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Abstract 
Complex models are often used to understand interactions and drivers of human-induced and/or natural 
phenomena. It is worth identifying the input variables that drive the model output(s) in a given domain and/or 
govern specific model behaviors such as contextual indicators based on socioenvironmental models. Using the 
theory of multivariate weighted distributions to characterize specific model behaviors, we propose new measures 
of association between inputs and such behaviors. Our measures rely on sensitivity functionals (SFs) and kernel 
methods, including variance-based sensitivity analysis. The proposed ℓ1-based kernel indices account for 
interactions among inputs, higher-order moments of SFs, and their upper bounds are somehow equivalent to the 
Morris-type screening measures, including dependent elementary effects. Empirical kernel-based indices are 
derived, including their statistical properties for the computational issues, and numerical results are provided. 
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1.  Introduction 

Complex models or computer codes such as socio-environmental models (SEMs) are increasingly being 
developed and used to understand interactions and drivers that affect human well-being and the sustainability 
of the environment. Such information are used to support decision making for a wide range of problems and 
issues where the context may depend on the scales of the problem and the issues at stake. SEMs can be very 
complex and non-linear, and uncertainty arises in many guises, such as in the representation of the system of 
interest and in the data available to study them. Sensitivity analysis (SA) is a valuable tool to quantify the strength 
of the various un-controllable (like climate and other exogenous factors) and controllable (like policy and 
management levers) drivers on contextual indicators of well-being and sustainability (Elsawah et al., 2020). 
 
Contextual indicators of well-being and sustainability often represent specific system behaviors. Conceptually, 
specific model behaviors are transformations of complex models or systems. Specific model behaviors 
encountered in the literature are mainly twofold regarding their impacts on the initial distribution of the model 
inputs. Firstly, the class of objective functions (e.g., Saltelli & Tarantola, 2002; Saltelli et al., 2004) consists of all 
transformations of the model outputs that do not modify the initial distribution of the model inputs. It includes 
transformations done by i) projecting the model outputs onto a given basis (Campbell et al., 2006; Lamboni et 
al., 2011; Xiao et al., 2018), using the kernel-based principal components, using feature maps of the outputs 
(Aronszajn, 1950; Schölkopf & Smola, 2002; Berlinet et al., 2004); ii) considering the probabilities of the 
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stochastic and dynamic outputs to exceed a given threshold (Lamboni et al., 2014), iii) using a regression-based 
classifier (Lamboni et al., 2016), and iv) considering the membership functions from either a crisp (a.k.a binary) 
or fuzzy clustering (Roux et al., 2021). 
 
Secondly, we distinguish transformations that alter the initial distribution of the inputs such as considering the 
outputs values within a given cluster; constrained outputs or inputs; factor mapping (Spear & Hornberger, 1980; 
Rose et al., 1991; Saltelli et al., 2008; Lamboni et al., 2014) or excursion sets (Chevalier et al., 2013; French & 
Sain, 2013; Fossum et al., 2020), that is, the input values leading to a response to exceed a given threshold; 
considering the model output values with different chances of being included in the analysis of interest. For 
instance, membership functions (MFs) from a crisp clustering is equal to one for the output values that comply 
with the model behavior of interest and zero otherwise, while those from a fuzzy clustering give mainly non-
negative values to the output values according to the way that such values meet a criterion of interest. We can 
see that the crisp clustering MFs will lead to consider only a subset of the output values such as the sustainability, 
safety or criticality. 
 
Performing global SA (e.g., Sobol, 1993; Borgonovo et al., 2014; Owen, 2014; Gamboa et al., 2014; Mara et al., 
2015; Lamboni & Kucherenko, 2021; Fort et al., 2021) on MFs allows for identifying the input variables that drive 
the model output(s) into a given domain of interest or a specific model behavior (Lamboni et al., 2014; Roux et 
al., 2021). However, such analysis does not provide the drivers of specific model behaviors. Moreover, 
considering contextual indicators of well-being and sustainability for decision supporting may implicitly 
introduce new dependency structures among the factors and levers, and new interactions among such inputs. 
It may lead to rare events, where outputs do not follow the Gaussian distribution. The recent dependent 
multivariate SA (dMSA, Lamboni & Kucherenko, 2021; Lamboni, 2021) requires the distribution of the model 
inputs that complies with the model behavior of interest (i.e., the target inputs distribution) for performing SA. 
Since dMSA is well-suited for Gaussian distributed sensitivity functionals (SFs), it may be insufficient for exploring 
contextual indicators in presence of higher-order moments of SFs. 
 
Our paper presents an approach that helps addressing such modeling issues in that it develops new and generic 
measures of association between specific model behaviors and the drivers or inputs of such models. Our 
approach accounts for i) dependencies among input factors and levers, ii) interactions among the input factors 
and levers even for non-independent factors, and iii) higher-order moments of SFs. The proposed measures rely 
on kernel methods (Aronszajn, 1950; Berlinet et al., 2004) and the theory of multivariate weighted distributions 
(Fisher, 1934; Rao, 1965; Patil & Rao, 1978; Mahfoud & Patil, 1982; Jain & Nanda, 1995; Navarro et al., 2006; 
Arnold et al., 2017). The well-known variance-based SA (Sobol, 1993; Saltelli et al., 2008; Borgonovo et al., 2014) 
and multivariate SA (Lamboni, 2019; Lamboni & Kucherenko, 2021), which account for only the second-order 
moments of SFs, are particular cases of our new measures. We also extend the Morris screening method (Morris, 
1991). 
 
The paper is organized as follows: after characterizing the model behavior of interest by i) identifying the 
appropriate weight function or the multivariate weighted distribution, and ii) deriving the cumulative 
distribution function (CDF) of the target inputs and its dependency model in Section 2, we introduce the new 
measures of association between the target inputs and the model outputs in Section 3. We then provide the 
first-order and total kernel-based indices with the former index less than the latter. We also introduce a new 
upper bound of the total index. For the ℓ1-based kernel, the associated upper bound of the total index is 
equivalent to the Morris-type screening measures, including the dependent elementary effects (Morris, 1991; 
Lamboni & Kucherenko, 2021). Empirical kernel-based indices and their properties are provided in Section 4. 
Section 5 provides illustrations for some model behaviors of interest such as the critical domain and cluster of 
the output values, and Section 6 concludes this work. 
 

General notation 

For 𝑑 ∈ ℕ ∖ {0}, let X ∶= (𝑋1, … , 𝑋𝑑) be a random vector having 𝐹 as the joint CDF and 𝐹𝑗 , 𝑗 = 1,… , 𝑑 as 

marginals. We use 𝐹𝑗
−1 for the inverse of 𝐹𝑗, and 𝑌 =

𝑑
𝑍 when 𝑌, 𝑍 have the same CDF. For a non-empty subset 

𝑢 ⊆ {1,… , 𝑑}, we use |𝑢| for its cardinality (i.e., the number of elements in 𝑢) and (∼ 𝑢) ∶= {1, … , 𝑑} ∖ 𝑢. For a 

given 𝑢, we use 𝐗𝑢 ∶= (𝑋𝑗 , ∀𝑗 ∈ 𝑢) for a subset of inputs; 𝐗∼𝑢 ∶= (𝑋𝑗 , ∀𝑗 ∈ (∼ 𝑢))  and we have the partition 

𝐗 = (𝐗𝑢 , 𝐗∼𝑢). 
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We use ∥⋅∥𝑝  for the 𝑝-norm on ℝ𝑛, 𝔼(⋅) for the expectation, 𝕍(⋅) for the variance, →
𝐷

 and →
𝑃

 for the convergence 

in distribution and in probability, respectively. 
 

2. Target inputs and outputs distribution 

This section aims at identifying the weight functions for some specific model behaviors and determining the 
distribution of the target inputs, that is the distribution of the inputs that complies with the model behaviors of 
interest. 

2.1 Weight functions for some target outputs 

2.1.1 Case of multivariate response models 

For a vector-valued function 𝑓:ℝ𝑑 → ℝ𝑛, the inputs 𝐗 have 𝐹 as the initial CDF (i.e., 𝐗 ∼ 𝐹), 𝜌 as the density, 
and 𝑓(𝐗) is the initial model outputs. It is clear that the outputs distribution is determined by the inputs 
distribution. 
 
Namely, for a given domain of interest 𝐷, let us consider the outputs of interest (called the target outputs) given 

by {
𝑓(𝐗), 𝐗 ∼ 𝐹

 s.t.  𝑓(𝐗) ∈ 𝐷 
. When the set {x ∈ ℝ𝑑: 𝑓(x) ∈ 𝐷} is not empty, there exists a CDF (i.e., 𝐹𝑤) of the target 

inputs such that (see Lamboni, 2022a) 

{
 𝑓(𝐗)  with 𝐗 ∼ 𝐹

 s.t.  𝑓(𝐗) ∈ 𝐷
  =
  𝑑

𝑓(𝐗𝑤),   with 𝐗𝑤 ∼ 𝐹𝑤 . (1) 

By considering the weight function 𝑤(x) = 𝟙𝐷(𝑓(x)) with 𝟙𝐷(x) the indicator function, we can see that the 
density function (i.e., 𝜌𝑤) of 𝐗𝑤  given by 

𝜌𝑤(𝐱) ∝ 𝑤(𝐱)𝜌(𝐱) , (2) 

allows for characterizing the associated target outputs or the behavior of interest. Such weight function is 
identical to the crisp or binary clustering of the initial model outputs. For any classifier 𝑐 ∶ ℝ𝑛 → ℝ𝑝  with 𝑝 ∈
ℕ ∖ {0}, we can extend the above weight function as follows: 

𝑤1(𝐱) ∶= 𝟙𝐷(c ∘ f(𝐱)) , 

where 𝑐 ∘ 𝑓 stands for the composition of 𝑐 by 𝑓. Thus, we can cover many clustering approaches (such as PCA, 
the kernel methods, random forest and logistic regression) by choosing the classifier 𝑐. To work with continuous 
weight functions, 𝟙𝐷  can be replaced with smooth functions such as the logistic function, and this leads to the 
second kind of weight functions, that is, 

𝑤2(x) ∶= 𝑚(𝑐 ∘ 𝑓(x)), with 𝑚 ∶ ℝ𝑝 → ℝ+ . 

The membership functions from a fuzzy clustering (Bezdek et al., 1984; Höppner et al., 1999) are particular cases 
of 𝑤2. The general expression of a weight function is given as follows: 

𝑤3(𝐱): = 𝑚(𝑐 ∘ 𝑓(𝐱))𝟙𝐷 (𝑚2(𝑐2 ∘ 𝑓(𝐱))) , 

where 𝑐2 : ℝ
𝑛 → ℝ𝑝  and 𝑚2 ∶ ℝ𝑝 → ℝ+ are given functions. The weight function 𝑤3  can still be used for 

constraining, restricting and modifying directly the distribution of the initial inputs by taking 𝑐 ∘ 𝑓 and 𝑐2 ∘ 𝑓 as 
identity functions, that is, 𝑐 ∘ 𝑓(x) = x. These types of weight functions directly or indirectly affect the initial 
distribution of the model inputs as well as the initial outputs distribution because the target inputs distribution 
𝐹𝑤  induced the target outputs distribution and vice versa for deterministic functions or models. We then include 
them in a wide class of the outputs distributions of interest called the target outputs distributions. 
 
Since the weight functions guide the initial model outputs toward the behavior of interest, performing SA using 
the weight functions helps identifying the input variables that drive the initial outputs toward the target outputs 
defined by such weight functions (see e.g. Lamboni et al. (2014); Roux et al. (2021) for independent initial 
inputs). Such works can be extended to cope with weight functions including dependent and/or correlated input 
variables by using the dependent SA introduced in Lamboni & Kucherenko (2021) and Lamboni (2021). 
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2.1.2 Extension to multivariate and functional outputs 

Consider Θ ⊆ ℝ and a function 𝑓 ∶ ℝ𝑑 × Θ → ℝ𝑛  given by 𝑓(𝐗, 𝜃) ∈ ℝ𝑛  with 𝜃 ∈ Θ. The function 𝑓 represents 
the multivariate and functional response model, including dynamic models. When Θ = {𝜃0}, it becomes a 
vector-valued function. For such functions, one may consider the following weight functions 

𝑤5(x) ∶= 𝐿Θ(𝑐 ∘ 𝑓(x, 𝜃), 𝛽)𝟙𝐷(𝑚2(𝑐2 ∘ 𝑓(x), 𝜃), ∀𝜃 ∈ Θ), 

with 𝐿Θ a desirability measure over all 𝜃 ∈ Θ such as a loss function and 𝛽 some thresholds (see Lamboni et al. 
(2014) for more details). 

2.2 Distribution of the target inputs 

This section deals with the distribution and conditional distributions of continuous variables following 
multivariate weighted distributions such as the target inputs. 
 
In the theory of multivariate weighted distributions (Fisher, 1934; Rao, 1965; Patil & Rao, 1978; Mahfoud & Patil, 
1982; Jain & Nanda, 1995; Navarro et al., 2006; Arnold et al., 2017), the density function of 𝑿𝑤  (i.e., 𝜌𝑤) given 
by Equation (2) is known as the weighted density associated with the initial density 𝜌 and the weight function 
𝑤. The weight function aims at altering the density of the initial inputs by assigning unequal chances to the initial 
observations of being included in the posterior analysis. The formal definition of weight functions and the 
weighted probability density function (PDF) are given below. We use 𝔼𝐹  for the expectation taking w.r.t.  𝐹 and 

x ∈ ℝ𝑑. 
 

Definition 1   (Fisher, 1934; Rao, 1965; Patil & Rao, 1978) 

Let w:ℝd → ℝ+ be a non-negative function. 

(i) When 𝔼𝐹[𝑤(𝑿)] < ∞, then 𝑤 is a weight function. 

(ii) The weighted density (i.e., 𝜌𝑤) associated with 𝑤 and 𝜌 is given by 

ρw(𝐱) ≔
w(𝐱)

𝔼F[w(𝐗)]
ρ(𝐱) . (3) 

(iii) The random vector 𝐗w  having ρw  as PDF and 𝐹𝑤  as CDF (i.e., 𝐗w ∼ Fw) is called the weighted 
random vector. 

 
The marginal PDF of 𝐗𝑢

𝑤
 and the PDF of 𝐗∼𝑢

𝑤  conditional on 𝐗𝑢
𝑤 (i.e., 𝐗∼𝑢

𝑤 ∣ 𝐗𝑢
𝑤 ) are given by 

(Mahfoud & Patil, 1982; Kocherlakota, 1995; Jain & Nanda, 1995; Navarro et al., 2006) 

𝜌𝑢
𝑤(𝐱𝑢) ∶=

𝔼𝐹∼𝑢∣𝑢
[𝑤(𝐱𝑢, 𝐗∼𝑢)]

𝔼𝐹[𝑤(𝐗)]
𝜌𝑢(𝐱𝑢) ; (4) 

 

𝜌∼𝑢∣𝑢
𝑤 (𝐱∼𝑢 ∣ 𝐱𝑢) ∶=

𝑤(𝐱)

𝔼𝐹∼𝑢∣𝑢
[𝑤(𝐱𝑢, 𝐗∼𝑢)]

𝜌∼𝑢∣𝑢(𝐱∼𝑢 ∣ 𝐱𝑢) , (5) 

where 𝐹𝑢  (resp. 𝐹∼𝑢∣𝑢) denotes the CDF of 𝐗𝑢 (resp. 𝐗∼𝑢 ∣ 𝐗𝑢), and 𝜌𝑢  (resp. 𝜌∼𝑢∣𝑢) denotes the PDF of 𝐗𝑢  (resp. 
𝐗∼𝑢 ∣ 𝐗𝑢). Likewise, we are going to use 𝐹𝑢

𝑤 (resp. 𝐹∼𝑢∣𝑢
𝑤 ) for the distribution of 𝐗𝑢

𝑤 (resp. 𝐗∼𝑢
𝑤 ∣ 𝐗𝑢

𝑤). 

 

In what follows, we use 𝐹ind ∶= ∏𝑗=1
𝑑  𝐹𝑗  and 𝐹ind (x) ∶= ∏𝑗=1

𝑑  𝐹𝑗(𝑥𝑗). For independent initial variables, it is clear 

that 𝐹 = 𝐹ind  or 𝜌 = ∏𝑗=1
𝑑  𝜌𝑗  with 𝜌𝑗  the PDF of 𝑋𝑗. Thus, 𝐹𝑖𝑛𝑑

𝑤   denotes the weighted distribution associated 

with 𝐹ind  and 𝑤. 
 
Remark 1   When 𝐹 = 𝐹ind , we have 

𝜌𝑤(𝐱) ∶=
𝑤(𝐱)

𝔼𝐹[𝑤(𝐗)]
∏  

𝑑

𝑗=1

 𝜌𝑗(𝑥𝑗);     𝜌𝑢
𝑤(𝐱𝑢) =

𝔼𝐹∼𝑢
[𝑤(𝐱𝑢, 𝐗∼𝑢)]

𝔼𝐹[𝑤(𝐗)]
∏  

𝑗∈𝑢

 𝜌𝑗(𝑥𝑗);

𝜌∼𝑢∣𝑢
𝑤 (𝐱∼𝑢 ∣ 𝐱𝑢) =

𝑤(𝐱)

𝔼𝐹∼𝑢
[𝑤(𝐱𝑢, 𝐗∼𝑢)]

∏  

𝑗∈{1,…,𝑑}∖𝑢

 𝜌𝑗(𝑥𝑗).
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Since the expressions of the marginal and conditional PDFs in Remark 1 are much easier to work with, it is worth 
expressing any weighted random vector 𝐗𝑤  as the random vector associated with 𝐘 ∼ 𝐹ind  and a new weight 

function (i.e., 𝑤𝑒) (see Proposition 1). To that end, we use 𝐶: [0,1]𝑑 → [0,1]  for the copula of the initial inputs 

𝐗, that is, 𝐹(x) = 𝐶(𝐹1(𝑥1), … , 𝐹𝑑(𝑥𝑑)) (Sklar, 1959; Nelsen, 2006; Joe, 2014). 

 
Proposition 1   Let 𝒀 ∼ 𝐹ind  and assume that the copula 𝐶 has 𝑐(⋅) as the joint PDF. Then, the PDF of 𝑿𝑤 is given 
by 

𝜌𝑤(𝐱) =
𝑤𝑒(𝐱)

𝔼𝐹ind 
[𝑤𝑒(𝐘)]

∏  

𝑑

𝑗=1

𝜌𝑗(𝑥𝑗);     𝑤𝑒(𝐱) ∶= 𝑤(𝐱)𝑐(𝐹1(𝑥1), … , 𝐹𝑑(𝑥𝑑)) . 

 
Proof   See Supplementary Material A. 
 
It comes out from Proposition 1 that the copula-based expressions of the PDF of X allow for writing 

• 𝐹 = 𝐹ind 
𝑐  to say that the initial distribution 𝐹 is an adjustment of the distribution 𝐹ind  using the weight 

function 𝑐; 

• 𝐹𝑤 = 𝐹𝑖𝑛𝑑
𝑤𝑒  to say 𝐹𝑤  is the weighted distribution associated with 𝐹ind  and 𝑤𝑒. 

To deduce the CDF of the random vector 𝐗𝑤 ∼ 𝐹𝑤 = 𝐹𝑖𝑛𝑑
𝑤𝑒 , including its copula (see Theorem 1), we use 𝝅 ∶=

(𝜋1, … , 𝜋|𝜋|) for an arbitrary permutation of (∼ 𝑢) ∶= {1, … , 𝑑} ∖ 𝑢 with the cardinality |𝝅| = 𝑑 − |𝑢|. We also 

use 𝐮𝜋 ∶= (𝑢𝜋1
, … , 𝑢𝜋|𝜋|

) ∈ [0,1]𝑑−|𝑢|; 𝐕𝜋 ∶= (𝑉𝜋𝑘
∼ 𝒰(0, 𝑢𝜋𝑘

), 𝑘 = 1,… , |𝝅|) for a random vector of 

independent variables. 
 

Theorem 1   Consider the random vector 𝐗𝑤 ∼ 𝐹𝑤 = 𝐹ind 
𝑤𝑒  and 𝐘 ∼ 𝐹ind . Assume that 𝐗𝑤  and 𝐘 are continuous 

random vectors. Then, there exist a CDF 𝑊(⋅; 𝐱𝑢
𝑤): [0,1]𝑑−|𝑢| → [0,1]  given by 

𝑊(𝐮|𝜋|; 𝐱𝑢
𝑤) =

𝔼𝐕𝜋
[𝑤𝑒 (𝐱𝑢

𝑤 , 𝐹𝜋1
−1(𝑉𝜋1

), … , 𝐹𝜋|𝜋|
−1 (𝑉𝜋|𝜋|

))]

𝔼𝐹𝑖𝑛𝑑
[𝑤𝑒(𝐱𝑢

𝑤 , 𝐘∼𝑢)]
∏  

𝑑−|𝑢|

𝑗=1

𝑢𝜋𝑗
 , (6) 

such that 

𝐹∼𝑢∣𝑢
𝑤 (𝐱∼𝑢 ∣ 𝐱𝑢

𝑤) = 𝑊 (𝐹𝜋1
(𝑥𝜋1

), … , 𝐹𝜋|𝜋|
(𝑥𝜋|𝜋|

) ; 𝐱𝑢
𝑤) . (7) 

 
Proof   See Supplementary Material B. 
 

It is worth noting that 𝑊(⋅; x𝑢
𝑤) is a CDF of a random vector having (0,1)𝑑−|𝑢| as the joint support, and it involves 

only the weight function and the marginal CDFs of 𝐗. When 𝑢 = ∅, we obtain the following expressions of 𝑊: 

𝑊(𝑢1, … , 𝑢𝑑) =
𝔼𝐕[𝑤𝑒(𝐹1

−1(𝑉1), … , 𝐹𝑑
−1(𝑉𝑑))]

𝔼𝐹ind 
[𝑤𝑒(𝐘)]

∏  

𝑑

𝑘=1

𝑢𝑘, (8) 

and 

𝐹𝑤(x) = 𝑊(𝐹1(𝑥1), … , 𝐹𝑑(𝑥𝑑)) (9) 

 
Equations (6)-(9) are useful for sampling random values of  𝐗∼𝑢

𝑤 ∣ 𝐗𝑢
𝑤 and 𝐗𝑤, and for deriving the dependency 

models of 𝐗𝑤. 
 

3. Effects of the target inputs on the target outputs 

Since introducing weight functions in our analysis often leads to dependent target inputs, and the target inputs 
can lead to rare events, this section aims at proposing and studying kernel-based sensitivity indices for 
identifying the input variables that govern the target outputs. 
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3.1 Sensitivity functionals based on weight functions 

Sensitivity functionals (SFs) contain the primary information about the contribution of the model inputs (see 
Lamboni (2016, 2020b, 2020a, 2019, 2022b) for independent input variables, and Lamboni & Kucherenko (2021) 
and Lamboni (2021) for dependent and/or correlated input variables). The first-order SF allows for quantifying 
the single contribution of the inputs, while the total SF is used to measure the overall contribution of the inputs, 
including interactions. 
 
For dependent weighted random vector (i.e., 𝐗𝑤 ∼ 𝐹𝑤) having the CDFs given by Equations (6), (7) and (8), the 
dependency models of 𝐗𝑤  (Skorohod, 1976; Lamboni & Kucherenko, 2021; Lamboni, 2021, 2022a, 2023) are 
given by 

𝐗∼𝑢
𝑤 = 𝑟(𝐗𝑢

𝑤 , 𝐔𝜋) =
𝑑

(𝐹𝜋1
−1(𝑍𝜋1

), … , 𝐹𝜋|𝜋|
−1 (𝑍𝜋|𝜋|

)) , (10) 

where 𝐔𝜋 ∶= (𝑈𝜋1
, … , 𝑈𝜋|𝜋|

) ∼ 𝒰(0,1)𝑑−|𝑢| and 

[
 
 
 
 
𝑍𝜋1

∶= 𝑊𝜋1
−1(𝑈𝜋1

∣ 𝐗𝑢
𝑤)

𝑍𝜋2
∶= 𝑊𝜋2∣𝜋1

−1 (𝑈𝜋2
∣ 𝐗𝑢

𝑤 , 𝑍𝜋1
)

⋮

𝑍𝜋|𝜋|
∶= 𝑊𝜋|𝜋|∣∼𝜋|𝜋|

−1 (𝑈𝜋|𝜋|
∣ 𝐗𝑢

𝑤 , 𝑍𝜋1
, … , 𝑍𝜋|𝜋|−1

)]
 
 
 
 

∼ 𝑊(⋅∣ 𝐗𝑢
𝑤) , 

 
with 𝑊𝜋2∣𝜋1

−1  the inverse of the CDF of 𝑍𝜋2  conditional on 𝑍𝜋1
. Composing the target outputs 𝑓(𝐗𝑤 , 𝜃) by the 

dependency model given by (10) yields 

𝑓(𝐗𝑤 , 𝜃) =
𝑑

𝑓(𝐗𝑢
𝑤 , 𝑟(𝐗𝑢

𝑤 , 𝐔𝜋), 𝜃) . 
 
The first-order and total SFs associated with 𝐗𝑢

𝑤 are respectively defined by 

𝑓𝑢
𝑓𝑜(𝐗𝑢

𝑤 , 𝜃) ≔ 𝔼𝑈[𝑓(𝐗𝑢
𝑤 , 𝑟(𝐗𝑢

𝑤 , 𝐔𝜋), 𝜃)] − 𝔼[𝑓(𝐗𝑢
𝑤 , 𝑟(𝐗𝑢

𝑤 , 𝐔𝜋), 𝜃)], 
 

𝑓𝑢
𝑡𝑜𝑡(𝐗𝑤 , 𝐔𝜋, 𝜃) ∶= 𝑓(𝐗𝑢

𝑤 , 𝑟(𝐗𝑢
𝑤 , 𝐔𝝅), 𝜃) − 𝔼𝐗𝑢

𝑤[𝑓(𝐗𝑢
𝑤 , 𝑟(𝐗𝑢

𝑤 , 𝐔𝜋), 𝜃)]. 

Using the fact that 𝐹𝑤 = 𝐹𝑖𝑛𝑑
𝑤𝑒 , new expressions of SFs based on 𝑤𝑒 are derived in Proposition 2. We use 𝐹𝑈 for 

the CDF of 𝒰(0,1)𝑑−|𝑢| in what follows. 
 

Proposition 2   Let 𝐗𝑤 ∼ 𝐹𝑤 = 𝐹𝑖𝑛𝑑
𝑤𝑒 , 𝐘 ∼ 𝐹ind  and 𝐔 ∼ 𝐹𝑈 be independent random vectors. Then, the first-order 

and total SFs related to 𝐗u
w are given by 

𝑓𝑢
𝑓𝑜(𝐗𝑢

𝑤 , 𝜃) = 𝔼𝑈[𝑓(𝐗𝑢
𝑤 , 𝑟(𝐗𝑢

𝑤 , 𝐔), 𝜃)] −
𝔼[𝑓(𝐘𝑢, 𝑟(𝐘𝑢 , 𝐔), 𝜃)𝑤𝑒(𝐘)]

𝔼[𝑤𝑒(𝐘)]
 ; (11) 

 

𝑓𝑢
𝑡𝑜𝑡(𝐗𝑢

𝑤 , 𝐔, 𝜃) = 𝑓(𝐗𝑢
𝑤 , 𝑟(𝐗𝑢

𝑤 , 𝐔), 𝜃) −
𝔼𝐘[𝑓(𝐘𝑢, 𝑟𝑢(𝐘𝑢 , 𝐔), 𝜃)𝑤𝑒(𝐘)]

𝔼[𝑤𝑒(𝐘)]
 . (12) 

 
Proof   The results are straightforward bearing in mind Remark 1 (see also Lamboni, 2023). 
 
It is worth noting that the above SFs can be adapted for structured model outputs such as categorical variables, 
sequences, graphs and labels. 

3.2 Definition and properties of the kernel-based sensitivity indices 

For an output set 𝒴 and 𝐲, 𝐲′ ∈ 𝒴, it is realistic i) to map a class of labels or contentious variables 𝒴 into a feature 

space ℱ𝑘 ⊆ ℝ𝐿 using the map 𝐲 ↦ 𝜙(𝐲) ∶= {𝜓ℓ(𝐲)}ℓ=1
𝐿  with the possibility 𝐿 = ∞; and ii) to describe the 

desirable structure by a similarity measure between 𝐲, 𝐲′ a.k.a. kernel, that is, 

𝑘(𝐲, 𝐲′) ∶= ⟨𝜙(𝐲), 𝜙(𝐲′)⟩ℱ𝑘
 , 

where ⟨⋅,⋅⟩ℱ𝑘
 stands for the inner product. Such kernel is symmetric and positive definite (SPD), and the Moore-

Aronszajn theorem (Aronszajn, 1950; Berlinet et al., 2004) ensures that the feature space ℱ𝑘 is a RKHS endowed 
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with the inner product 𝑘(⋅,⋅). The feature map allows not only for dealing with the structured outputs but also 
for considering derivable moments. In what follows, assume that 

(A1): 𝑘(𝐲, 𝐲′) is SPD; 𝜙(𝐲) = 𝑘(𝐲,⋅) is convex and 𝑘(𝐲, 𝟎) = 0. 
 
Example: the ℓ𝑝-based kernel and the quadratic kernel given by 

𝑘𝑝(𝐲, 𝐲′) ∶= ⟨∥ 𝐲 ∥𝑝
𝑝
, ∥∥𝐲′∥∥𝑝

𝑝
⟩ ;  𝑘𝑞(𝐘, 𝐘′) ∶= ⟨𝐘, 𝐘′⟩2, 

respectively, satisfy (A1). 
 

Namely, we use 𝐗𝑤′
 (resp. 𝐔′ ) for an i.i.d. copy of 𝐗𝑤 ∼ 𝐹ind 

𝑤𝑒  (resp. 𝐔 ∼ 𝐹𝑈 ), and we consider the following 

functionals 
𝑓𝑐(𝐗𝑢

𝑤 , 𝐔, 𝜃) ∶= 𝑓(𝐗𝑢
𝑤 , 𝑟(𝐗𝑢

𝑤 , 𝐔), 𝜃) − 𝔼[𝑓(𝐗𝑢
𝑤 , 𝑟(𝐗𝑢

𝑤 , 𝐔), 𝜃)] ; 
 

𝑓𝑢
∗(𝐗𝑢

𝑤 , 𝐗𝑢
𝑤′

, 𝐔, 𝜃) ∶= 𝑓(𝐗𝑢
𝑤 , 𝑟(𝐗𝑢

𝑤 , 𝐔), 𝜃) − 𝑓(𝐗𝑢
𝑤′

, 𝑟(𝐗𝑢
𝑤′

, 𝐔), 𝜃) . 

 
For a mensurable and SPD kernel 𝑘, we also assume that 

(A2): 0 < ∫
Θ
 𝔼 [𝑘 (𝑓𝑐(𝐗𝑢

𝑤 , 𝐔, 𝜃), 𝑓𝑐(𝐗𝑢
𝑤′

, 𝐔′, 𝜃))] 𝑑𝜃 < +∞. 

 

3.2.1 Kernel-based sensitivity indices for vector-valued functions 

This section deals with a vector-valued function 𝑓:ℝ𝑑 → ℝ𝑛, which is a particular case of 𝑓(𝐗, 𝜃) with 𝜃 ∈ Θ =
{𝜃0}. Thus, the above first-order and total SFs, the centered outputs 𝑓𝑢

𝑐  and 𝑓𝑢
∗ become respectively 

𝑓𝑢
𝑓𝑜(𝐗𝑢

𝑤);     𝑓𝑢
𝑡𝑜𝑡(𝐗𝑢

𝑤 , 𝐔);     𝑓𝑐(𝐗𝑢
𝑤 , 𝐔);     𝑓𝑢

∗(𝐗𝑢
𝑤 , 𝐗𝑢

𝑤′
, 𝐔) . 

 
We also use 

𝜇𝑢
∗𝑝

≔ 𝔼[∥∥𝑓𝑢
∗(𝐗𝑢

𝑤 , 𝐗𝑢
𝑤′

, 𝐔)∥∥𝑝

𝑝
] , (13) 

and we are going to see latter that the functional 𝑓𝑢
∗(𝐗𝑢

𝑤 , 𝐗𝑢
𝑤′

, 𝐔) will lead to the upper bounds of the kernel-

based SIs (Kb-SIs). Definition 2 formally introduces such indices. 
 

Definition 2   Let 𝑿𝑤′
, 𝑿𝑤′′

, and 𝑿𝑤′′′
 be i.i.d. copies of 𝑿𝑤, and assume that (A1)-(A2) hold. Then, 

the first-order and total Kb-SIs of 𝑿𝑢
𝑤 are defined as follows: 

 

𝑆𝑢
𝑘 ≔

𝔼[𝑘 (𝑓𝑢
𝑓𝑜(𝐗𝑢

𝑤), 𝑓𝑢
𝑓𝑜

(𝐗𝑢
𝑤′

))]

𝔼 [𝑘 (𝑓𝑐(𝐗𝑢
𝑤 , 𝐔), 𝑓𝑐(𝐗𝑢

𝑤′
, 𝐔′))]

; (14) 

𝑆𝑇𝑢
𝑘 ≔

𝔼[𝑘 (𝑓𝑢
𝑡𝑜𝑡(𝐗𝑢

𝑤 , 𝐔), 𝑓𝑢
𝑡𝑜𝑡(𝐗𝑢

𝑤′
, 𝐔′))]

𝔼 [𝑘 (𝑓𝑐(𝐗𝑢
𝑤 , 𝐔), 𝑓𝑐(𝐗𝑢

𝑤′
, 𝐔′))]

 , (15) 

respectively. We also define 

Υ𝑢
𝑘 ≔

𝔼[𝑘 (𝑓𝑢
∗(𝐗𝑢

𝑤 , 𝐗𝑢
𝑤′

, 𝐔), 𝑓𝑢
∗(𝐗𝑢

𝑤′′
, 𝐗𝑢

𝑤′′′
, 𝐔′))]

𝔼 [𝑘 (𝑓𝑐(𝐗𝑢
𝑤 , 𝐔), 𝑓𝑐(𝐗𝑢

𝑤′
, 𝐔′))]

 . (16) 

 

For the ℓ𝑝-based kernel, we can see that Υ𝑢

𝑘𝑝 =
(𝜇𝑢

∗𝑝
)
2

𝔼[𝑘𝑝(𝑓𝑐(𝐗𝑢
𝑤,𝐔),𝑓𝑐(𝐗𝑢

𝑤′
,𝐔′))]

 . 

 
Lemma 1 guarantees the usual and interesting properties of sensitivity indices one should expect such as taking 
into account the interactions among the target inputs does not reduce the effects of the associated inputs. It 
also provides the upper bound of the total index of 𝐗𝑢

𝑤
 . 
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Lemma 1   Consider a mensurable and SPD kernel 𝑘 and assume that (A1)-(A2) hold. Then, we have 

0 ≤ 𝑆𝑢
𝑘 ≤ 𝑆𝑇𝑢

𝑘 ≤ 1 , (17) 
 

𝑆𝑇𝑢
𝑘 ≤ Υ𝑢

𝑘  . (18) 

 
Proof    See Supplementary Material C. 
 
It comes out from Lemma 1 that the upper bound of the total index given by (16) does not use the model 

derivatives. It is also worth noting that the numerator of the upper bound Υ𝑢
𝑘

 relies on the difference of two 
model evaluations (i.e., 𝑓𝑢

∗), while the numerator of the total index requires the evaluation of the conditional 

expectation of the target outputs. As a matter of fact, the computation of Υ𝑢
𝑘

 should require less model 

evaluations to converge compared to the total index in general. Thus, Υ𝑢
𝑘  can be used for screening the target 

inputs. Furthermore, we can significantly reduce the number of model evaluations for computing Υ𝑢
𝑘

 by making 

use of the Morris sequence (Morris, 1991) and the transformation 𝑋𝑗 = 𝐹𝑗
−1(𝑈𝑗). Since the kernel-based SIs 

include Sobol’ indices, generalized sensitivity indices (GSIs) and dependent GSIs (see Section 3.3), Υ𝑢
𝑘  is also the 

upper bounds of such indices. 
 

3.2.2 Extension to multivariate and functional outputs 

To deal with spatio-temporal model and dynamic models, we extend the kernel-based SIs from Definition 2 as 
follows: 

𝑆𝑢
𝑘,𝑓

: =
∫  
Θ

 𝔼 [𝑘 (𝑓𝑢
𝑓𝑜(𝐗𝑢

𝑤 , 𝜃), 𝑓𝑢
𝑓𝑜

(𝐗𝑢
𝑤′

, 𝜃))] 𝑑𝜃

∫  
Θ

 𝔼 [𝑘 (𝑓𝑐(𝐗𝑢
𝑤 , 𝐔, 𝜃), 𝑓𝑐(𝐗𝑢

𝑤′
, 𝐔′, 𝜃))] 𝑑𝜃

 ; (19) 

𝑆𝑇𝑢

𝑘,𝑓
≔

∫  
Θ

 𝔼 [𝑘 (𝑓𝑢
𝑡𝑜(𝐗𝑤 , 𝐔, 𝜃), 𝑓𝑢

𝑡𝑜𝑡(𝐗𝑢
𝑤′

, 𝐔′, 𝜃))] 𝑑𝜃

∫  
Θ

 𝔼 [𝑘 (𝑓𝑐(𝐗𝑢
𝑤 , 𝐔, 𝜃), 𝑓𝑐(𝐗𝑢

𝑤′
, 𝐔′, 𝜃))] 𝑑𝜃

 ; (20) 

Υ𝑢
𝑘,𝑓

≔
∫  
Θ

 𝔼 [𝑘 (𝑓𝑢
∗(𝐗𝑢

𝑤 , 𝐗𝑢
𝑤′

, 𝐔, 𝜃), 𝑓𝑢
∗(𝐗𝑢

𝑤′′
, 𝐗𝑢

𝑤′′′
, 𝐔′, 𝜃))] 𝑑𝜃

∫  
Θ

 𝔼 [𝑘 (𝑓𝑐(𝐗𝑢
𝑤 , 𝐔, 𝜃), 𝑓𝑐(𝐗𝑢

𝑤′
, 𝐔′, 𝜃))] 𝑑𝜃

 . (21) 

 
Such indices also satisfy the usual and interesting properties provided in Lemma 1. Moreover, when Θ = {𝜃0}, 

we can remark that 𝑆𝑢
𝑘,𝑓

, 𝑆𝑇𝑢

𝑘,𝑓
, and Υ𝑢

𝑘,𝑓
 come down to 𝑆𝑢

𝑘, 𝑆𝑇𝑢
𝑘 , Υ𝑢

𝑘, respectively. 

3.3 Link with existing global sensitivity indices 

3.3.1 On the ℓ1-based kernel indices and Morris-type screening methods  

When 𝑛 = 1, 𝑘1(𝑦, 𝑦′) ∶= |𝑦||𝑦′|, the numerator of Υ𝑗
𝑘1  for any 𝑗 ∈ {1, … , 𝑑} is given by 

(𝜇𝑗
∗1

)
2

∶= 𝔼2[|𝑓𝑗(𝐗𝑗
𝑤 , 𝐔) − 𝑓𝑗(𝐗𝑗

𝑤′
, 𝐔)|]. 

 

Using the Morris sequence, we can see that the empirical expression of 𝜇𝑗
∗1

= 𝔼[|𝑓𝑗(𝐗𝑗
𝑤 , 𝐔) − 𝑓𝑗(𝐗𝑗

𝑤′
, 𝐔)|] is 

proportional to the Morris screening measure (noted 𝜇𝑗
∗ ) and its extension 𝑑𝜇𝑗

∗ provided in Lamboni & 

Kucherenko (2021) for dependent inputs. Thus, the Morris screening measure 𝜇𝑗
∗ and its extension 𝑑𝜇𝑗

∗ are the 

upper bounds of √𝑆𝑇𝑗

𝑘1 up to a constant of normalization. The normalized upper bound Υ𝑗
𝑘1  enhances such 

screening measures. As a consequence, the Morris-type screening measures implicitly require working with the 
ℓ1-norm or applying the ℓ1-norm on SFs. Moreover, as small norms allow for measuring the small variations, the 
new ℓ1-based kernel SIs and the Morris-type screening measures are well-suited for quantifying the small 
variations of the inputs effects. 
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3.3.2 Owen, Dick and Chen’s 𝐿𝑝  measure of dependence 

For independent random variables and the kernel 𝑘𝑙𝑝
(𝑌, 𝑌′) ∶= |𝑌|2𝑝|𝑌′|2𝑝, we obtain the 𝐿𝑝-measure of 

dependence for the first-order only, which has been proposed in Owen et al. (2014), that is, √𝑆𝑢

𝑘𝑙𝑝
= 

𝔼 [|𝑓𝑢
𝑓𝑜(𝐗𝑢)|

2𝑝
]. When 𝑝 = 1 and inputs are independent, we obtain Sobol' indices. 

 

3.3.3 The ℓ2-based kernel indices: Sobol’ indices and generalized sensitivity indices 

When 𝑛 = 1, 𝑘2(𝑦, 𝑦′) ∶= |𝑦|2|𝑦′|2 and the inputs are independent, we can check that the first-order and total 
Sobol indices are the square root of the ℓ2-based kernel SIs, that is, 

𝑆𝑢 = √𝑆𝑢
𝑘2 ,       𝑆𝑇𝑢

∶= √𝑆𝑇𝑢

𝑘2  . 

Moreover, we have √𝑆𝑇𝑢

𝑘2 =
1

2
√Υ𝑢

𝑘2  . 

 

For 𝑛 > 1,  𝑘2(𝐲, 𝐲′) ∶=∥ 𝐲 ∥𝐿2
2 ∥∥𝐲′∥∥𝐿2

2
, we obtain the square of the generalized sensitivity indices (GSIs) of the 

first-type (see Lamboni et al., 2011; Lamboni, 2019, 2022b). Furthermore, when the target inputs are dependent, 
the ℓ2-based kernel SIs are the square of the dependent GSIs (including GSIs) of the first-type introduced in 
Lamboni & Kucherenko (2021), that is, 

𝑑𝐺𝑆𝐼𝑢
1,𝑀 = √𝑆𝑢

𝑘2           𝑑𝐺𝑆𝐼𝑇𝑢

1,𝑀 = √𝑆𝑇𝑢

𝑘2. 

 

3.3.4 Quadratic kernel indices and dependent generalized sensitivity indices 

For 𝑛 ≥ 1, the kernel 𝑘𝑞(𝐲, 𝐲′) ∶= ⟨𝐲, 𝐲′⟩2 leads to the square of i) GSIs of the second-type for independent 

variables (see Lamboni et al., 2011; Lamboni, 2019, 2022b), and ii) the dependent GSIs of the second-type (see 
Lamboni & Kucherenko, 2021; Lamboni, 2021), that is, 

𝑑𝐺𝑆𝐼𝑢
2,𝑀 = √𝑆𝑢

𝑘𝑞           𝑑𝐺𝑆𝐼𝑇𝑢

2,𝑀 = √𝑆𝑇𝑢

𝑘𝑞 ≤ √Υ𝑢

𝑘𝑝  . 

 

Thus, √Υ𝑢

𝑘𝑝  becomes the upper bound of the total GSIs of the second-type. 

 

4. Computing the kernel-based sensitivity indices 

For computing the first-order and total Kb-SIs in one hand, and the screening measure Υ𝑢
𝑘  in the other hand, we 

are going to express such indices using the weight function 𝑤𝑒 and the CDF 𝐹ind  (see Proposition 3) because the 

dependency models of 𝐗𝑤 ∼ 𝐹𝑖𝑛𝑑
𝑤𝑒  have been derived using 𝑤𝑒. To that end, we use 𝐘′, 𝐘′′ and 𝐘′′′ for i.i.d. copies 

of 𝐘 ∼ 𝐹ind . 
 
Proposition 3   Assume that (A1)-(A2) hold. Then, we have 

𝑆𝑢
𝑘 ∶=

𝔼 [𝑘 (𝑓𝑢
𝑓𝑜(𝐘𝑢), 𝑓𝑢

𝑓𝑜(𝐘𝑢
′ ))𝑤𝑒(𝐘)𝑤𝑒(𝐘

′)]

𝔼[𝑘(𝑓𝑐(𝐘𝑢 , 𝐔), 𝑓𝑐(𝐘𝑢
′ , 𝐔′)𝑤𝑒(𝐘)𝑤𝑒(𝐘

′))]
; (22) 

𝑆𝑇𝑢
𝑘 ≔

𝔼[𝑘(𝑓𝑢
𝑡𝑜𝑡(𝐘𝑢 , 𝐔), 𝑓𝑢

tot (𝐘𝑢
′ , 𝐔′))𝑤𝑒(𝐘)𝑤𝑒(𝐘

′)]

𝔼[𝑘(𝑓𝑐(𝐘𝑢 , 𝐔), 𝑓𝑐(𝐘𝑢
′ , 𝐔′))𝑤𝑒(𝐘)𝑤𝑒(𝐘

′)]
; (23) 

Υ𝑢
𝑘 ≔

𝔼[𝑘(𝑓𝑢
∗(𝐘𝑢, 𝐘𝑢

′ , 𝐔), 𝑓𝑢
∗(𝐘𝑢

′′, 𝐘𝑢
′′′, 𝐔′))𝑤𝑒(𝐘)𝑤𝑒(𝐘

′)𝑤𝑒(𝐘
′′)𝑤𝑒(𝐘

′′′)]

𝔼[𝑘(𝑓𝑐(𝐘𝑢 , 𝐔), 𝑓𝑐(𝐘𝑢
′ , 𝐔′))𝑤𝑒(𝐘)𝑤𝑒(𝐘

′)]𝔼2[𝑤𝑒(𝐘)]
. (24) 

 
Proof   Using Definition 2, the results are straightforward bearing in mind Remark 1. 
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To construct the estimators of the Kb-SIs, we are given two independent samples, that is, {𝐘𝑖 , 𝐘𝑖
′, 𝐔𝑖 , 𝐔𝑖

′}𝑖=1
𝑚1  and 

{𝐘𝑖 , 𝐘𝑖
′, 𝐔𝑖 , 𝐔𝑖

′}𝑖=1
𝑚  from (𝐘, 𝐘′, 𝐔′𝐔′), and we consider the following consistent estimators: 

�̂�(𝐘𝑢) ∶=
1

𝑚1

∑  

𝑚1

𝑖=1

 𝑓(𝐘𝑢, 𝑟(𝐘𝑢 , 𝐔𝑖)) →
𝑃

𝔼𝐔[𝑓(𝐘𝑢, 𝑟(𝐘𝑢 , 𝐔))] ;

�̂�(𝐔) ∶=
∑  

𝑚1
𝑖=1  𝑓 (𝐘𝑖,𝑢 , 𝑟(𝐘𝑖,𝑢, 𝐔))𝑤𝑒(𝐘𝑖)

∑  
𝑚1
𝑖=1  𝑤𝑒(𝐘𝑖)

→
𝑃 𝔼𝐘[𝑓(𝐘𝑢, 𝑟(𝐘𝑢 , 𝐔))𝑤𝑒(𝐘)]

𝔼[𝑤𝑒(𝐘)]
 ,

�̂� ∶=
∑  

𝑚1
𝑖=1  𝑓 (𝐘𝑖,𝑢, 𝑟(𝐘𝑖,𝑢, 𝐔𝑖))𝑤𝑒(𝐘𝑖)

∑  
𝑚1
𝑖=1  𝑤𝑒(𝐘𝑖)

→
𝑃 𝔼[𝑓(𝐘𝑢, 𝑟(𝐘𝑢 , 𝐔))𝑤𝑒(𝐘)]

𝔼[𝑤𝑒(𝐘)]
 .

 

 
Using the method of moments, we derive the estimators of the first-order and total SFs, the centered model 
outputs as follows: 

𝑓𝑢
𝑓�̂�(𝐘𝑢) ≔ �̂�(𝐘𝑢) − �̂� →

𝑃
𝑓𝑢

𝑓𝑜(𝐘𝑢) ; 

𝑓𝑢
tot ̂ (𝐘𝑢, 𝐔) ≔ 𝑓(𝐘𝑢 , 𝑟(𝐘𝑢 , 𝐔)) − �̂�(𝐔) →

𝑃
𝑓𝑢

tot (𝐘𝑢 , 𝐔) ; 

𝑓 �̂�(𝐘𝑢, 𝐔) ∶= 𝑓(𝐘𝑢 , 𝑟(𝐘𝑢, 𝐔)) − �̂� →
𝑃

𝑓𝑐(𝐘𝑢, 𝐔) . 

 
Again the method of moments and the plug-in approach allow for deriving the consistent estimators of the Kb-
SIs in Theorem 2. To that end, we use 

𝜎𝑢
𝑓𝑜

∶= 𝕍 [𝑘 (𝑓𝑢
𝑓𝑜(𝐘𝑢), 𝑓𝑢

𝑓𝑜(𝐘𝑢
′ ))𝑤𝑒(𝐘)𝑤𝑒(𝐘

′)] , 

𝜎𝑢
𝑡𝑜𝑡 ∶= 𝕍[𝑘(𝑓𝑢

𝑡𝑜𝑡(𝐘𝑢, 𝐔), 𝑓𝑢
𝑡𝑜𝑡(𝐘𝑢

′ , 𝐔′))𝑤𝑒(𝐘)𝑤𝑒(𝐘
′)] , 

𝜇𝑐
𝑘 ∶= 𝔼[𝑘(𝑓𝑐(𝐘𝑢 , 𝐔), 𝑓𝑐(𝐘𝑢

′ , 𝐔′))𝑤𝑒(𝐘)𝑤𝑒(𝐘
′)] . 

 
To derive the asymptotic distributions of the estimators of Kb-SIs, we suppose that we use a sample of size 𝑀 ≫

𝑚 to estimate 𝜇𝑐
𝑘. Indeed, for estimating the non-normalized Kb-SIs of 𝐗𝑢 for all 𝑢 ⊆ {1,… , 𝑑}, different samples 

are going to be used, and some of such samples can be combined for estimating 𝜇𝑐
𝑘. 

 
Theorem 2   Assume that (A1)-(A2) hold and 𝑘 is differentiable almost everywhere. 

(i) The consistent estimators of 𝑆𝑢
𝑘 and 𝑆𝑇𝑢

𝑘  are respectively given by 

𝑆𝑢
�̂� ∶=

1
𝑚

∑  𝑚
𝑖=1  𝑘 (𝑓𝑢

𝑓�̂�
(𝐘𝑖,𝑢), 𝑓𝑢

𝑓�̂�
(𝐘𝑖,𝑢

′ ))𝑤𝑒(𝐘𝑖)𝑤𝑒(𝐘𝑖
′)

1
𝑀

∑  𝑀
𝑖=1  𝑘 (𝑓 �̂�(𝐘𝑖,𝑢, 𝐔𝑖), 𝑓

�̂�(𝐘𝑖,𝑢
′ , 𝐔𝑖

′))𝑤𝑒(𝐘𝑖)𝑤𝑒(𝐘𝑖
′)

 ; (25) 

 

𝑆𝑇𝑢

�̂� ≔

1
𝑚

∑  𝑚
𝑖=1  𝑘 (𝑓𝑢

tot ̂ (𝐘𝑖,𝑢 , 𝐔𝑖), 𝑓𝑢
tot ̂ (𝐘𝑖,𝑢

′ , 𝐔𝑖
′))𝑤𝑒(𝐘𝑖)𝑤𝑒(𝐘𝑖

′)

1
𝑀

∑  𝑀
𝑖=1  𝑘 (𝑓 �̂�(𝐘𝑖,𝑢, 𝐔𝑖), 𝑓

�̂�(𝐘𝑖,𝑢
′ , 𝐔𝑖

′))𝑤𝑒(𝐘𝑖)𝑤𝑒(𝐘𝑖
′)

 . (26) 

 

(ii) If 𝑚1, 𝑚,𝑀 → ∞ with 
𝑚

𝑀
→ 0;

𝑚1

𝑀
→ 0, then 

√𝑚(𝑆𝑢
�̂� − 𝑆𝑢

𝑘) →
𝐷

𝒩 (0,
𝜎𝑢

𝑓𝑜

(𝜇𝑐
𝑘)2

) ;           √𝑚 (𝑆𝑇𝑢

�̂� − 𝑆𝑇𝑢
𝑘 ) →

𝐷
𝒩 (0,

𝜎𝑢
tot 

(𝜇𝑐
𝑘)2

) . 

 
Proof   See Supplementary Material D. 
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5. Test cases 

We consider two functions to illustrate our approach. The first test case treats a cluster of the output values by 
making use of the CDF W (see Theorem 1) to derive analytical target input distributions and SFs. The second test 
case deals with a vector-valued function and a polynomial weight function. To compute the kernel-based SIs, 
we consider the ℓ1-based kernel and the quadratic kernel. 

5.1 Quadratic function (𝑑 = 3, 𝑛 = 1) 

In this section, we consider the following single response model: 

𝑓(𝐗) = 𝑋1
2 + 𝑋2

2 + 𝑋3
2, 

which includes three independent input factors 𝑋𝑗 ∼ 𝒩(0,1) with 𝑗 = 1,2,3. For a given threshold 𝑐 ∈ ℝ+, we 

are interested in the target input distribution given by 

𝑑𝐹𝑤(x) =
𝟙]−∞,𝑐](𝑓(x))

𝔼𝐹ind 
[𝟙]−∞,𝑐](𝑓(𝐗))]

𝑑𝐹ind (x);  ∀x ∈ ℝ𝑑 . 

 
Such model behavior represents a safe domain such as the concentration of a biological hazard below a given 
threshold 𝑐, that is, 𝑓(𝐗) ≤ 𝑐. To derive the analytical SFs, it is known that a dependency model of 

X𝑤 ∶= (𝑋1
𝑤, 𝑋2

𝑤 , 𝑋3
𝑤) ∶= {𝑋𝑗 ∼ 𝒩(0,1), 𝑗 = 1,2,3 ∶ 𝑋1

2 + 𝑋2
2 + 𝑋3

2 ≤ 𝑐} 

is given by (𝑋2
𝑤)2 = 𝑍2(𝑐 − (𝑋1

𝑤)2),  (𝑋3
𝑤)2 = 𝑍3(𝑐 − (𝑋1

𝑤)2)(1 − 𝑍2), where (𝑋1
𝑤)2 ∼ 𝐵1(𝑐, 1/2,2), 𝑍2 ∼

𝐵𝑒𝑡𝑎 (1/2, 3/2) and 𝑍3 ∼ 𝐵𝑒𝑡𝑎 (1/2, 1) are independent with 𝐵1 the beta distribution of first-kind (see 
Lamboni, 2022a), Corollaries 2, 4 for more details). Thus, we have (see Supplementary Material E) 

𝑓(𝐗𝑤) ∶= (𝑋1
𝑤)2(1 − 𝑍2 − 𝑍3(1 − 𝑍2)) + 𝑐𝑍2 + 𝑐𝑍3(1 − 𝑍2) ; 

𝑓𝑐(𝑋1
𝑤, 𝑍2, 𝑍3) = (𝑋1

𝑤)2(1 − 𝑍2 − 𝑍3(1 − 𝑍2)) + 𝑐𝑍2 + 𝑐𝑍3(1 − 𝑍2) −
3

5
𝑐 . 

 
Moreover, the first-order and total SFs of 𝑋1

𝑤 and 𝑓∗ are given by 

𝑓1
𝑓𝑜(𝑋1

𝑤) =
1

2
[(𝑋1

𝑤)2 − 𝑐/5];        𝑓1
𝑡𝑜𝑡(𝑋1

𝑤, 𝑍2, 𝑍3) = [(𝑋1
𝑤)2 − 𝑐/5](1 − 𝑍2)(1 − 𝑍3); 

𝑓∗(𝑋1
𝑤 , 𝑋1

𝑤′
, 𝑍2, 𝑍3) = [(𝑋1

𝑤)2 − (𝑋1
𝑤′

)
2
] (1 − 𝑍2)(1 − 𝑍3). 

 
The computations of Kb-SIs using the above functionals give the following results. For the ℓ1-based kernel, the 

indices of 𝑋𝑗
𝑤 are √𝑆𝑗

𝑘1 = √𝑆𝑇𝑗

𝑘1 = 0.385 and √Υ𝑗
𝑘1 = 0.505 with 𝑗 = 1, 2, 3. For the quadratic kernel, we have 

obtained √𝑆
𝑗

𝑘𝑞 = 0.167√𝑆𝑇𝑗

𝑘𝑞 = 0.223 and √Υ
𝑗

𝑘𝑞 = 0.445 with 𝑗 = 1, 2, 3. These indices are invariant by 

changing the threshold 𝑐. 

5.2 Multivariate g-Sobol function (𝑑 = 10, 𝑛 = 4) 

We consider the multivariate g-Sobol function, which includes ten independent input variables following the 

standard uniform distribution (i.e., 𝑋𝑗 ∼ 𝒰(0,1), 𝑗 = 1, … ,10) and provides four outputs. It is given by (Lamboni, 

2019, 2022b) 

𝑓(x) ∶=

[
 
 
 
 
 
 
 
 
 ∏𝑗=1

𝑑=10  
|4𝑥𝑗 − 2| + 𝒜[1, 𝑗]

1 + 𝒜[1, 𝑗]

∏𝑗=1
𝑑=10  

|4𝑥𝑗 − 2| + 𝒜[2, 𝑗]

1 + 𝒜[2, 𝑗]

∏𝑗=1
𝑑=10  

|4𝑥𝑗 − 2| + 𝒜[3, 𝑗]

1 + 𝒜[3, 𝑗]
]

∏𝑗=1
𝑑=10  

|4𝑥𝑗 − 2| + 𝒜[4, 𝑗]

1 + 𝒜[4, 𝑗] ]
 
 
 
 
 
 
 
 
 

,𝒜 = [

0 0 6.52 6.52 6.52 6.52 6.52 6.52 6.52 6.52
0 1 4.5 9 99 99 99 99 99 99
1 2 3 4 5 6 7 8 9 10
50 50 50 50 50 50 50 50 50 50

] . 
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We are interested in the model behavior defined by 𝑤(𝐱) ∶= ∏𝑗=1
10  𝑥

𝑗

𝛼𝑗
 for every 𝛼𝑗 ∈ ℝ+. We can see that the 

target inputs distribution is given by 𝜌𝑤(x) =
∏𝑗=1

10  𝑥
𝑗

𝛼𝑗
𝟙[0,1](𝑥𝑗)

𝔼𝐹ind 
[∏𝑗=1

10  𝑋
𝑗

𝛼𝑗
]

, which implies that 𝑋𝑗
𝑤 ∼ 𝐵𝑒𝑡𝑎 (𝛼𝑗 + 1, 1) for any 

𝑗 ∈ {1, … , 𝑑}. 
 
Tables 1-2 provide the estimates of sensitivity indices using the ℓ1-based kernel and the quadratic kernel. 
Obviously, when 𝑞 = 1/2 and 𝛼 = (0,… ,0) (see Table 1), we obtain the estimations of GSIs provided in Lamboni 
(2022b) for the quadratic kernel. Only 𝑋1 and 𝑋2 are important according to the total GSIs and their upper 
bounds. Similar results were obtained using the ℓ1-based kernel SIs if we fix the threshold at 𝑇 = 0.2. Decreasing 
the threshold to 0.1 shows that two more inputs, that is, 𝑋3, 𝑋4 are important. Such difference is probably due 
to the fact that the ℓ1-based kernel measures the small variations of SFs compared to the quadratic kernel, 
which is associated with the L2-norm for single valued functions. 
 
 

Table 1: Square root of kernel-based SIs for the multivariate Sobol function associated with 𝛼 = (0, … ,0). 

Kernels 𝑿𝟏 𝑿𝟐 𝑿𝟑 𝑿𝟒 𝑿𝟓 𝑿𝟔 𝑿𝟕 𝑿𝟖 𝑿𝟗 𝑿𝟏𝟎 

   First-order Kb-SIs     

ℓ1-based 0.756 0.556 0.176 0.136 0.099 0.092 0.086 0.082 0.079 0.076 

Quadratic 0.536 0.328 0.027 0.016 0.011 0.009 0.008 0.007 0.007 0.006 

   Total Kb-SIs     

ℓ1-based 0.756 0.555 0.178 0.148 0.099 0.091 0.085 0.082 0.078 0.076 

Quadratic 0.637 0.436 0.038 0.026 0.015 0.012 0.011 0.011 0.009 0.010 

   Upper bounds of Kb-SIs     

ℓ1-based 1.002 0.747 0.235 0.188 0.133 0.124 0.114 0.114 0.105 0.100 

Quadratic 1.230 0.844 0.074 0.048 0.031 0.027 0.021 0.024 0.020 0.018 

 
 

By taking 𝜶 = (20, 20, 10, 10, 10, 10, 10, 1, 1, 1), the ℓ1-based kernel SIs show that all the inputs are important 
(𝑇 = 0.1)  while the quadratic kernel SIs identify 𝑋𝑗

𝑤, 𝑗 = 3, … , 7 as non important variables (see Table 2). As 

expected, the results provided in Tables 1-2 prove that changing the model behavior of interest (thanks to the 
weight functions) can significantly modify the impacts of the input variables. The polynomial weight function 

𝑥
𝑗

𝛼𝑗
 aims at emphasizing the selection of the initial input values of 𝑋𝑗  that are close to 1 when 𝛼𝑗  is higher. Thus, 

it restricts the support of 𝑋𝑗, which results in decreasing the effect of 𝑋𝑗
𝑤  on the model outputs. 

 
 

Table 2: Square root of kernel-based SIs for the multivariate Sobol function associated with 𝛼 = (20, 20, 10, 10, 10, 10, 10, 1, 1, 1). 

Kernels 𝑿𝟏 𝑿𝟐    𝑿𝟑 𝑿𝟒 𝑿𝟓   𝑿𝟔 𝑿𝟕 𝑿𝟖 𝑿𝟗 𝑿𝟏𝟎 

   First-order Kb-SIs     

ℓ1-based 0.465 0.388 0.277 0.229 0.173 0.165 0.157 0.319 0.309 0.301 

Quadratic 0.261 0.190 0.075 0.058 0.041 0.040 0.035 0.121 0.116 0.113 

   Total Kb-SIs     

ℓ1-based 0.465 0.388 0.276 0.229 0.173 0.164 0.157 0.320 0.309 0.300 

Quadratic 0.267 0.197 0.074 0.059 0.043 0.041 0.037 0.123 0.120 0.116 

   Upper bounds of Kb-SIs     

ℓ1-based 0.615 0.530 0.374 0.303 0.238 0.224 0.211 0.428 0.417 0.402 

Quadratic 0.477 0.441 0.148 0.104 0.088 0.081 0.069 0.252 0.252 0.233 

 

6. Conclusion 

We have proposed a methodology for exploring specific model behaviors such as identifying the input variables 
that drive the initial model output(s) toward a domain of interest (e.g., failure, safe and sustainable domain) 
and/or govern the target output(s) defined via weight functions, including the output values within a given 
cluster. Weight functions include rule-based ensembles, non-negative desirability measures of the model 
output(s) to meet a given criterion, membership functions from crisp or fuzzy clustering, and any non-negative 
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function based on classifiers such as PCA, kernel PCA, logistic regression, random forest. The proposed approach 
is well-suited for performing SA not only for the target output(s) but also for models with inputs following the 
multivariate weighted distribution, including the copula-based distributions. 
 
We have introduced the kernel-based SIs, including the ℓ1-based SIs that aim at addressing the issues of high-
order moments of SFs and interactions among the model drivers even non-independent. The well-known 
variance-based SA and dependent multivariate SA are particular cases of our new measures of association 
between model drivers and outputs. We have provided consistent estimators of kernel-based SIs for computing 
such indices by distinguishing the case of multivariate and functional outputs (including spatio-temporal and 
dynamic models) and the case of multivariate response models, including single response models. 
 
Analytical and numerical results show the relevance of our approach for analyzing a given model behavior. For 
the second test case, our results are equal to those provided in Lamboni (2022b); Lamboni & Kucherenko (2021); 
Lamboni (2021), emphasizing the extension of generalized sensitivity indices and dependent generalized 
sensitivity indices. In next future, it is worth investigating the extension of this work to cope with most kernels 
and the original space of labels used as outputs. 
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