see point 5, in Box 1) provides an overview of the 
available data held in the Interface. 

 
 

 
 
Figure 4: Screenshot of a SALib Interface being inspected from a Jupyter Notebook via tab-completion, showing a list of 
methods beginning with “sample”. Tab-completion refers to the action where the user presses the “tab” key to bring up a list 
of relevant functions/methods. It is a common feature in most, if not all, modern development environments. The user can 
then contextually discover methods associated with the SALib Interface without having to refer to a separate manual or user 
guide. The documentation associated with the generic `sample` method is partially displayed. The `sample` and corresponding 
`analyze` method allow the user to provide their own methods for use with SALib, allowing use of SALib as a testbed for testing 
and development. 

 

3.2. Reducing time-to-results 

The Object-Oriented Interface also provides methods for quickly plotting analysis results as well as support for 
parallel model evaluation and analysis. Inclusion of these functionalities address two concerns. First, most 
diagnostic visualization tasks require (at least initially) an indicative plot of results that utilize near identical code. 
Second, SA is often conducted on long-running models, samples for which can be obtained independently of 
one another as there are typically no interactions between model runs. Similarly, analyses which focus on the 
relationship between specific input factors and model outputs can also be conducted independently. Such cases 
where the model runs are independent of each other and can be trivially parallelized (at least conceptually) is 
referred to as an embarrassingly parallel problem in Computer Science (Foster, 1995; Herlihy and Shavit, 2012). 
Yet, setting up parallel model evaluations can be daunting depending on the model context and individual skill-
level of the user. 
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By including support for diagnostic plotting and parallel analyses as part of SALib itself mitigates to some degree 
the duplication of work that may otherwise occur across the sciences. Further, use of these functionality is 
simplified such that the user only need to invoke a single command (`.plot()`) to obtain an indicative figure after 
model evaluation and analysis is complete (see point 5 in Box 1). For parallelizing model evaluation itself, the 
user need only to specify the number of processors to use (see note for point 3 in Box 1). For suitably long-
running models, the provided parallelism (implemented with the pathos library; McKerns et al., 2012) can 
significantly reduce evaluation and analysis time. The provided approach comes at the cost of flexibility, 
however, as users are not able to specify how the parallelism is to occur and assumes sufficient computer 
memory is available to conduct the model runs and subsequent SA. 
 
The intention of the provided visualization functions is to allow users to obtain quick diagnostic indication of 
model behavior, as opposed to publish quality figures. Examples of further qualitative analyses are provided in 
the documentation, with a view to expand these in the future. For advanced Python users, all plotting methods 
return a matplotlib axes object which allows the figure to be further modified if desired (e.g., for publication 
purposes, see Box 2). Providing such “convenience methods” for plotting removes the need for users to write 
their own code for plotting which represents a duplication of work for a common workflow. 
 
 
Box 2: SALib plotting methods return a standard matplotlib axes object to allow for further modification. Here the results from 
Box 1 are displayed using the `barplot()` method, and adjusted to be in log scale, the figure enlarged, and displayed with 
additional axis labels. It is also possible to modify the axes object produced by the `.plot()` method in Box 1. 

import matplotlib.pyplot as plt 

from SALib.plotting.bar import plot as barplot 

 

 

fig, ax1 = plt.subplots(1,1, figsize=(12,6)) 

ax1 = barplot(Si.to_df(), ax=ax1) 

ax1.set_yscale('log') 

ax1.set_xlabel("Parameters") 

ax1.set_ylabel("EE") 

 

 

 

3.3. Documentation 

One frequent piece of feedback received over the past years is the lack of a general and introductory guide to 
SA. For novices, the documentation could be the first time they are exposed to SA concepts and terminology. It 
is also true that experience with SA does not necessarily mean that the structure, design, and application of the 
software will be immediately transparent. Thus, sparsely written or poorly organized documentation can be a 
deterrent to effective use or adoption of the software, or in the worst-case adoption of SA in general, particularly 
for novices, as the relevance and importance is lost.  
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Since v1.0, the community has added a Read the Docs page (https://salib.readthedocs.io/en/latest/) which 
serves as a concise API reference with examples and a change log, in part, to address these concerns. This 
documentation continues to be updated and modified for accessibility. The decentralized development raises 
the challenge of keeping documentation up to date with the latest contributions. This is not to say that the 
documentation is perfectly accessible to users of all skill levels, and improvements are ongoing (further 
discussed in the Outlook section below). For one, it is desirable for the level of applicability and known 
limitations for each method to be described and contextualized, however briefly. More recently, a list of relevant 
references has been embedded in the documentation for each method, accessible through the Python REPL 
console, and via the built-in `help()` command (as discussed in Section 3.1 above). Cross-compatibility of 
sampling and analysis functions have also begun to be listed.  
 
One driving motivation for the contributors has been to reduce the need for more documentation by better 
organizing the software and API itself. In the object-oriented approach, for example, auto-completion allows 
users to interactively explore and discover relevant functionality. A key challenge is to ensure that the sampling 
methods are combined with appropriate analysis methods, an issue partially ameliorated by listing the 
compatible methods within the documentation.  
 
However, we also observe that many of the questions raised by the community are related to experimental 
design and interpretation rather than the execution of the SA methods. Efforts to better organize these 
questions and discussions have taken several forms, including a FAQ page on the Read the Docs website which 
we intend to continue expanding ahead of the v2.0 release (explored further in Section 4). The need for 
continually evolving documentation and support points to the value of an engaged community. 

3.4. A sensitivity analysis community of practice 

A relatively new advance in open-source development platforms is the adoption of functionality and features 
commonly associated with social networks. These include incorporating user profiles, wikis, project roadmaps, 
discussion forums, and other facilities to encourage and foster communities to grow around the software being 
developed. Users can raise questions and submit bug reports via an issue tracker, or otherwise contribute 
enhancements and other changes for consideration following an open code review process and automated 
testing. The project began as a small collaboration and the community has evolved gradually over time, bringing 
together developers, users, and researchers alike to contribute code and documentation and participate in 
discussions. A key catalyst of the growth of the community was the introduction of processes and procedures 
(such as documentation, coding standards, testing) which were formalized in response to needs, which then 
made it easier to manage contributions to the source code and documentation. 
 
The library began as a collection of scripts authored and collated by Herman with a simple and consistent 
interface that allowed the interchange of different SA methods. Usher then contributed code and helped 
package the scripts, adding unit tests and a continuous integration service which runs the tests on each change 
to the code. Continuous Deployment was also added to automate the process of releasing the software to the 
Python Packaging Index (PyPI). With the addition of documentation and examples, the package was released 
and JOSS paper published (Herman and Usher, 2017). After this very intensive phase of development, the 
package grew in prominence in lockstep with the rapidly increasing use of Python by the scientific community 
and through the formal recognition of the package via academic citation. Today, Herman and Usher are less 
active in the development of the package, with Iwanaga driving development and coordinating the SALib 
community. New contributors are actively encouraged through clear documentation which provides direction 
on how to contribute. Suggested enhancements to the code are managed in the issue tracker. Individual 
contributions are collated into a pull request and reviewed by the SALib administration team. Contributions 
must maintain the project technical standards, some which are checked automatically (for example, code style 
and test coverage). 
 
One of the most common uses of the issue tracker has turned out to be questions on the interpretation of SA 
results and on the problem configuration for non-standard cases. Over 260 questions, issues, bug reports, and 
feature requests have been made (as of April 2022). Given the questions and responses from the community 
are indexed by Google and other search engines and are publicly searchable, the resulting online discussions are 
helpful to distill and disseminate good SA practice. The benefits of an active community are highlighted by the 
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fact that the questions raised are often not addressed in the literature, helping to bridge the chasm between 
theory and implementation that is essential for the uptake of SA methods. From our experience, engaging with 
practitioners has led to (and is leading to) improvements in accessibility of methods and improved 
interpretability of SA results (cf. Niet et al., 2021; Noacco et al., 2019; Pianosi et al., 2020). Here, we posit that 
leveraging open development processes to actively foster a community of practice facilitates greater, and more 
meaningful, adoption of SA practices.  
 
In summary, the SALib community of practice demonstrates that the software has achieved its implicit goal of 
removing barriers to the technical implementation of SA approaches so that users can focus on the broader 
conceptual issues, such as experimental design and interpretation of results. Our experience shows that this 
community is invaluable for improving the implementations and documentation of SA approaches, identifying 
novel issues and corner cases that can drive research into new implementations, and improving the 
interpretation of results and good SA practice. 
 

4. Outlook 

A stated aim of SALib (see Section 2) is to lower the barrier to entry so that a wide audience can make use of SA 
methods. The changes made since the initial release of SALib in 2017 are summarized in Section 3. However, 
there are opportunities for further improvements to better serve the needs of SA practitioners. These have 
implications not only for SALib but also for developers of similar software packages. 
 
While the underlying theory and methodologies of SA are widely applicable across application contexts (Razavi 
et al., 2021), there is seemingly a wide chasm (cf. Kelly, 2007) between those focused on advancing SA 
methodologies and those who apply SA in practice. Past investigations into applications of SA have raised 
concerns over erroneous or questionable usage of SA. One aspect is the consideration of the analyses’ 
experimental design such as the assumed parameter distributions and how these may influence results from SA 
which in turn influence the conclusions reached (Paleari and Confalonieri, 2016). Still, relatively little attention 
or consideration appears to be given toward bridging this chasm beyond urging greater awareness of the 
limitations of commonly applied SA practices (e.g., Saltelli et al., 2019). As a result, SA is said to be applied 
unevenly across the disciplines due to a lack of uniformity on what is considered good practice or appropriate 
application (Razavi and Gupta, 2015; Saltelli et al., 2019). 
 
Historically, tooling to support and encourage these best practices is often a secondary consideration, perhaps 
due to a lack of formal incentives within the current culture of academe (cf. Hannay et al., 2009; Iwanaga et al., 
2021; Razavi et al., 2021). Where such tooling is considered, development is arguably tightly controlled through 
licensing or through workflows not wholly amenable to the open and collaborative practices through which 
interdisciplinary advances are usually made. In the recent past however, an increasing number of SA researchers 
have become involved in writing and releasing code to disseminate their work, or otherwise engage with existing 
SA frameworks (e.g., Baroni and Francke, 2020; Cuntz and Mai, 2020; Pianosi et al., 2020; Puy et al., 2021). 
  
Perhaps more important than the availability of tooling, however, is the availability and strength of community. 
While accessibility can be partly improved through technical means (such as implementing user-friendly 
interfaces), interpretability is often subjective and context dependent, and requires engagement with users to 
address. If modelers are reluctant to adopt and apply Global Sensitivity Analysis (as explored in Saltelli et al., 
2019; Saltelli and Annoni, 2010) then it is a social issue for which no amount of technical tooling by themselves 
will resolve. 
 
The benefits of a culture of open and inclusive development are described in Section 3.4, including the ability to 
incorporate feedback, suggestions as well as contributions from practitioners. The collaborative spirit of such a 
culture benefits the SA community at large as it allows knowledge and experience to be shared and even 
incorporated into the software itself. Newcomers especially benefit from this development model as best-or-
good practices become further “baked-in” and included as a standard process within the software itself. At the 
very least such practices become contextualized by the (community developed) documentation, rather than 
relying on practices borne from experience which often go undocumented and unpublished, or otherwise 
obscured by the volume of available literature. Questions raised around how best to assess appropriateness or 
effectiveness of experimental design (cf. Paleari and Confalonieri, 2016; Pianosi et al., 2016), for example, could 
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be better served through such documentation. Community engagement is particularly important in resolving 
concerns over the “perfunctory” nature of current SA: in this case, fostering culture is likely more important 
than a directed strategy. 
 
Documentation has evolved over the years in response to community feedback (detailed in Section 3.3), 
although much work remains to be done. With the v1.4 series, specific methods now include detailed “notes” 
sections highlighting potential pitfalls, considerations, and include references to further literature. Aspects 
somewhat lacking in SALib currently are the explicit inclusion of a conceptual framework to assess experimental 
design as well as a guide to the interpretation of results (similar to those provided in Noacco et al., 2019). 
Expanding this contextualization to all methods offered in SALib likely requires a broader network of SA 
practitioners – one that spans overlapping open-source communities – due to the specialized knowledge 
associated with each method. Collating such knowledge in an accessible way is likely instrumental to overcoming 
perceived deficiencies in SA applications. 
 
On this note, SALib is but one node within a broader SA software community. There are, of course, other 
software packages available to support SA across a wide range of contexts (see for example Marelli and Sudret, 
2014; Pianosi et al., 2020; Puy et al., 2021; Razavi et al., 2019). There is significant potential to collaborate across 
the SA software, modeling frameworks and decision support platforms regardless of the programming languages 
they are implemented in, leading to improved outcomes across the disciplines. In particular, the computational 
sciences are increasingly interdisciplinary, and the software developed and produced is one vehicle through 
which discussions and knowledge transfer occurs. Specific sessions in GSA-relevant conferences on software 
implementations and associated concerns, issues and experiences could facilitate such cross-disciplinary 
collaboration. Educational initiatives, similar to the Software Carpentry (Wilson, 2006) and CodeRefinery 
(https://coderefinery.org) programs, that prepare the next generation of SA practitioners to better collaborate 
and engage in this context are also needed. A larger cultural change, and associated funding, is necessary for 
this to occur however (cf. Downey, 2017; Little et al., 2019).  
 
In the meantime, we encourage SA researchers to develop, foster and engage with these communities. 
Promoting the open implementations of new SA methods and sharing knowledge and experience across these 
networks can aid in reducing duplication of work, and crucially, open the possibility toward many research 
questions across the fields that leverage SA. One proffered incentive to academics is that involvement and 
contribution to an open platform (such as SALib) is likely to increase visibility and uptake of their own work. 
Citations for a specific method may also be boosted as the method and accompanying documentation is made 
accessible to a wider audience over time (cf. Niyazov et al., 2016; Teplitskiy et al., 2017). Adopting open 
development practices, such as hosting code on a public version-controlled repository (e.g., GitHub) invites 
collaboration and improvements to be made by a global community. The last is perhaps one incentive for those 
developing new SA methodologies. Aside from engagement by individual researchers, there is a need for 
increased support and funding for these development and engagement activities, the importance of which is 
often not wholly appreciated in the academic context.  
 
Beyond accessibility and understandability, it is intended that new and emerging SA approaches be targeted for 
inclusion, particularly if they prove capable of more efficient sampling and analyses. These include variogram-
based SA methods (e.g., Razavi et al., 2019); meta-methods which combine multiple approaches (e.g., variance 
and distribution-based metrics; Baroni and Francke, 2020); incorporating adaptive sampling approaches (e.g., 
Steiner et al., 2019); and further expansion of moment-independent, adaptive, and iterative analysis approaches 
(Cuntz et al., 2015; Sheikholeslami et al., 2021). Improved accessibility and interpretability unlock opportunities 
for new research and applications that may have previously been unviable. 
 

5. Conclusion 

Since the release of v1.0, the use of the SALib package for GSA has grown rapidly, supported by state-of-the-art 
practices and tools for testing, distribution, and community engagement. Key goals for the upcoming v2.0 
software release focus on improving the usability and accessibility of SA, namely: supporting multiple 
programming paradigms; reducing time-to-results; improving documentation, especially around the 
experimental design and interpretation of results; and continuing to foster an active community on GitHub in 
support of the above. The contributors’ experience highlights the potential for decentralized scientific software 
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development across research groups and practitioners, which sometimes runs counter to the academic incentive 
structure. More broadly, it points to the role of software as a bridge between theory and practice, and the 
importance of usability, accessibility and design. We welcome new contributors as we work toward v2.0 and 
look forward to maintaining the community and continuing to promote the role of SA in scientific modeling. 
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