Lamboni, M. (2023) Socio-Environmental Systems Modelling, 5, 18566, doi:10.18174/sesmo0.18566

Supplementary Material

Kernel-based sensitivity indices for any model behavior and
screening

A: Proof of Proposition 1

Knowing that the density of X is given by p(x) = c(F1 (x1), -, Fy (xd))]'[?zlpj(xj), we can write
thanks to Equation (3)

P" () = e S0, s Fa ) Tz ().

B: Proof of Theorem 1

The following proof is simpler than the general one provided in Lamboni (2023). Since p% (x) =
We (x)

By we(V)] H}izlpj(x]-) (see Proposition 1), the density of X%, | XY becomes

We(Xi! X~q)
]EFind [We(xn/‘Y~u)]

P Xy | XY) = Mjecw pi(x),

and we can write (bearing in mind (~ w) = (73, ..., 7))

we(xy,Y.,)
Pl | ) == B, g l_[ ) ()|

Fing [We (Xu ) Y~u)

d
=Ft (U,,j) with U,Tj ~ U(0,1) and using the theorem of transfer, we have

Knowing that X, ’

-1 - Il
130 =y | ) i )1_[ o) (55 (0)|

]EF d[We(Xu' ~u)]

with U,: = (U,,].,j =1,.., |n|) U0, As F j is strictly increasing, we have

- 7|
" W We (XLV: Fnll( ) 7T|7-[| 7T|n-| ) i
F~u|u(x~u | Xu) = ]EUT,; l_[ ]1[0 Fn— xn 77'-])

]EF,M [We (Xu 4 ~u)]

Fn'l(xTE1) F7T|n|(xn|n|) We (Xg: FTL'_11 (vﬂ.'l)' e 7T_|1r| TL'|7-[| > IT[I
= f f 1_[ dvﬂ]
0 0

]EF,,,d [We (Xu ’ ~u)

Now, if we use V;: = (Vnk ~ ‘U(O,unk), k=1,.., |7r|) for a random vector of independent variables and
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U We Xu: 7T11(U7T1) ”l"’-’| i ) -
Wty = [ [ l—[ o

IEF,,,d [we (Xu Y]

B, [w, (xy,F,;f( e mm(ﬂlm))]ﬁ w

- IEand [we (¥, Y-.)] =1

then W is a CDF of a random vector having (0,1)%~"l as the support, and we have

FY &, 1x))=W (F,,1 (xnl), ""F7T|1r| (xnlm) ; xﬁ).

C: Proof of Lemma 1

Since Xl"f,Xl"f’ arei.i.d.and ©® = {6,}, we can write thanks to Proposition 2
E|f(Yy r(Yy, U))w.(Y
fu o(xy) _ IEU[f(X,Vf,r(X,Vf.U))] _ [f( H;;[(W (Y))])W ( )]
IEY [f(Yw T(Yu' U))We (Y)]]
E[w. (V)]

=Ey [f(Xz‘”{.r(XW. w) -
= Ey[f” (X, U)].

Using the convexity of ¢ and the definition of the kernel, the Jensen inequality yields

E [k (£ &, 1l (x2)] < B[k (£rorexw, v, £t (xe', 07) )|
Now, we are going to show that the total index is less than one. Let us consider the Dirac probability measure
6y(U"): = 6,(U" — U) and the zero-mean expression of the outputs £,F (X}/,U) = E [f(XI"f,r(Xﬁ, U)) —

Ey|f (Yur (Y, U") we (V)]
E[we(Y)]

| U, Xﬁ] . We can then write

- E [E[f(X,‘f,r(X,‘f,U))—EY[f (Y“g[g"ég]))%m] |U,x3] | au(U’),U,xg]
- E [E[f(X,‘f,r(X,‘f,U))—EY[f (Y“g[g"ég]))%m] |5U(U'),U,xz] | U,xg]
- f(xg,r(xy,U))—EY[f (Y”[’Er[‘(:”(’Ylg)We(Y)] | U,xy] = flot(XY, ),

bearing in mind the formal definition of conditional expectation. The second result holds by applying the
conditional Jensen inequality.

For the upper bound of the total index, knowing that f; (X,"j,Xﬁ’, U) = F(X¥,r(X¥,U)) —
f (xr{’,r(x U)) we can write f,l°' (X%, U) = E,w [f,;(xg,xy{', U)], and the result follows.
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D: Proof of Theorem 2

First, the consistency of the estimators holds by applying the Slutsky theorem bearing in mind the Taylor
expansion, that is,

k <f;\o (Yi,u)'f:o (Yi’.u)> =k (fu O(Yi,u)'fu O(Yi’,u))
AL (¥ = £ (%)
ufo (Yi’,u) - fufo (Yi,,u)

P
with R;,, — 0 when m; — . We obtain the results by applying the law of large numbers Second, the central
limit theorem ensures that

+Vk (1700, £ (8)) + Ronys

i=1

1w [ _ )
\/ﬁ (%Z k <fu O(Yi,u);fu O(Yi,,u)) w, (Yi)We (YL.’) — le) 5 N(O, O_Jo)'

with Df = E [k (£ (V). £/ () ) we (Dwe (Y1),

Third, the asymptotic distributions are straightforward using the Slutsky theorem under the technical
assumption m/M — 0, my /M — 0 (see Lamboni (2020b, 2019) for more details).

E: Derivation of SFs used in Section 5.1

Using the model output and the dependency models, we can write
ey =2 - ElZ,] - E[Zs(1 - Z,)]) — E[(X)?2](A — E[Z,] — E[Z5(1 — Z,)])
= [(X1)? = E[(X}")?]] (1 — E[Z,] - E[Z3(1 = Z)])
1
= [(X1)? —¢/5]1(1 - 1/4 - 1/3(1 - 1/D)]) = 3 [(X1)? = ¢/5];
flNXY, 2y, Z5) = [(XP)2 = E[(X)2)(1 = Z, — Z5(1 = Z,)) = (1) = ¢/51(1 = Z, — Z;(1 - Z3)).
We also have

XY, Z3,Z3) = fF(XY) — /10 —c/4 —c/4 = (X)) (1 — Z, — Z3(1 — Z3)) + cZ, + cZ5(1 — Z,) — gc.

o XY 2, 25) = [0 = ()| (1 = 2, - 2,01 - 2,)).



