

Correspondence:
Contact T. Iwanaga at iwanaga.takuya@anu.edu.au

Cite this article as:
Iwanaga, T., Usher, W., & Herman, J.
Toward SALib 2.0: Advancing the accessibility and interpretability of global sensitivity analyses
Socio-Environmental Systems Modelling, vol. 4, 18155, 2022, doi:10.18174/sesmo.18155

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International
License.

Socio-Environmental Systems Modelling
An Open-Access Scholarly Journal
http://www.sesmo.org

Toward SALib 2.0: Advancing the accessibility and
interpretability of global sensitivity analyses

Takuya Iwanaga1*, Will Usher2, and Jon Herman3
1 Institute for Water Futures, The Australian National University, Australia

2 Division of Energy Systems, School of Industrial Engineering and Management, KTH Royal Institute of
Technology, Sweden

3 Department of Civil and Environmental Engineering, University of California, Davis, CA, USA

Abstract
Sensitivity analysis is now considered a standard practice in environmental modeling. Several open-source
libraries, such as the Sensitivity Analysis Library (SALib), have been published in the recent past aimed at
simplifying the application of sensitivity analyses. Still, there remain issues in software usability and accessibility,
as well as a lack of guidance in the interpretation of sensitivity analysis results. This paper describes the changes
made and planned to SALib to advance the ease with which modelers may conduct sensitivity analysis and
interpret results. We further offer our perspectives from the past 7 years of maintaining SALib for the
consideration of those aspiring to launch their own software for sensitivity analysis, develop methodology, or
those otherwise interested in becoming involved in a project like SALib. These include the value of a community
of practice to foster best practices for sensitivity analysis, the potential for collaboration across different software
(for sensitivity analysis) platforms, and the need to specifically support the software development that underpins
computational science.

Keywords
sensitivity analysis; community of practice; software accessibility

Code availability
The SALib project is hosted on GitHub (at https://github.com/SALib/SALib) and is made available under the MIT
license. Data, code, and figures for citation analysis conducted for this publication are found in Iwanaga (2021)
accessible via https://doi.org/10.5281/zenodo.5523624.

1. Introduction

The explosive growth and availability of computational power has increased the complexity of environmental
modeling analyses, both in terms of the models themselves, as well as the data produced and collected.
Sensitivity analysis (SA) is now considered a standard practice in modeling workflows as it can help navigate this
complexity. At its core SA illuminates the behavior of a system by exploring and mapping the relationship
between the inputs and outputs. Application of SA aids in identification of the relative magnitudes at which
model factors drive results (factor prioritization); screening out non-influential parameters to reduce
dimensionality of a model (factor fixing); better understanding how the input space relates to an interesting
area of the output space (factor mapping); and supports meta-modelling (Saltelli et al., 2008). Application of SA

mailto:iwanaga.takuya@anu.edu.au
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://www.sesmo.org/
https://github.com/SALib/SALib
https://doi.org/10.5281/zenodo.5523624

T. Iwanaga et al. (2022) Socio-Environmental Systems Modelling, 4, 18155, doi:10.18174/sesmo.18155

 2

is also beneficial towards a wide range of contexts within scientific research and decision support beyond model
analysis (Razavi et al., 2021; Wagener and Pianosi, 2019).

A key difficulty in applying SA is that sufficient areas of parameter space must be explored for SA to be effective
particularly for models with nonlinear behavior; a global analysis (GSA) is necessary as opposed to local (LSA;
Saltelli and Annoni, 2010). Although use of GSA has been slowly increasing in recent years (Douglas-Smith et al.,
2020) there is some evidence that LSA remains the dominant form of SA in the literature (Ferretti et al., 2016;
Saltelli et al., 2019). Past reviews have offered reasons for the hesitancy in adopting GSA as part of modeling
practice. These include a lack of awareness of GSA itself (Saltelli et al., 2019); the relative complexity of the
interpretation and implementation of GSA methods compared to LSA (Ferretti et al., 2016; Saltelli and Annoni,
2010); a lack of awareness, accessibility or usability of available tooling to conduct GSA (Douglas-Smith et al.,
2020; Puy et al., 2021; Razavi et al., 2021); and a lack of guidance in the interpretation of SA results (Pianosi et
al., 2020; Wagener and Pianosi, 2019). The computational cost of conducting such analyses may also be
hampering uptake of GSA, especially as models become increasingly complex with large numbers of factors
(Cuntz et al., 2015).

The Sensitivity Analysis Library (SALib; Herman and Usher, 2017) is a Python package developed and released as
a collection of easy-to-use and well-tested methods for GSA. Since its initial release (circa 2013) the library has
evolved to offer not only a wide range of SA methods but to further reduce the friction in their application.
Usability is one area of focus to encourage adoption of SA amongst modelers. Resolution of complex issues can
be brought about quicker with tools that are trusted, intuitive, and simple to use (Razavi et al., 2021). In this
paper we outline our efforts to address the above barriers to adoption and provide key lessons and perspectives
to be considered by SA practitioners who are aspiring to launch their own software for SA, develop new SA
methodology, or are interested in becoming involved in an SA-related project such as the SALib project.

An overview of SALib is included in Section 2, followed by an outline of the improvements made since its initial
release (Section 3). In Section 4, we then identify general changes planned for v2.0 with the overarching goal of
improving interpretability of SA results, which also apply to other SA packages. A further discussion of the
development of a community of SA practitioners, and its role in increasing the accessibility and applicability of
the software, is also found therein. We conclude in Section 5 with opportunities to advance cross-language
collaboration and funding support for open-source development in the SA community.

2. Overview of SALib

SALib is perhaps the oldest openly developed sensitivity analysis library for the Python ecosystem and is unique
in that it is developed and maintained by a handful of volunteers from a variety of disciplinary backgrounds. It
provides well-tested implementations of common and emerging SA methods and test functions, written in the
Python programming language. As a software package SALib is distributed through, and installable from, the
Python Package Index (PyPI) as well as the Anaconda package repository (through the conda-forge channel;
Conda-Forge Community, 2015). Tutorials and guides are available through the documentation (see Section 3.3)
allowing those new to SALib, as well as SA, to quickly get started.

Project code is publicly hosted on GitHub through which a community of practice has evolved (expanded on in
Section 3.4). Community contributions have been essential for new methods, features, and bug reports, and
have moved the library toward organized testing and versioning from its origins as an informally developed
collection of scripts. Usability is a core focus, with use of the package intended to be accessible to anyone with
a working understanding of Python. Currently available SA methods as of v1.4 are listed in Table 1.

Evidence of the broad applicability of SALib, and SA more generally, can be seen in the citations of the earlier
2017 paper describing v1.0 (Herman and Usher, 2017) and adoption of the software. Although dominated by
the engineering fields, citations come from 17 areas of research (see Figure 1 and Figure 2). Since its initial
release SALib has also been integrated into several disciplinary-specific tools and frameworks. These include (but
are not limited to) an agent-based modeling framework (Agentpy; Foramitti, 2021); exploratory modeling
frameworks (Rhodium and the EMA Workbench; Hadjimichael et al., 2020; Kwakkel, 2017); an urban energy
simulation platform (CityEnergyAnalyst; Fonseca et al., 2021), and a probabilistic natural catastrophe impact
model (CLIMADA; Aznar-Siguan and Bresch, 2019; Bresch and Aznar-Siguan, 2021).

T. Iwanaga et al. (2022) Socio-Environmental Systems Modelling, 4, 18155, doi:10.18174/sesmo.18155

 3

Table 1: List of provided sensitivity analysis methods in SALib v1.4

Method Approach References

Sobol’ Variance Saltelli, 2002; Saltelli et al.,
2010; Sobol′, 2001

Morris Elementary Effects

Variance Campolongo et al., 2007;
Morris, 1991; Ruano et al., 2012

Extended Fourier Amplitude Sensitivity Test (eFAST) Variance Cukier et al., 1973; Saltelli et al.,
1999)

Random Balanced Designs Fourier Amplitude Sensitivity
Test (an RBD-FAST implementation also known as EASI)

Density/moment-independent,
given-data

Plischke, 2010; Tarantola et al.,
2006; Tissot and Prieur, 2012

Delta Moment-Independent Measure Density/moment-independent,
given-data

Borgonovo, 2007; Plischke et
al., 2013

Derivative-based Global Sensitivity Measure (DGSM) Variance Sobol’ and Kucherenko, 2010

Fractional Factorial Sensitivity Analysis Variance Saltelli et al., 2008

PAWN Density/moment-independent,
given-data

Pianosi and Wagener, 2018,
2015

High-Dimensional Model Representation (HDMR) Variance, given-data Li et al., 2010; Rabitz et al.,
1999

Figure 1: Publications which cite SALib come from a wide variety of research areas although concentrated in the engineering
fields. Note that the figure is in log scale. Data sourced from the Dimensions.ai platform in September 2021.

Figure 2: (a) Yearly citations of the original SALib paper Herman and Usher (2017), from Google Scholar; (b) repository “stars”
used as an indicator of use, interest, and popularity of the SALib project, from GitHub. Dashed lines represent use of
incomplete data (partial year, ending April 2022).

T. Iwanaga et al. (2022) Socio-Environmental Systems Modelling, 4, 18155, doi:10.18174/sesmo.18155

 4

One underlying reason for the increased use of SALib is that the Python language itself has seen an increase in
general popularity, from teaching contexts to professional and scientific applications. Disciplinary specialists are
likely hesitant to switch to another language due to the time commitment and learning curve involved. Still, we
believe that the popularity of the Python language is not the sole reason for the current level of interest in SALib.
For one, the package is open-source and permissively licensed (under the MIT license), allowing for its adoption
with little restriction. The package structure simplifies use and application as evidenced by the incorporation of
SALib into other Python packages. Community contributions since the initial release have further enhanced the
accessibility and usability of SALib to meet their evolving needs (further explored in Section 3.4). Specifically, we
believe that several key features of SALib are driving the increasing adoption and use of the SALib package,
including its:

• Open source and permissive licensing,
• Focus on robust, tested implementations,
• Supporting multiple workflows and user-interfaces for ease of application,
• Improved documentation, including "cookbook” style examples,
• Extensibility, and
• Community.

3. Toward improved accessibility

An area of focus for SALib has been its usability – the ease at which SA methods are applied – as it increases
accessibility, allowing researchers and practitioners to minimize the time from installation to results. A user-
centric approach to development has been adopted, whereby the contextual needs and concerns of the user
and key barriers to their successful, and appropriate, application is identified and mitigated. In this section we
outline the changes made (and user concerns addressed) since the initial release of SALib and detail the growth
and benefits of a community of SA practitioners.

3.1. Supporting a broad range of users

Sensitivity analysis has wide applicability across the sciences. Users of SALib consequently come from a variety
of disciplinary backgrounds with varying levels of programming experience. Contexts of its use may differ as
well, from desktop analysis to applications on a supercomputer. SALib is structured along the three basic steps
of (1) input sampling, (2) model evaluation (running the model, performed separately), and (3) post-processing
of results (Pianosi et al., 2016). Applying these three steps is accomplished either programmatically (i.e., with
code) or through a command-line (or terminal) interface. A Graphical User Interface (GUI) is a possibility but has
not been explored in detail at this stage.

The command-line user interface allows the use of SALib directly from a command prompt, useful in situations
where user-written Python scripts can be tedious or disallowed. In the programmatic case, users can adopt two
general software development paradigms: procedural and object-oriented. In this context, “paradigm” refers to
the conceptual framework through which the functionality of SALib can be applied and is briefly described here.
Adopting one paradigm over the other influences the way code is written in the application of SALib, with
advantages and disadvantages to each.

The procedural paradigm is the most common in the application of SALib as it is perhaps the most familiar to
users with some programming experience. The procedural paradigm focuses on prescribing how the analysis is
to occur in a step-by-step manner. In the context of SALib, adopting the procedural paradigm involves defining
a “problem”: a simple associative array (a dictionary in Python terms) that details the number of variables, their
associated names, and their value range (i.e., the variability space). Additional optional details that can be
included are their distributions and whether any grouping of variables is to occur. This “problem” is then passed
into individual SALib functions to generate samples and to conduct analyses (see left panel in Box 1). Care must
be taken to always provide the defined “problem” with their samples and associated model results for the
appropriate analyses to be conducted. On a related note, the design of the SA experiment is left to the user.
Guidance on assessing the appropriateness of experimental design is not currently explicitly covered in SALib
documentation, a limitation explored in more detail in Section 4.

T. Iwanaga et al. (2022) Socio-Environmental Systems Modelling, 4, 18155, doi:10.18174/sesmo.18155

 5

Procedural programming is perhaps the most common programming paradigm and makes SALib accessible to
those who may not be entirely familiar with Python or other programming paradigms. The examples provided
as part of the library are primarily written in this procedural style, which are continually expanded. Code
conforming to the procedural paradigm are perhaps the simplest implementations that still allow some degree
of composability – the mix-and-matching of different functions to perform a SA – while still offering a
standardized interface (via the functions) for users to interact with.

A weakness of the procedural paradigm is that it arguably places too much onus on the user, requiring the
preparation of input and intermediate variables, and their states to be manually tracked. Very few safeguards
are in place to prevent inappropriate analyses from occurring and this leads to a cumbersome process that is
often a source of errors, particularly when conducting multiple complex analyses. The Object-Oriented (OO)
paradigm can potentially reduce the cognitive load placed on users. Here, cognitive load refers to the proportion
of working memory that must be devoted to understanding and processing a task (Hermans, 2021; Sweller,
1988). In this context, the load is due to the required knowledge of SA theory, the target model, SALib, and the
application context. Too high a cognitive load may alienate novices, introduce errors, and in the worst case,
discourage use of SA altogether.

In very general terms, the OO paradigm focuses on encapsulating and abstracting data and associated functions.
An Object-Oriented (OO) Interface was introduced in SALib v1.4 through which users may programmatically
interact with most of the functionality offered by SALib. For users, the OO Interface simplifies use of SALib as it
provides a single point of interaction that implicitly tracks the state of data for the user as it flows from one step
in the workflow to the next. In practical terms this means the problem specification and the associated samples,
model results, and results of analyses do not have to be stored in separate variables by the user and explicitly
passed from one function to the other.

The OO-based Interface is demonstrated in Box 1 with a method chaining approach which reflects the flow of
data throughout the SA workflow. Use of the interface is demonstrated in comparison to code written in the
procedural style. The Interface is created by defining an SALib Problem (with `ProblemSpec()`, see point 2 in Box
1) which is assigned, by convention, to an `sp` variable. Here, `sp` refers to “SALib Problem specification” and
provides a common interface to all available sampling and analysis methods. Printing the Interface displays a
concise overview of the specification and available data (illustrated in Figure 3).

For the SALib development team, the design and implementation of the OO Interface simplifies future
development and maintenance activities. Contributors and maintainers are not required to write code
specifically to attach individual methods to the OO Interface as this is handled automatically, reducing
maintenance and contribution effort. Having a single common interface additionally offers the opportunity to
provide checks to safeguard users from common errors. For example, an error is raised where the number of
parameters and quantities of interest do not match the problem specification. Implementing such checks in the
procedural implementation would require identical (or near-identical) lines of code to be inserted into each
sampling and analysis function, thereby increasing the maintenance burden.

An additional benefit is that the methods and associated documentation are made user discoverable through
inspection via a REPL or modern Integrated Development Environment (see Figure 4). Users are then able to
explore these as needed. The documentation itself has undergone significant changes to provide guided working
examples using test functions which can help, to give one example, limit the potential for a mismatch between
sampling and analysis methods. Further aspects of the documentation are explored in Section 3.3.

The import of necessary functions becomes optional when using the OO Interface and removes the necessity
for the user to track intermediate results. Calling individual methods separately is possible and doing so results
in a workflow that is near-identical to the procedural code. Still, users may prefer the original procedural style,
which may be simpler in cases where the model cannot be interacted with from Python directly; in cases where
finer-grain control over operations is needed, such as when integrating SALib into another modeling or decision-
support framework; or cases where performance may be a key concern as the OO Interface introduces additional
overhead.

T. Iwanaga et al. (2022) Socio-Environmental Systems Modelling, 4, 18155, doi:10.18174/sesmo.18155

 6

Box 1: Demonstration of the procedural programming style compared with the Object-Oriented Interface using the Morris
method on the Sobol’ G-function.

Procedural Object-Oriented

from SALib.test_functions import

Sobol_G

from SALib.analyze import morris

from SALib.sample.morris import sample

problem = {

 'num_vars': 8,

 'names': ['x1', 'x2', 'x3', 'x4',

 'x5', 'x6', 'x7', 'x8'],

 'groups': None,

 'dists': None,

 'bounds': [[0.0, 1.0],] * 8

}

X = sample(problem, N=1000,

 num_levels=4)

Y = Sobol_G.evaluate(X)

Si = morris.analyze(
 problem, X, Y,

 num_levels=4,

 num_resamples=100

)

ax = Si.plot()

Si_df = Si.to_df()

from SALib.test_functions import

Sobol_G

from SALib import ProblemSpec

sp = ProblemSpec({

 'names': ['x1', 'x2', 'x3', 'x4',

 'x5', 'x6', 'x7', 'x8'],

 'groups': None,

 'dists': None,

 'bounds': [[0.0, 1.0],] * 8,

})

(sp.sample_morris(1000, num_levels=4)

 .evaluate(Sobol_G.evaluate)

 .analyze_morris(num_levels=4,

 num_resamples=100))

X = sp.samples

Y = sp.results

S = sp.analysis

sp.samples = X

sp.results = Y

sp.analyze_morris()

print(sp)

ax = sp.plot()

sp.to_df()

(1) Importing SALib. Specific sampling and analysis functions should be imported when using SALib procedurally.

(2) Specifying an SALib problem as a Python dictionary, compared to the equivalent Object-Oriented (OO) Interface
for the Sobol’ G-function. Optional entries allow parameter groupings (`groups`), and alternate distributions
(`dists`, uniform being the default). An additional `outputs` entry (not shown) can also be provided to name the
expected model outputs. When using the Interface, the `num_vars` is inferred from the number of elements in
`names`.

(3) The trifecta of sampling, model evaluation, and analysis with the Morris method. The default values for
`num_levels` (for the Morris analysis) and `num_resamples` (for bootstrapping) are shown. In the case of the
Interface, the `problem` specification, samples, and model results are automatically passed onto each step as
necessary. A generic `.sample()` and `.analyze()` method is also provided for use with user-defined sampling and
analysis methods (see Figure 4). Model evaluation and analysis can be parallelized with the OO Interface by
adding an `nprocs` argument to the `evaluate` and `analyze` methods, and specifying the desired number of
CPU cores to use.

(4) It is possible to extract the stored samples, model results, and analyses from the Interface, and to provide pre-
existing samples and results for analysis. Methods to set pre-existing samples and results (`.set_samples()` and
`.set_results()`) can also be used as part of the workflow shown in (3). Previously stored `results` are
automatically cleared when providing `samples` to avoid data mismatches.

(5) Print results and associated information (see Figure 3).

(6) Produces an indicative plot. For experienced Python programmers, a matplotlib axes object is returned which
can be further modified to adjust the plot. Conversion to a Pandas DataFrame for further analysis is also
supported.

 1

 2

 3

 4

 5

 6

T. Iwanaga et al. (2022) Socio-Environmental Systems Modelling, 4, 18155, doi:10.18174/sesmo.18155

 7

Figure 3: Using the `print()` function on the Object-Oriented Interface (see point 5, in Box 1) provides an overview of the
available data held in the Interface.

Figure 4: Screenshot of a SALib Interface being inspected from a Jupyter Notebook via tab-completion, showing a list of
methods beginning with “sample”. Tab-completion refers to the action where the user presses the “tab” key to bring up a list
of relevant functions/methods. It is a common feature in most, if not all, modern development environments. The user can
then contextually discover methods associated with the SALib Interface without having to refer to a separate manual or user
guide. The documentation associated with the generic `sample` method is partially displayed. The `sample` and corresponding
`analyze` method allow the user to provide their own methods for use with SALib, allowing use of SALib as a testbed for testing
and development.

3.2. Reducing time-to-results

The Object-Oriented Interface also provides methods for quickly plotting analysis results as well as support for
parallel model evaluation and analysis. Inclusion of these functionalities address two concerns. First, most
diagnostic visualization tasks require (at least initially) an indicative plot of results that utilize near identical code.
Second, SA is often conducted on long-running models, samples for which can be obtained independently of
one another as there are typically no interactions between model runs. Similarly, analyses which focus on the
relationship between specific input factors and model outputs can also be conducted independently. Such cases
where the model runs are independent of each other and can be trivially parallelized (at least conceptually) is
referred to as an embarrassingly parallel problem in Computer Science (Foster, 1995; Herlihy and Shavit, 2012).
Yet, setting up parallel model evaluations can be daunting depending on the model context and individual skill-
level of the user.

T. Iwanaga et al. (2022) Socio-Environmental Systems Modelling, 4, 18155, doi:10.18174/sesmo.18155

 8

By including support for diagnostic plotting and parallel analyses as part of SALib itself mitigates to some degree
the duplication of work that may otherwise occur across the sciences. Further, use of these functionality is
simplified such that the user only need to invoke a single command (`.plot()`) to obtain an indicative figure after
model evaluation and analysis is complete (see point 5 in Box 1). For parallelizing model evaluation itself, the
user need only to specify the number of processors to use (see note for point 3 in Box 1). For suitably long-
running models, the provided parallelism (implemented with the pathos library; McKerns et al., 2012) can
significantly reduce evaluation and analysis time. The provided approach comes at the cost of flexibility,
however, as users are not able to specify how the parallelism is to occur and assumes sufficient computer
memory is available to conduct the model runs and subsequent SA.

The intention of the provided visualization functions is to allow users to obtain quick diagnostic indication of
model behavior, as opposed to publish quality figures. Examples of further qualitative analyses are provided in
the documentation, with a view to expand these in the future. For advanced Python users, all plotting methods
return a matplotlib axes object which allows the figure to be further modified if desired (e.g., for publication
purposes, see Box 2). Providing such “convenience methods” for plotting removes the need for users to write
their own code for plotting which represents a duplication of work for a common workflow.

Box 2: SALib plotting methods return a standard matplotlib axes object to allow for further modification. Here the results from
Box 1 are displayed using the `barplot()` method, and adjusted to be in log scale, the figure enlarged, and displayed with
additional axis labels. It is also possible to modify the axes object produced by the `.plot()` method in Box 1.

import matplotlib.pyplot as plt

from SALib.plotting.bar import plot as barplot

fig, ax1 = plt.subplots(1,1, figsize=(12,6))

ax1 = barplot(Si.to_df(), ax=ax1)

ax1.set_yscale('log')

ax1.set_xlabel("Parameters")

ax1.set_ylabel("EE")

3.3. Documentation

One frequent piece of feedback received over the past years is the lack of a general and introductory guide to
SA. For novices, the documentation could be the first time they are exposed to SA concepts and terminology. It
is also true that experience with SA does not necessarily mean that the structure, design, and application of the
software will be immediately transparent. Thus, sparsely written or poorly organized documentation can be a
deterrent to effective use or adoption of the software, or in the worst-case adoption of SA in general, particularly
for novices, as the relevance and importance is lost.

T. Iwanaga et al. (2022) Socio-Environmental Systems Modelling, 4, 18155, doi:10.18174/sesmo.18155

 9

Since v1.0, the community has added a Read the Docs page (https://salib.readthedocs.io/en/latest/) which
serves as a concise API reference with examples and a change log, in part, to address these concerns. This
documentation continues to be updated and modified for accessibility. The decentralized development raises
the challenge of keeping documentation up to date with the latest contributions. This is not to say that the
documentation is perfectly accessible to users of all skill levels, and improvements are ongoing (further
discussed in the Outlook section below). For one, it is desirable for the level of applicability and known
limitations for each method to be described and contextualized, however briefly. More recently, a list of relevant
references has been embedded in the documentation for each method, accessible through the Python REPL
console, and via the built-in `help()` command (as discussed in Section 3.1 above). Cross-compatibility of
sampling and analysis functions have also begun to be listed.

One driving motivation for the contributors has been to reduce the need for more documentation by better
organizing the software and API itself. In the object-oriented approach, for example, auto-completion allows
users to interactively explore and discover relevant functionality. A key challenge is to ensure that the sampling
methods are combined with appropriate analysis methods, an issue partially ameliorated by listing the
compatible methods within the documentation.

However, we also observe that many of the questions raised by the community are related to experimental
design and interpretation rather than the execution of the SA methods. Efforts to better organize these
questions and discussions have taken several forms, including a FAQ page on the Read the Docs website which
we intend to continue expanding ahead of the v2.0 release (explored further in Section 4). The need for
continually evolving documentation and support points to the value of an engaged community.

3.4. A sensitivity analysis community of practice

A relatively new advance in open-source development platforms is the adoption of functionality and features
commonly associated with social networks. These include incorporating user profiles, wikis, project roadmaps,
discussion forums, and other facilities to encourage and foster communities to grow around the software being
developed. Users can raise questions and submit bug reports via an issue tracker, or otherwise contribute
enhancements and other changes for consideration following an open code review process and automated
testing. The project began as a small collaboration and the community has evolved gradually over time, bringing
together developers, users, and researchers alike to contribute code and documentation and participate in
discussions. A key catalyst of the growth of the community was the introduction of processes and procedures
(such as documentation, coding standards, testing) which were formalized in response to needs, which then
made it easier to manage contributions to the source code and documentation.

The library began as a collection of scripts authored and collated by Herman with a simple and consistent
interface that allowed the interchange of different SA methods. Usher then contributed code and helped
package the scripts, adding unit tests and a continuous integration service which runs the tests on each change
to the code. Continuous Deployment was also added to automate the process of releasing the software to the
Python Packaging Index (PyPI). With the addition of documentation and examples, the package was released
and JOSS paper published (Herman and Usher, 2017). After this very intensive phase of development, the
package grew in prominence in lockstep with the rapidly increasing use of Python by the scientific community
and through the formal recognition of the package via academic citation. Today, Herman and Usher are less
active in the development of the package, with Iwanaga driving development and coordinating the SALib
community. New contributors are actively encouraged through clear documentation which provides direction
on how to contribute. Suggested enhancements to the code are managed in the issue tracker. Individual
contributions are collated into a pull request and reviewed by the SALib administration team. Contributions
must maintain the project technical standards, some which are checked automatically (for example, code style
and test coverage).

One of the most common uses of the issue tracker has turned out to be questions on the interpretation of SA
results and on the problem configuration for non-standard cases. Over 260 questions, issues, bug reports, and
feature requests have been made (as of April 2022). Given the questions and responses from the community
are indexed by Google and other search engines and are publicly searchable, the resulting online discussions are
helpful to distill and disseminate good SA practice. The benefits of an active community are highlighted by the

T. Iwanaga et al. (2022) Socio-Environmental Systems Modelling, 4, 18155, doi:10.18174/sesmo.18155

 10

fact that the questions raised are often not addressed in the literature, helping to bridge the chasm between
theory and implementation that is essential for the uptake of SA methods. From our experience, engaging with
practitioners has led to (and is leading to) improvements in accessibility of methods and improved
interpretability of SA results (cf. Niet et al., 2021; Noacco et al., 2019; Pianosi et al., 2020). Here, we posit that
leveraging open development processes to actively foster a community of practice facilitates greater, and more
meaningful, adoption of SA practices.

In summary, the SALib community of practice demonstrates that the software has achieved its implicit goal of
removing barriers to the technical implementation of SA approaches so that users can focus on the broader
conceptual issues, such as experimental design and interpretation of results. Our experience shows that this
community is invaluable for improving the implementations and documentation of SA approaches, identifying
novel issues and corner cases that can drive research into new implementations, and improving the
interpretation of results and good SA practice.

4. Outlook

A stated aim of SALib (see Section 2) is to lower the barrier to entry so that a wide audience can make use of SA
methods. The changes made since the initial release of SALib in 2017 are summarized in Section 3. However,
there are opportunities for further improvements to better serve the needs of SA practitioners. These have
implications not only for SALib but also for developers of similar software packages.

While the underlying theory and methodologies of SA are widely applicable across application contexts (Razavi
et al., 2021), there is seemingly a wide chasm (cf. Kelly, 2007) between those focused on advancing SA
methodologies and those who apply SA in practice. Past investigations into applications of SA have raised
concerns over erroneous or questionable usage of SA. One aspect is the consideration of the analyses’
experimental design such as the assumed parameter distributions and how these may influence results from SA
which in turn influence the conclusions reached (Paleari and Confalonieri, 2016). Still, relatively little attention
or consideration appears to be given toward bridging this chasm beyond urging greater awareness of the
limitations of commonly applied SA practices (e.g., Saltelli et al., 2019). As a result, SA is said to be applied
unevenly across the disciplines due to a lack of uniformity on what is considered good practice or appropriate
application (Razavi and Gupta, 2015; Saltelli et al., 2019).

Historically, tooling to support and encourage these best practices is often a secondary consideration, perhaps
due to a lack of formal incentives within the current culture of academe (cf. Hannay et al., 2009; Iwanaga et al.,
2021; Razavi et al., 2021). Where such tooling is considered, development is arguably tightly controlled through
licensing or through workflows not wholly amenable to the open and collaborative practices through which
interdisciplinary advances are usually made. In the recent past however, an increasing number of SA researchers
have become involved in writing and releasing code to disseminate their work, or otherwise engage with existing
SA frameworks (e.g., Baroni and Francke, 2020; Cuntz and Mai, 2020; Pianosi et al., 2020; Puy et al., 2021).

Perhaps more important than the availability of tooling, however, is the availability and strength of community.
While accessibility can be partly improved through technical means (such as implementing user-friendly
interfaces), interpretability is often subjective and context dependent, and requires engagement with users to
address. If modelers are reluctant to adopt and apply Global Sensitivity Analysis (as explored in Saltelli et al.,
2019; Saltelli and Annoni, 2010) then it is a social issue for which no amount of technical tooling by themselves
will resolve.

The benefits of a culture of open and inclusive development are described in Section 3.4, including the ability to
incorporate feedback, suggestions as well as contributions from practitioners. The collaborative spirit of such a
culture benefits the SA community at large as it allows knowledge and experience to be shared and even
incorporated into the software itself. Newcomers especially benefit from this development model as best-or-
good practices become further “baked-in” and included as a standard process within the software itself. At the
very least such practices become contextualized by the (community developed) documentation, rather than
relying on practices borne from experience which often go undocumented and unpublished, or otherwise
obscured by the volume of available literature. Questions raised around how best to assess appropriateness or
effectiveness of experimental design (cf. Paleari and Confalonieri, 2016; Pianosi et al., 2016), for example, could

T. Iwanaga et al. (2022) Socio-Environmental Systems Modelling, 4, 18155, doi:10.18174/sesmo.18155

 11

be better served through such documentation. Community engagement is particularly important in resolving
concerns over the “perfunctory” nature of current SA: in this case, fostering culture is likely more important
than a directed strategy.

Documentation has evolved over the years in response to community feedback (detailed in Section 3.3),
although much work remains to be done. With the v1.4 series, specific methods now include detailed “notes”
sections highlighting potential pitfalls, considerations, and include references to further literature. Aspects
somewhat lacking in SALib currently are the explicit inclusion of a conceptual framework to assess experimental
design as well as a guide to the interpretation of results (similar to those provided in Noacco et al., 2019).
Expanding this contextualization to all methods offered in SALib likely requires a broader network of SA
practitioners – one that spans overlapping open-source communities – due to the specialized knowledge
associated with each method. Collating such knowledge in an accessible way is likely instrumental to overcoming
perceived deficiencies in SA applications.

On this note, SALib is but one node within a broader SA software community. There are, of course, other
software packages available to support SA across a wide range of contexts (see for example Marelli and Sudret,
2014; Pianosi et al., 2020; Puy et al., 2021; Razavi et al., 2019). There is significant potential to collaborate across
the SA software, modeling frameworks and decision support platforms regardless of the programming languages
they are implemented in, leading to improved outcomes across the disciplines. In particular, the computational
sciences are increasingly interdisciplinary, and the software developed and produced is one vehicle through
which discussions and knowledge transfer occurs. Specific sessions in GSA-relevant conferences on software
implementations and associated concerns, issues and experiences could facilitate such cross-disciplinary
collaboration. Educational initiatives, similar to the Software Carpentry (Wilson, 2006) and CodeRefinery
(https://coderefinery.org) programs, that prepare the next generation of SA practitioners to better collaborate
and engage in this context are also needed. A larger cultural change, and associated funding, is necessary for
this to occur however (cf. Downey, 2017; Little et al., 2019).

In the meantime, we encourage SA researchers to develop, foster and engage with these communities.
Promoting the open implementations of new SA methods and sharing knowledge and experience across these
networks can aid in reducing duplication of work, and crucially, open the possibility toward many research
questions across the fields that leverage SA. One proffered incentive to academics is that involvement and
contribution to an open platform (such as SALib) is likely to increase visibility and uptake of their own work.
Citations for a specific method may also be boosted as the method and accompanying documentation is made
accessible to a wider audience over time (cf. Niyazov et al., 2016; Teplitskiy et al., 2017). Adopting open
development practices, such as hosting code on a public version-controlled repository (e.g., GitHub) invites
collaboration and improvements to be made by a global community. The last is perhaps one incentive for those
developing new SA methodologies. Aside from engagement by individual researchers, there is a need for
increased support and funding for these development and engagement activities, the importance of which is
often not wholly appreciated in the academic context.

Beyond accessibility and understandability, it is intended that new and emerging SA approaches be targeted for
inclusion, particularly if they prove capable of more efficient sampling and analyses. These include variogram-
based SA methods (e.g., Razavi et al., 2019); meta-methods which combine multiple approaches (e.g., variance
and distribution-based metrics; Baroni and Francke, 2020); incorporating adaptive sampling approaches (e.g.,
Steiner et al., 2019); and further expansion of moment-independent, adaptive, and iterative analysis approaches
(Cuntz et al., 2015; Sheikholeslami et al., 2021). Improved accessibility and interpretability unlock opportunities
for new research and applications that may have previously been unviable.

5. Conclusion

Since the release of v1.0, the use of the SALib package for GSA has grown rapidly, supported by state-of-the-art
practices and tools for testing, distribution, and community engagement. Key goals for the upcoming v2.0
software release focus on improving the usability and accessibility of SA, namely: supporting multiple
programming paradigms; reducing time-to-results; improving documentation, especially around the
experimental design and interpretation of results; and continuing to foster an active community on GitHub in
support of the above. The contributors’ experience highlights the potential for decentralized scientific software

T. Iwanaga et al. (2022) Socio-Environmental Systems Modelling, 4, 18155, doi:10.18174/sesmo.18155

 12

development across research groups and practitioners, which sometimes runs counter to the academic incentive
structure. More broadly, it points to the role of software as a bridge between theory and practice, and the
importance of usability, accessibility and design. We welcome new contributors as we work toward v2.0 and
look forward to maintaining the community and continuing to promote the role of SA in scientific modeling.

Acknowledgements

The authors would additionally like to acknowledge and thank all those who have used SALib and the many who
have contributed to its development over the years. A non-exhaustive list of contributors can be found in:
https://github.com/SALib/SALib/graphs/contributors.

References

Aznar-Siguan, G., & Bresch, D. N. (2019). CLIMADA v1: A global weather and climate risk assessment platform. Geoscientific

Model Development, 12(7), 3085–3097. https://doi.org/10.5194/gmd-12-3085-2019

Baroni, G., & Francke, T. (2020). An effective strategy for combining variance- and distribution-based global sensitivity

analysis. Environmental Modelling & Software, 134, 104851. https://doi.org/10.1016/j.envsoft.2020.104851

Borgonovo, E. (2007). A new uncertainty importance measure. Reliability Engineering & System Safety, 92(6), 771–784.

https://doi.org/10.1016/j.ress.2006.04.015

Bresch, D. N., & Aznar-Siguan, G. (2021). CLIMADA v1.4.1: Towards a globally consistent adaptation options appraisal tool.

Geoscientific Model Development, 14(1), 351–363. https://doi.org/10.5194/gmd-14-351-2021

Campolongo, F., Cariboni, J., & Saltelli, A. (2007). An effective screening design for sensitivity analysis of large models.

Environmental Modelling & Software, 22(10), 1509–1518. https://doi.org/10.1016/j.envsoft.2006.10.004

Conda-Forge Community. (2015). The conda-forge Project: Community-based Software Distribution Built on the conda

Package Format and Ecosystem. https://doi.org/10.5281/ZENODO.4774216

Cukier, R. I., Fortuin, C. M., Shuler, K. E., Petschek, A. G., & Schaibly, J. H. (1973). Study of the sensitivity of coupled reaction

systems to uncertainties in rate coefficients. I Theory. The Journal of Chemical Physics, 59(8), 3873–3878.

https://doi.org/10.1063/1.1680571

Cuntz, M., & Mai, J. (2020). pyeee: Parameter screening using Morris’ method or its extension of Efficient/Sequential

Elementary Effects (2.0) [Computer software]. Zenodo. https://doi.org/10.5281/ZENODO.3897550

Cuntz, M., Mai, J., Zink, M., Thober, S., Kumar, R., Schäfer, D., Schrön, M., Craven, J., Rakovec, O., Spieler, D., Prykhodko, V.,

Dalmasso, G., Musuuza, J., Langenberg, B., Attinger, S., & Samaniego, L. (2015). Computationally inexpensive

identification of noninformative model parameters by sequential screening. Water Resources Research, 51(8), 6417–

6441. https://doi.org/10.1002/2015WR016907

Douglas-Smith, D., Iwanaga, T., Croke, B. F. W., & Jakeman, A. J. (2020). Certain trends in uncertainty and sensitivity analysis:

An overview of software tools and techniques. Environmental Modelling & Software, 124, 104588.

https://doi.org/10.1016/j.envsoft.2019.104588

Downey, A. (2017). Modeling and Simulation in Python. Green Tea Press. https://github.com/AllenDowney/ModSimPy

(Original work published 2016)

Ferretti, F., Saltelli, A., & Tarantola, S. (2016). Trends in sensitivity analysis practice in the last decade. Science of The Total

Environment, 568, 666–670. https://doi.org/10.1016/j.scitotenv.2016.02.133

Fonseca, J., Thomas, D., Mok, R., Mosteiro-Romero, M., Happle, G., Rogenhofer, L., Jack-Hawthorne, Fazel Khayatian,

Zhongming Shi, Riegelbauer, E., Ong, B. L., Orenkiwi, H, T., Paulneitzel, Sulzer, M., Molony, R., Elesawy, A., JOSE

ANTONIO BELLO ACOSTA, Bosova, A., … Strusoftsawen. (2021). architecture-building-systems/CityEnergyAnalyst:

CityEnergyAnalyst v3.22.0 (v3.22.0) [Computer software]. Zenodo. https://doi.org/10.5281/ZENODO.4646225

Foramitti, J. (2021). JoelForamitti/agentpy [Python]. https://github.com/JoelForamitti/agentpy (Original work published

2020)

Foster, I. (1995). Designing and building parallel programs: Concepts and tools for parallel software engineering. Addison-

Wesley.

Hadjimichael, A., Gold, D., Hadka, D., & Reed, P. (2020). Rhodium: Python Library for Many-Objective Robust Decision Making

and Exploratory Modeling. Journal of Open Research Software, 8(1), 12. https://doi.org/10.5334/jors.293

https://github.com/SALib/SALib/graphs/contributors

T. Iwanaga et al. (2022) Socio-Environmental Systems Modelling, 4, 18155, doi:10.18174/sesmo.18155

 13

Hannay, J. E., MacLeod, C., Singer, J., Langtangen, H. P., Pfahl, D., & Wilson, G. (2009). How do scientists develop and use

scientific software? 2009 ICSE Workshop on Software Engineering for Computational Science and Engineering, 1–8.

https://doi.org/10.1109/SECSE.2009.5069155

Herlihy, M., & Shavit, N. (2012). The Art of Multiprocessor Programming. Elsevier Science.

http://www.123library.org/book_details/?id=53644

Herman, J., & Usher, W. (2017, January 10). SALib: An open-source Python library for Sensitivity Analysis. The Journal of Open

Source Software. https://doi.org/10.21105/joss.00097

Hermans, F. (2021). The Programmer’s Brain: What every programmer needs to know about cognition. Manning

Publications.

Iwanaga, T. (2021). ConnectedSystems/SALib-impact: V0.5. Zenodo. https://doi.org/10.5281/zenodo.5523624

Iwanaga, T., Wang, H.-H., Hamilton, S. H., Grimm, V., Koralewski, T. E., Salado, A., Elsawah, S., Razavi, S., Yang, J., Glynn, P.,

Badham, J., Voinov, A., Chen, M., Grant, W. E., Peterson, T. R., Frank, K., Shenk, G., Barton, C. M., Jakeman, A. J., &

Little, J. C. (2021). Socio-technical scales in socio-environmental modeling: Managing a system-of-systems modeling

approach. Environmental Modelling & Software, 104885. https://doi.org/10.1016/j.envsoft.2020.104885

Kelly, D. F. (2007). A Software Chasm: Software Engineering and Scientific Computing. IEEE Software, 24(6), 120–119.

https://doi.org/10.1109/MS.2007.155

Kwakkel, J. H. (2017). The Exploratory Modeling Workbench: An open source toolkit for exploratory modeling, scenario

discovery, and (multi-objective) robust decision making. Environmental Modelling & Software, 96, 239–250.

https://doi.org/10.1016/j.envsoft.2017.06.054

Li, G., Rabitz, H., Yelvington, P. E., Oluwole, O. O., Bacon, F., Kolb, C. E., & Schoendorf, J. (2010). Global Sensitivity Analysis

for Systems with Independent and/or Correlated Inputs. The Journal of Physical Chemistry A, 114(19), 6022–6032.

https://doi.org/10.1021/jp9096919

Little, J. C., Hester, E. T., Elsawah, S., Filz, G. M., Sandu, A., Carey, C. C., Iwanaga, T., & Jakeman, A. J. (2019). A tiered, system-

of-systems modeling framework for resolving complex socio-environmental policy issues. Environmental Modelling

& Software, 112, 82–94. https://doi.org/10.1016/j.envsoft.2018.11.011

Marelli, S., & Sudret, B. (2014). UQLab: A Framework for Uncertainty Quantification in Matlab. Vulnerability, Uncertainty,

and Risk, 2554–2563. https://doi.org/10.1061/9780784413609.257

McKerns, M. M., Strand, L., Sullivan, T., Fang, A., & Aivazis, M. A. G. (2012). Building a Framework for Predictive Science.

ArXiv:1202.1056 [Cs]. http://arxiv.org/abs/1202.1056

Morris, M. D. (1991). Factorial Sampling Plans for Preliminary Computational Experiments. Technometrics, 33(2), 161–174.

https://doi.org/10.1080/00401706.1991.10484804

Niet, T., Shivakumar, A., Gardumi, F., Usher, W., Williams, E., & Howells, M. (2021). Developing a community of practice

around an open source energy modelling tool. Energy Strategy Reviews, 35, 100650.

https://doi.org/10.1016/j.esr.2021.100650

Niyazov, Y., Vogel, C., Price, R., Lund, B., Judd, D., Akil, A., Mortonson, M., Schwartzman, J., & Shron, M. (2016). Open Access

Meets Discoverability: Citations to Articles Posted to Academia.edu. PLOS ONE, 11(2), e0148257.

https://doi.org/10.1371/journal.pone.0148257

Noacco, V., Sarrazin, F., Pianosi, F., & Wagener, T. (2019). Matlab/R workflows to assess critical choices in Global Sensitivity

Analysis using the SAFE toolbox. MethodsX, 6, 2258–2280. https://doi.org/10.1016/j.mex.2019.09.033

Paleari, L., & Confalonieri, R. (2016). Sensitivity analysis of a sensitivity analysis: We are likely overlooking the impact of

distributional assumptions. Ecological Modelling, 340, 57–63. https://doi.org/10.1016/j.ecolmodel.2016.09.008

Pianosi, F., Beven, K., Freer, J., Hall, J. W., Rougier, J., Stephenson, D. B., & Wagener, T. (2016). Sensitivity analysis of

environmental models: A systematic review with practical workflow. Environmental Modelling & Software, 79, 214–

232. https://doi.org/10.1016/j.envsoft.2016.02.008

Pianosi, F., Sarrazin, F., & Wagener, T. (2020). How successfully is open-source research software adopted? Results and

implications of surveying the users of a sensitivity analysis toolbox. Environmental Modelling & Software, 124,

104579. https://doi.org/10.1016/j.envsoft.2019.104579

Pianosi, F., & Wagener, T. (2015). A simple and efficient method for global sensitivity analysis based on cumulative

distribution functions. Environmental Modelling & Software, 67, 1–11.

https://doi.org/10.1016/j.envsoft.2015.01.004

Pianosi, F., & Wagener, T. (2018). Distribution-based sensitivity analysis from a generic input-output sample. Environmental

Modelling & Software, 108, 197–207. https://doi.org/10.1016/j.envsoft.2018.07.019

T. Iwanaga et al. (2022) Socio-Environmental Systems Modelling, 4, 18155, doi:10.18174/sesmo.18155

 14

Plischke, E. (2010). An effective algorithm for computing global sensitivity indices (EASI). Reliability Engineering & System

Safety, 95(4), 354–360. https://doi.org/10.1016/j.ress.2009.11.005

Plischke, E., Borgonovo, E., & Smith, C. L. (2013). Global sensitivity measures from given data. European Journal of

Operational Research, 226(3), 536–550. https://doi.org/10.1016/j.ejor.2012.11.047

Puy, A., Piano, S. L., Saltelli, A., & Levin, S. A. (2021). sensobol: An R package to compute variance-based sensitivity indices.

ArXiv Preprint ArXiv:2101.10103. https://arxiv.org/abs/2101.10103

Rabitz, H., Aliş, Ö. F., Shorter, J., & Shim, K. (1999). Efficient input—Output model representations. Computer Physics

Communications, 117(1), 11–20. https://doi.org/10.1016/S0010-4655(98)00152-0

Razavi, S., & Gupta, H. V. (2015). What do we mean by sensitivity analysis? The need for comprehensive characterization of

“global” sensitivity in Earth and Environmental systems models. Water Resources Research, 51(5), 3070–3092.

https://doi.org/10.1002/2014WR016527

Razavi, S., Jakeman, A. J., Saltelli, A., Prieur, C., Iooss, B., Borgonovo, E., Plischke, E., Lo Piano, S., Iwanaga, T., Becker, W.,

Tarantola, S., Guillaume, J. H. A., Jakeman, J., Gupta, H., Melillo, N., Rabitti, G., Chabridon, V., Duan, Q., Sun, X., …

Maier, H. R. (2021). The Future of Sensitivity Analysis: An Essential Discipline for Systems Modeling and Policy

Support. Environmental Modelling & Software, 137, 104954. https://doi.org/10.1016/j.envsoft.2020.104954

Razavi, S., Sheikholeslami, R., Gupta, H. V., & Haghnegahdar, A. (2019). VARS-TOOL: A toolbox for comprehensive, efficient,

and robust sensitivity and uncertainty analysis. Environmental Modelling & Software, 112, 95–107.

https://doi.org/10.1016/j.envsoft.2018.10.005

Ruano, M. V., Ribes, J., Seco, A., & Ferrer, J. (2012). An improved sampling strategy based on trajectory design for application

of the Morris method to systems with many input factors. Environmental Modelling & Software, 37, 103–109.

https://doi.org/10.1016/j.envsoft.2012.03.008

Saltelli, A. (2002). Making best use of model evaluations to compute sensitivity indices. Computer Physics Communications,

145, 280–297. https://doi.org/10.1016/S0010-4655(02)00280-1

Saltelli, A., Aleksankina, K., Becker, W., Fennell, P., Ferretti, F., Holst, N., Li, S., & Wu, Q. (2019). Why So Many Published

Sensitivity Analyses Are False: A Systematic Review of Sensitivity Analysis Practices. Environmental Modelling &

Software, 114, 29–39.

Saltelli, A., & Annoni, P. (2010). How to avoid a perfunctory sensitivity analysis. Environmental Modelling and Software,

25(12), 1508–1517. https://doi.org/10.1016/j.envsoft.2010.04.012

Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., & Tarantola, S. (2010). Variance based sensitivity analysis of model

output. Design and estimator for the total sensitivity index. Computer Physics Communications, 181(2), 259–270.

https://doi.org/10.1016/j.cpc.2009.09.018

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., & Tarantola, S. (2008). Global Sensitivity

Analysis: The Primer. Wiley. https://dx.doi.org/10.1002/9780470725184

Saltelli, A., Tarantola, S., & Chan, K. P.-S. (1999). A Quantitative Model-Independent Method for Global Sensitivity Analysis

of Model Output. Technometrics, 41(1), 39–56. https://doi.org/10.1080/00401706.1999.10485594

Sheikholeslami, R., Gharari, S., Papalexiou, S. M., & Clark, M. P. (2021). VISCOUS: A Variance-Based Sensitivity Analysis Using

Copulas for Efficient Identification of Dominant Hydrological Processes. Water Resources Research, 57(7),

e2020WR028435. https://doi.org/10.1029/2020WR028435

Sobol′, I. M. (2001). Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates.

Mathematics and Computers in Simulation, 55(1–3), 271–280. https://doi.org/10.1016/S0378-4754(00)00270-6

Sobol’, I. M., & Kucherenko, S. (2010). Derivative based global sensitivity measures. Procedia - Social and Behavioral Sciences,

2(6), 7745–7746. https://doi.org/10.1016/j.sbspro.2010.05.208

Steiner, M., Bourinet, J.-M., & Lahmer, T. (2019). An adaptive sampling method for global sensitivity analysis based on least-

squares support vector regression. Reliability Engineering & System Safety, 183, 323–340.

https://doi.org/10.1016/j.ress.2018.11.015

Sweller, J. (1988). Cognitive Load During Problem Solving: Effects on Learning. Cognitive Science, 12(2), 257–285.

https://doi.org/10.1207/s15516709cog1202_4

Tarantola, S., Gatelli, D., & Mara, T. A. (2006). Random balance designs for the estimation of first order global sensitivity

indices. Reliability Engineering & System Safety, 91(6), 717–727. https://doi.org/10.1016/j.ress.2005.06.003

Teplitskiy, M., Lu, G., & Duede, E. (2017). Amplifying the impact of open access: Wikipedia and the diffusion of science.

Journal of the Association for Information Science and Technology, 68(9), 2116–2127.

https://doi.org/10.1002/asi.23687

T. Iwanaga et al. (2022) Socio-Environmental Systems Modelling, 4, 18155, doi:10.18174/sesmo.18155

 15

Tissot, J.-Y., & Prieur, C. (2012). Bias correction for the estimation of sensitivity indices based on random balance designs.

Reliability Engineering & System Safety, 107, 205–213. https://doi.org/10.1016/j.ress.2012.06.010

Wagener, T., & Pianosi, F. (2019). What has Global Sensitivity Analysis ever done for us? A systematic review to support

scientific advancement and to inform policy-making in earth system modelling. Earth-Science Reviews, 194, 1–18.

https://doi.org/10.1016/j.earscirev.2019.04.006

Wilson, G. (2006). Software Carpentry: Getting Scientists to Write Better Code by Making Them More Productive. Computing

in Science Engineering, 8(6), 66–69. https://doi.org/10.1109/MCSE.2006.122

