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Abstract 
We introduce two control variate Monte Carlo estimators where the control is based on the truncated sparse 
polynomial chaos expansion of the function in hand. We use the control variate estimators to estimate the lower 
and upper Sobol’ indices in some applications, and compare them numerically with some of the best Monte Carlo 
estimators in the literature. The results suggest that in computationally expensive problems where a low-order 
polynomial chaos expansion is not an accurate approximation of the model but highly correlated with it, the 
control variate estimators are either the best or among the best in terms of efficiency.  
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1.  Introduction 

Global sensitivity analysis, uncertainty analysis via Monte Carlo methods, and surrogate models are among the 
methods highlighted for modeling uncertainties in the grand challenge of “integrated treatment of modeling 
uncertainty” in socio-environmental systems modeling by Elsawah et al. (2020). In this paper we introduce two 
control variate Monte Carlo estimators where the control is based on Bayesian polynomial chaos expansion 
(PCE) (Babacan et al., 2009) of the given model. The control variate estimators can be adjusted for use in 
uncertainty analysis, or in global sensitivity analysis, which is considered in this paper. 
 
Consider a situation where the model at hand is expensive to sample from, and the computationally feasible 
surrogate model is not a sufficiently accurate description of the model. If the surrogate model is highly correlated 
with the actual model, even if it is not sufficiently accurate, then control variate Monte Carlo estimators based 
on the surrogate model could offer a remedy. The surrogate models we consider in this paper are based on 
truncated Bayesian PCE, but our methodology applies to any surrogate model. We will use numerical results to 
compare the efficiency of the new control variate estimators with the best Monte Carlo estimators according to 
Puy et al. (2022), when they are used to estimate Sobol’ sensitivity indices. The Sobol’ sensitivity indices are one 
of the popular methods in decision making in the social, economic and environmental modeling community 
(Saltelli et al., 2006). 
 
In the numerical results we consider two problems. The first one is the SIR (susceptible, infectious, and/or 
recovered) model; a model commonly used in the mathematical modeling of infectious diseases. The second 
one is the Stiefel canonical distance model, which is used in computer vision and medical imaging (Chakraborty 
& Vemuri, 2019). The numerical results show that the control variate estimators have better or similar efficiency 
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in estimating lower and upper Sobol’ indices compared to some of the best Monte Carlo algorithms of Puy et al. 
(2022). It is important to emphasize that the efficiency advantages of the control variate estimators are realized 
in the aforementioned scenario: when the original model is computationally expensive, and simple surrogate 
models are not accurate. 
 
The paper is organized as follows. In Section 2 we briefly introduce the ANOVA decomposition of functions and 
Sobol’ sensitivity indices, and introduce the Monte Carlo estimators that will be used in the numerical results. 
In Section 3 we describe how Sobol’ indices can be estimated using PCE. In Section 4 we introduce the control 
variate Monte Carlo estimators and in Section 5 we present the numerical results. We conclude in Section 6. 
 

2. Global sensitivity analysis 

Here we review some of the background material from global sensitivity analysis, in particular, the Sobol’ 

sensitivity indices. Consider a square-integrable function 𝑓(𝐱) defined on (0,1)𝑑, where 𝐱 = (𝑥1, ⋯ , 𝑥𝑑), and let 
𝐷 = {1,2,⋯ , 𝑑} be the index set. The ANOVA decomposition of 𝑓(𝐱) is 

𝑓(𝐱) = ∑  

𝑢⊆𝐷

𝑓𝑢(𝐱
𝑢), 

where 𝑓𝑢(𝐱
𝑢) is the component function that only depends on 𝐱𝑢. For the empty set, we have 𝑓∅ = ∫ 𝑓(𝐱)𝑑𝐱.  

 

If we assume 𝐱 has a uniform distribution on (0,1)𝑑, we can write 

𝔼[𝑓(𝐱)] = ∫  𝑓(𝐱)𝑑𝐱 = 𝜇, 

and 

Var (𝑓(𝑥)) = 𝜎2 = ∫  𝑓2(𝐱)𝑑𝐱 − 𝜇2, 

where the integrals are over (0,1)𝑑. Similarly, the variance for the component function 𝑓𝑢 is 

𝜎𝑢
2 = ∫  𝑓𝑢

2(𝐱)𝑑𝐱 − (∫  𝑓𝑢(𝐱)𝑑𝐱)
2

= ∫  𝑓𝑢
2(𝐱)𝑑𝐱, 

since the integral of 𝑓𝑢 is zero, if 𝑢 ≠ ∅. 

 
The ANOVA decomposition is orthogonal, which implies the following relationship between the variances of 𝑓and 
its component functions 𝑓𝑢: 

𝜎2 = ∑  

𝑢⊆𝐷

𝜎𝑢
2 

 

The Sobol’ sensitivity indices for the subset 𝑢 are defined as 

𝑆𝑢 =
1

𝜎2
∑  

𝑣⊆𝑢

𝜎𝑣
2 =

𝜏𝑢
𝜎2

 and 𝑆‾𝑢 =
1

𝜎2
∑  

𝑣∩𝑢≠∅

𝜎𝑣
2 =

𝜏‾𝑢
𝜎2
, 

where 𝑆𝑢 is called the lower Sobol’ sensitivity index (or, the main effect) and 𝑆‾𝑢 is called the upper Sobol’ 

sensitivity index (or, the total effect). 

 
Another interpretation of the Sobol’ indices is in terms of the variance and expectation of conditional 
distributions, 

𝜏𝑢 = Var (𝔼[𝑓(𝐱) ∣ 𝐱
𝑢])

𝜏‾𝑢 = 𝔼[Var (𝑓(𝐱) ∣ 𝐱
−𝑢)],

 

where −𝑢 is the complement of 𝑢. 
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Sobol’ (1993) showed that 𝑆𝑢 and 𝑆‾𝑢 can be written as multidimensional definite integrals, 

𝑆𝑢 =
1

𝜎2
(∫  𝑓(𝐱𝑢, 𝐱−𝑢)𝑓(𝐱𝑢, 𝐳−𝑢)𝑑𝐱𝑑𝐳−𝑢 − 𝜇2)

𝑆‾𝑢 =
1

2𝜎2
∫  [𝑓(𝐱𝑢, 𝐱−𝑢) − 𝑓(𝐳𝑢, 𝐱−𝑢)]2𝑑𝐱𝑑𝐳𝑢 ,

 

which can be estimated using the Monte Carlo method (the domain of the integrals are the domains of the 

vectors (𝐱, 𝐳−𝑢) and (𝐱, 𝐳𝑢), respectively). Several Monte Carlo estimators for 𝑆𝑢, 𝑆‾𝑢 have been introduced in 

the literature since then. Based on extensive numerical results, Puy et al. (2022) conclude that in general the 
most efficient estimators are those introduced by Jansen (1999), Owen (2013), Janon et al. (2014), and Azzini et 
al. (2020). 
 
Jansen (1999) introduced the following estimator for the upper Sobol’ index 

𝑆‾𝑢
jansen =

1
2𝑁

∑  𝑁
𝑖=1   (𝑓(𝐱𝑖) − 𝑓(𝐳𝑖

𝑢 , 𝐱𝑖
−𝑢))

2

𝜎2
, (1) 

where 𝒙𝑖  and 𝐳𝑖  are two independent vectors from the uniform distribution. Owen (2013) proposed an estimator 
for the lower Sobol’ index that uses three independent input vectors 

𝑆𝑢
owen =

1
𝑁
∑  𝑁
𝑖=1   (𝑓(𝐱𝑖) − 𝑓(𝐲𝑖

𝑢, 𝐱𝑖
−𝑢))(𝑓(𝐱𝑖

𝑢 , 𝐳𝑖
−𝑢) − 𝑓(𝐳𝑖))

𝜎2
. (2) 

 
Janon et al. (2014) introduced estimators for both lower and upper Sobol’ indices: 

𝑆𝑢
janon =

1
𝑁
∑  𝑁
𝑖=1  𝑓(𝐱𝑖)𝑓(𝐱𝑖

𝑢, 𝐳𝑖
−𝑢) − 𝑓0

2

1
𝑁
∑  𝑁
𝑖=1  

𝑓(𝐱𝑖)
2 + 𝑓(𝐱𝑖

𝑢 , 𝐳𝑖
−𝑢)2

2
− 𝑓0

2

,
(3) 

 

𝑆‾𝑢
janon = 1 −

1
𝑁
∑  𝑁
𝑖=1  𝑓(𝐱𝑖)𝑓(𝐳𝑖

𝑢, 𝐱𝑖
−𝑢) − (𝑓0)

2

1
𝑁
∑  𝑁
𝑖=1  

𝑓(𝐱𝑖)
2 + 𝑓(𝐳𝑖

𝑢 , 𝐱𝑖
−𝑢)2

2
− (𝑓0)

2
, (4) 

 

where 𝑓0 =
1

𝑁
∑𝑖=1
𝑁  

𝑓(𝐱i)+𝑓(𝐱i
𝑢 ,𝐳i

−𝑢)

2
 and 𝑓0 =

1

𝑁
∑𝑖=1
𝑁  

𝑓(𝐱𝑖)+𝑓(𝐳i
𝑢,𝐱i

−𝑢)

2
. Likewise, Azzini et al. (2020) introduced the 

following estimators for the Sobol' indices: 
 

𝑆𝑢
az =

2∑  𝑁
𝑖=1   (𝑓(𝐱𝑖

𝑢 , 𝐳𝑖
−𝑢) − 𝑓(𝐳𝑖))(𝑓(𝐱𝑖) − 𝑓(𝐳𝑖

𝑢 , 𝐱𝑖
−𝑢))

∑  𝑁
𝑖=1   (𝑓(𝐱𝑖) − 𝑓(𝐳𝑖)))

2

+ (𝑓(𝐱𝑖
𝑢, 𝐳𝑖

−𝑢) − 𝑓(𝐳𝑖
𝑢 , 𝐱𝑖

−𝑢))
2 ,

(5) 

 

𝑆‾𝑢
az =

∑  𝑁
𝑖=1   [𝑓(𝐳𝑖) − 𝑓(𝐱𝑖

𝑢, 𝐳𝑖
−𝑢)]2 + [𝑓(𝐱𝑖) − 𝑓(𝐳𝑖

𝑢, 𝐱𝑖
−𝑢)]2

∑  𝑁
𝑖=1   [𝑓(𝐱𝑖) − 𝑓(𝐳𝑖)]

2 + [𝑓(𝐱𝑖
𝑢 , 𝐳𝑖

−𝑢) − 𝑓(𝐳𝑖
𝑢, 𝐱𝑖

−𝑢)]2
. (6) 

 

3. Estimating Sobol’ sensitivity indices using polynomial chaos expansion 

If 𝑓  is approximated by its polynomial chaos expansion (PCE), then its Sobol’ sensitivity indices can be computed 
very efficiently as observed by Lemieux & Owen (2002) and Sudret (2008). Consider the truncated PCE of 𝑓 

𝑓𝑝(𝐱) = ∑  

𝑃−1

𝑖=0

𝑘𝑖Ψ𝑖(𝐱), (7) 

where 𝑝 is the truncated order and Ψ𝑖  are the orthonormal polynomials. The number of terms in the summation 

is 𝑃 = (
𝑑 + 𝑝
𝑑

). Suppose that the input 𝐱 follows the uniform distribution and the basis {Ψ𝑖}𝑖=0
𝑃−1 are 
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multidimensional Legendre polynomials. Let {𝜙𝑖}𝑖=0
𝑃−1 be the one-dimensional Legendre polynomials. Let Ψ𝑖 =

Ψ𝛼i, where 𝛼𝑖 is a 𝑑-dimensional index vector with nonnegative integer entries. Each multidimensional 

polynomial can be expressed as the product of one-dimensional polynomials, 

Ψ𝛼𝑖(𝐱) =∏  

𝑑

𝑗=1

𝜙
𝛼𝑗
i(𝑥𝑗). 

 
Define the set 

𝒜𝑢 = {𝑖: 𝛼𝑗
𝑖 > 0 for every 𝑗 ∈ 𝑢, and 𝛼𝑗

𝑖 = 0 otherwise }. 

 
Then the ANOVA component 𝑓𝑢 can be written as a sum of polynomial basis functions with indices in 𝒜𝑢, 

𝑓𝑢(𝐱𝑢) = ∑  

𝑖∈𝒜𝑢

𝑘𝑖Ψ𝛼𝑖  , 

and 

𝜎𝑢
2 = ∑  

𝑖∈𝒜𝑢

𝑘𝑖
2 . 

 
Define the lower subset with truncated order 𝑝 as 

𝒜𝑢,𝑝 = {𝑖: 𝑖 < 𝑃, and ∃𝑗 ∈ 𝑢 where 𝛼𝑗
𝑖 > 0, and 𝛼𝑗

𝑖 = 0 for every 𝑗 ∈ −𝑢}, 

and the upper subset as 

𝒜̅𝑢,𝑝 = {𝑖: 𝑖 < 𝑃, and ∃𝑗 ∈ 𝑢 where 𝛼𝑗
𝑖 > 0}. 

 
The PCE-based lower Sobol’ sensitivity index of 𝑢 is given by 

𝑆𝑢
pce ≈

∑  𝑖∈𝒜𝑢,𝑝
  𝑘̂𝑖
2

𝜎2
=
∑  𝑖∈𝒜𝑢,𝑝

  𝑘̂𝑖
2

∑  𝑃
𝑖=1   𝑘̂𝑖

2
, (8) 

 
and the PCE-based upper Sobol’ sensitivity index of 𝑢 is given by 
 

𝑆‾𝑢
pce ≈

∑  𝑖∈𝒜̅𝑢,𝑝
𝑘̂𝑖
2

𝜎2
=
∑  𝑖∈𝒜̅𝑢,𝑝

  𝑘̂𝑖
2

∑  𝑃
𝑖=1   𝑘̂𝑖

2
, (9) 

where 𝑘̂𝑖 the estimated values for 𝑘𝑖. 
 
As Eqn. (8) and Eqn. (9) show, the computational cost of using the truncated PCE to estimate the Sobol’ index is 
mainly from estimating the PCE coefficients 𝑘𝑖. A popular method of estimating these coefficients is regression. 
One drawback of the regression based methods is that as the truncation level 𝑝 or the dimension of the vector 𝐱 
increases, the number of coefficients to estimate increases drastically. A solution is to use sparse regression and 
only consider a small number of basis functions and estimate the corresponding coefficients. A survey of sparse 
polynomial chaos expansions is given by Lüthen et al. (2021). Here we will use the Bayesian PCE approach 
introduced in Babacan et al. (2009). 
 

4. Control variate Monte Carlo estimators based on Bayesian polynomial 
chaos expansion 

Consider the problem of estimating 𝔼[𝑌] with the control variate Monte Carlo method, where we assume there is 
another random variable 𝐶, called the control, with known mean 𝜇𝐶, and 𝐶&𝑌 are correlated. 
 
The control variate estimator for 𝔼[𝑌] is given by 

𝑌(𝛽) = 𝑌 − 𝛽(𝐶 − 𝜇𝐶), (10) 

where 𝛽 is a constant with optimal value (the value that minimizes the variance of 𝑌(𝛽)) 
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𝛽∗ =
Cov(𝑌, 𝐶)

Var(𝐶)
. (11) 

 
In practice, 𝛽∗ is estimated from the data. We then estimate 𝐸[𝑌] using the sample mean of 𝑌(𝛽) 

𝜃̂ =
1

𝑁
∑  

𝑁

𝑛=1

(𝑌𝑛 − 𝛽
∗(𝐶𝑛 − 𝜇𝐶)), (12) 

 
where 𝑌1, 𝐶1, … , 𝑌𝑁 , 𝐶𝑁 is a random sample of size 𝑁 from 𝑌 and 𝐶. 
 
In Fox & Ökten (2021), the control 𝐶 was chosen as the (truncated) PCE expansion of 𝑌. Here we will use 
Bayesian PCE as the control. Let 𝑌(𝛽) = 𝑓𝑐𝑣 , 𝑌 = 𝑓 , and 𝐶 = 𝑓𝑝. The general form of these estimators is 

𝑓𝑐𝑣(𝐱) = 𝑓(𝐱) − 𝛽∗(𝑓𝑝(𝐱) − 𝔼[𝑓𝑝]), (13) 

 
where 𝑝 is the truncation order, and 𝑓𝑝(𝐱) is the truncated PCE where the coefficients 𝑘𝑖  in Eqn. (7) are obtained 

using the Bayesian PCE method. If we know the truncated PCE 𝑓𝑝 exactly, which means knowing the coefficients 𝑘𝑖  

in Eqn. (7) exactly, then the optimal 𝛽∗ equals to one. 
 
In practice, we estimate 𝑓𝑝(𝐱) as 

𝑓𝑝(𝐱) = ∑  

𝑃−1

𝑖=0

𝑘̂𝑖Ψ𝑖(𝐱), 

where 𝑘̂𝑖 is obtained using regression. Another way to obtain 𝑘̂𝑖  is to use the Monte Carlo method. In that case, 
the optimal 𝛽 converges to one from below as the Monte Carlo sample size goes to infinity. For details see Fox 
& Ökten (2021). 
 
We next introduce two control variate estimators, called cv1 and cv2, where each estimator has two versions, 
one for lower and one for upper Sobol’ index. 
 

The first control variate estimator, cv1 

For the lower Sobol’ index, cv1 uses Owen’s three-parameter estimator for 𝜏𝑢. The cv1 estimator for 𝜏𝑢, denoted 

by 𝜏𝑢
𝑐𝑣1, takes 𝑌 = 𝜏𝑢

owen  and 𝐶 = 𝜏𝑢,𝑝
owen  in Eqn. (10): 

𝜏𝑢
𝑐𝑣1(𝐱, 𝐲𝑢, 𝐳) = 𝜏𝑢

owen (𝐱, 𝐲𝑢, 𝐳) − 𝛽∗(𝜏𝑢,𝑝
owen (𝐱, 𝐲𝑢 , 𝐳) − 𝔼[𝜏𝑢,𝑝

owen ]) (14) 

where 

𝜏𝑢
owen = (𝑓(𝐱) − 𝑓(𝐲𝑢 , 𝐱−𝑢))(𝑓(𝐱𝑢 , 𝐳−𝑢) − 𝑓(𝐳)), 

and 

𝜏𝑢,𝑝
owen = (𝑓𝑝(𝐱) − 𝑓𝑝(𝐲

𝑢, 𝐱−𝑢)) (𝑓𝑝(𝐱
𝑢, 𝐳−𝑢) − 𝑓𝑝(𝐳)). 

 
The lower Sobol’ index then can be estimated from 

𝑆𝑢
𝑐𝑣1 =

𝜏𝑢
𝑐𝑣1(𝐱, 𝐲𝑢 , 𝐳)

𝜎2
. 

The expectation of control is 𝔼[𝜏𝑢,𝑝
owen ] = ∑𝑖∈𝒜𝑢,𝑝

 𝑘̂𝑖
2, from Eqn. (8). The optimal 𝛽∗ is estimated by using sample 

covariance and sample variance of the simulated data using Eqn. (11). 

To estimate the upper Sobol’ index, cv1 uses Jansen’s estimator for 𝜏‾𝑢. The cv1 estimator for 𝜏‾𝑢 is 

𝜏‾𝑢
𝑐𝑣1(𝐱, 𝐳𝑢) = 𝜏‾𝑢

jansen (𝐱, 𝐳𝑢) − 𝛽‾∗ (𝜏‾𝑢,𝑝
jansen (𝐱, 𝐳𝑢)) − 𝐸[𝜏‾𝑢,𝑝

jansen ]) , (15) 

where 
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𝜏‾𝑢
jansen (𝐱, 𝐳𝑢) =

1

2
(𝑓(𝐱) − 𝑓(𝐳𝑢 , 𝐱−𝑢))

2

𝜏‾𝑢,𝑝
jansen (𝐱, 𝐳𝑢) =

1

2
(𝑓𝑝(𝐱) − 𝑓𝑝(𝐳

𝑢, 𝐱−𝑢))
2

.

 

The upper Sobol’ index is estimated from 

𝑆‾𝑢
𝑐𝑣1 =

𝜏‾𝑢
𝑐𝑣1(𝐱, 𝐳𝑢)

𝜎2
. 

The expectation of control is 𝔼[𝜏‾𝑢,𝑝
jansen ] = ∑𝑖∈𝒜̅𝑢,𝑝

 𝑘̂𝑖
2 from Eqn. (9). The optimal  𝛽‾∗ is estimated similarly using 

Eqn. (11). 

 

The second control variate estimator, cv2 

The cv2 estimator has a slightly different form than Eqn. (10), and it is a biased estimator. The cv2 estimator for  
𝜏𝑢 is 

𝜏𝑢
𝑐𝑣2 = 𝑌 − (𝐶 − 𝔼[𝐶]) + (𝔼[𝜏𝑢,𝑝

owen ] − 𝔼[𝐶]) (16) 

where 𝑌 = 𝜏𝑢
owen , and 

𝐶 = (𝑓(𝐱) − 𝑓(𝐲𝑢, 𝐱−𝑢))(𝑓𝑝(𝐱
𝑢, 𝐳−𝑢) − 𝑓𝑝(𝐳)) + (𝑓𝑝(𝐱) − 𝑓𝑝(𝐲

𝑢 , 𝐱−𝑢)) (𝑓(𝐱𝑢 , 𝐳−𝑢) − 𝑓(𝐳))

 − (𝑓𝑝(𝐱) − 𝑓𝑝(𝐲
𝑢, 𝐱−𝑢)) (𝑓𝑝(𝐱

𝑢, 𝐳−𝑢) − 𝑓𝑝(𝐳)).
 

 

If the bias term, 𝔼[𝜏𝑢,𝑝
owen ] − 𝔼[𝐶] equals zero, then 𝔼[𝜏𝑢

cv2 ] = 𝔼[𝜏𝑢
owen ] = 𝜏𝑢. Observe that if 𝑓𝑝 ≈ 𝑓, then 𝐶 ≈

𝔼[𝜏𝑢,𝑝
owen ] and the bias term is small. 

 
The cv2 estimator for  𝜏‾𝑢 is 

𝜏‾𝑢
𝑐𝑣2 = 𝑌 − (𝐶 − 𝔼[𝐶]) + (𝔼[𝜏‾𝑢,𝑝

jansen ] − 𝔼[𝐶]) (17) 

where 𝑌 = 𝜏‾𝑢
jansen , and 

𝐶 = (𝑓(𝐱) − 𝑓(𝐳𝑢 , 𝐱−𝑢)) (𝑓𝑝(𝐱) − 𝑓𝑝(𝐳
𝑢 , 𝐱−𝑢)) −

1

2
(𝑓𝑝(𝐱) − 𝑓𝑝(𝐳

𝑢 , 𝐱−𝑢))
2

. 

 

If the bias 𝔼[𝜏‾𝑢,𝑝
jansen ] − 𝔼[𝐶] is zero then cv2 is an unbiased estimator for 𝜏‾𝑢. 

 
The corresponding estimators for lower and upper Sobol’ indices are obtained by dividing  𝜏𝑐𝑣2 values by 𝜎2. 
Estimators in the form of cv2 were used by Fox & Ökten (2021) where 𝐶 was based on PCE, and by Kucherenko et 
al. (2015) where 𝐶 was based on first order ANOVA terms. 

4.1 Complexity analysis 

Define the efficiency of a Monte Carlo algorithm B as 

𝐸𝐵 = 𝜎𝐵
2 × 𝑡𝐵, (18) 

where 𝜎𝐵
2 is the variance of the estimator, and 𝑡𝐵 is the complexity of the algorithm which is measured in terms of 

function evaluations or computing time. 
 
Here we will consider the unbiased control variate estimator cv1, which is based on Eqn. (13), and let 𝑡𝐵 be the 
number of function evaluations in the estimator. We assume the truncated PCE expansion 𝑓𝑝 is known exactly, 

which implies 𝛽∗ = 1. Fox & Ökten (2021) showed that Cov(𝑓, 𝑓𝑝) = Var(𝑓𝑝) in this case. Then 

Var(𝑓𝑐𝑣) = Var(𝑓) + Var(𝑓𝑝) − 2Cov (𝑓, (𝑓𝑝 − 𝔼[𝑓𝑝])) = Var(𝑓) − 2Cov(𝑓, 𝑓𝑝) + Var(𝑓𝑝) = Var(𝑓) − Var(𝑓𝑝). 

 
Let 𝐹 be the cost of one function evaluation of 𝑓 , and 𝐹𝑝  the cost of one function evaluation of 𝑓𝑝. The control 

variate method cv1 uses Owen’s estimator for estimating the lower Sobol’ index (Eqn. (14)), where four function 



Duan, H., and Ökten, G. (2023) Socio-Environmental Systems Modelling, 5, 18568, doi:10.18174/sesmo.18568  

 7  

evaluations of 𝑓 , and four truncated Bayesian PCE function evaluations of 𝑓𝑝 are needed. Then the total cost is 

4(𝐹 + 𝐹𝑝). For the upper Sobol’ index, cv1 uses Jansen’s estimator and thus two function evaluations and two 

Bayesian PCE function evaluations (Eqn. (15)) for a total cost of 2(𝐹 + 𝐹𝑝). 

 
The efficiency of Owen’s estimator for estimating the lower Sobol’ index is 

𝐸owen = 4𝐹 × Var (𝑓), 

and the efficiency cv1 is 

𝐸𝑐𝑣  = (Var(𝑓) − Var(𝑓𝑝)) × (4𝐹 + 4𝐹𝑝)

 = 4𝐹 × Var(𝑓) − 4𝐹 × Var(𝑓𝑝) + 4𝐹𝑝 (Var (𝑓) − Var(𝑓𝑝))

 = 𝐸owen − 4𝐹 × Var(𝑓𝑝) + 4𝐹𝑝 (Var(𝑓) − Var(𝑓𝑝)) .

 

 
The efficiency of Jansen’s estimator is 

𝐸jansen = 2𝐹 × Var (𝑓), 

and the efficiency of cv1 is 

𝐸𝑐𝑣  = (Var (𝑓) − Var (𝑓𝑝)) × (2𝐹 + 2𝐹𝑝)

 = 2𝐹 × Var (𝑓) − 2𝐹 × Var (𝑓𝑝) + 2𝐹𝑝 (Var (𝑓) − Var (𝑓𝑝))

 = 𝐸jansen − 2𝐹 × Var (𝑓𝑝) + 2𝐹𝑝 (Var (𝑓) − Var (𝑓𝑝)) .

 

 

Therefore if Var (𝑓𝑝) ≈ Var (𝑓) we expect the control variate estimators to have better (smaller) efficiency than 

that of Owen and Jansen. 
 

5. Numerical results 

In this section, we first compare the PCE and Bayesian PCE methods when they are used to estimate the integral of 
two test functions: Ishigami and Morris functions. The Ishigami function (Ishigami & Homma, 1990) is defined 
as 

𝑓(𝐱) = sin (𝑥1) + 𝑎sin
2 (𝑥2) + 𝑏𝑥3

4sin (𝑥1), 

where 𝐱 = (𝑥1, 𝑥2, 𝑥3) ∼ 𝑈[−𝜋, 𝜋]
3. In our numerical results we take 𝑎 = 7, 𝑏 = 0.1.  

 
The Morris function (Morris, 1991) is 

𝑌 = 𝛽0 +∑  

20

𝑖=1

𝛽𝑖𝑋𝑖 +∑  

20

𝑖<𝑗

𝛽𝑖𝑗𝑋𝑖𝑋𝑗 + ∑  

20

𝑖<𝑗<𝑘

𝛽𝑖𝑗𝑘𝑋𝑖𝑋𝑗𝑋𝑘 + ∑  

20

𝑖<𝑗<𝑘<𝑙

𝛽𝑖𝑗𝑘𝑙𝑋𝑖𝑋𝑗𝑋𝑘𝑋𝑙 

where 

𝑋𝑖 = {
2(1.1𝑥𝑖/(𝑥𝑖 + 0.1) − 0.5)  if 𝑖 = 3,5,7

2(𝑥𝑖 − 0.5)  otherwise 
 

 
and 𝑥𝑖 ∼ 𝑈(0,1). The coefficients 𝛽𝑖  are: 

{
 

 
𝛽𝑖 = 20  for 𝑖 = 2,… , 10
𝛽𝑖𝑗 = −15  for 𝑖, 𝑗 = 1,… , 6

𝛽𝑖𝑗𝑘 = −10  for 𝑖, 𝑗, 𝑘 = 1,… , 5

𝛽𝑖𝑗𝑘𝑙 = 5  for 𝑖, 𝑗, 𝑘, 𝑙 = 1,… , 4.

 

 

The remaining coefficients are given by 𝛽0 = 0,  𝛽𝑖 = (−1)𝑖  and 𝛽𝑖𝑗 = (−1)𝑖+𝑗. 

 
To compare PCE and Bayesian PCE numerically we will estimate the relative error of each method which is 
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defined as 

𝜖 =
𝔼[𝑓(𝐱) − 𝑓𝑝(𝐱)]

2

Var [𝑓(𝐱)]
, 

where 𝑓(𝐱)  is the exact function evaluation and 𝑓𝑝(𝐱) is the estimated truncated PCE for Ishigami and Morris 

functions. We use the package UQLab (Marelli & Sudret, 2014) to compute the PCE and Bayesian PCE. For the 
truncation level we use 𝑝 = 6 for the Ishigami function and 𝑝 = 3 for the Morris function. We estimate 𝜖 via 
Monte Carlo simulation 

𝜖 =
𝑀 − 1

𝑀
[
∑  𝑀
𝑖=1  (𝑓(𝐱

(𝑖)) − 𝑓𝑝(𝐱
(𝑖)))

2

∑  𝑀
𝑖=1   (𝑓(𝐱

(𝑖)) − 𝜇̂)2
], 

where 𝐱(𝑖), 𝑖 = 1, … ,𝑀 is a random sample of size 𝑀, and 𝜇̂ =
1

𝑀
∑𝑖=1
𝑀  𝑓(𝐱(𝑖)) is the sample mean of the function 

evaluations. 
 
Fig. 1 plots the relative error of PCE and Bayesian PCE against the sample size M. The Bayesian PCE has smaller 
error than PCE for smaller sample sizes, and as the sample size increases the error becomes similar. These results 
explain our motivation to develop control variate estimators for Sobol’ indices based on Bayesian PCE. 
 
 

  

Figure 1: Relative error of PCE and Bayesian PCE using Sobol’ sequence (left: Ishigami function, right: Morris 
function). 
 

 
In the rest of this section we will consider two problems; an SIR model and the Stiefel canonical distance model. 
Building an accurate PCE model for these problems is computationally expensive: the truncation level has to be 
relatively large and the function evaluations are expensive. We will use our control variate estimators based on a 
Bayesian PCE with truncation level two (𝑝 = 2) to estimate the Sobol’ indices. We will compare the control variate 
estimators with (i) the pure Bayesian PCE approach where one computes the Sobol’ indices from Eqns. (8) and (9), 
(ii) the estimators of Owen, Janon, Azzini. Since we are comparing a mix of unbiased and biased estimators, we 
cannot use sample variance as a measure of error: the biased estimators may have a small sample variance but 
large actual error. Instead we use the mean square error (MSE): 

MSE =
1

𝐾
∑  

𝐾

𝑘=1

(𝑆̂(𝑘) − 𝑆)
2
, 

where 𝑆 is the “exact” solution obtained from a large Monte Carlo simulation, and 𝑆̂(1), … , 𝑆̂(𝐾) are 𝐾 
independent estimates for 𝑆. Consequently, we define the efficiency of a Monte Carlo estimator 𝐵 as 𝐸𝐵 = 
MSE𝐵 × 𝑡𝐵, where 𝑡𝐵 is the computing time. For the control variate methods, the computing time also 
includes the time for estimating the Bayesian PCE coefficients 𝑘𝑖. 

1 

                                                                 
1 There could be a scenario where one computes the Bayesian PCE and fp, and then computes Sobol’ sensitivity indices many 

times. In a situation like that, one might consider computing the PCE coefficients as a part of the initialization, and not 
include the computing time in the efficiency calculations. That would make the control variate estimators more efficient 
than what is reported here.  
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We use randomized quasi-Monte Carlo methods2 to generate the estimates 𝑆̂(1), … , 𝑆̂(𝐾), where each estimate 

𝑆̂(𝑘) is obtained using the first 500 Sobol’ vectors of the corresponding sequence, setting the sample size N = 500 
in the definition of the Monte Carlo estimators in Sections 2 and 4. 

5.1 SIR model 

The SIR model is a commonly used model for disease dynamics 

𝑑𝑆

𝑑𝑡
= 𝛿𝑁 − 𝛿𝑆 − 𝛾𝑘𝐼𝑆, 𝑆(0) = 𝑆0

𝑑𝐼

𝑑𝑡
= 𝛾𝑘𝐼𝑆 − (𝑟 + 𝛾)𝐼, 𝐼(0) = 𝐼0

𝑑𝑅

𝑑𝑡
= 𝑟𝐼 − 𝛾𝑅, 𝑅(0) = 𝑅0

 

where 𝑆(𝑡), 𝐼(𝑡)and 𝑅(𝑡) are the number of susceptible, infectious and recovered individuals in a population of 
size 𝑁 = 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡). The parameters 𝛾, 𝑘, 𝑟 denote the infection coefficient, the interaction coefficient, 
and the recovery rate, respectively. 𝛿 denotes the birth and death rate, which are assumed to be equal here. We 
assume that the input  𝜃 = [𝛾, 𝑘, 𝑟, 𝛿]  follows the uniform distribution on (0,1)4. Consider the scalar response 

𝑦 = ∫  
1

0

𝑅(𝑡, 𝜃)𝑑𝑡, 

where  𝑆0 = 900, 𝐼0 = 100, 𝑅0 = 0. We want to estimate the sensitivity of 𝑦 with respect to the parameters 
in 𝜃. 
 
We use 3,300,000 function evaluations to estimate the “exact” values for Sobol’ indices using Janon’s estimator as 
shown in Table 1. These are the values we use for the exact value in the MSE calculations. 
 

Table 1: Sobol’ indices for the SIR model 

 S1 S2 S3 S4 

lower Sobol’ 0.0316 0.0303 0.8424 0.0488 

upper Sobol’ 0.0576 0.0575 0.8743 0.0611 

 

Tables 2 and 3 display the efficiency of the control variate methods, and the Bayesian PCE method for truncation 
levels 2 through 5. There are four Sobol’ indices that are estimated and there are four corresponding efficiencies 
given in the table rows. The last row displays the computing time for each estimator. Table 2 is for the lower 
Sobol’ indices, and Table 3 for the upper. Among different Bayesian PCE methods, the one with truncation level 
𝑝 = 3  seems to be the most efficient (lower efficiency means better efficiency) approach in both tables. For 
the lower Sobol’ indices, cv1 has slightly better efficiency in two cases than the optimal Bayesian PCE approach, 
and worse in the rest. cv2 is better than the optimal Bayesian PCE in one case, and worse in the others. The 
ratio of efficiency in favor of Bayesian PCE ranges from 0.6 to 5.9. 
 

Table 2: Comparing efficiency of control variate methods and BPCE for estimating lower Sobol’ indices: SIR model. 

Methods cv1(𝑝 = 2) cv2(𝑝 = 2) BPCE(𝑝 = 2) BPCE(𝑝 = 3) BPCE(𝑝 = 4) BPCE(𝑝 = 5) 

eff1 1.8e-04 7.5e-05 3.4e-05 3.1e-05 4.5e-05 6.5e-05 

eff2 1.3e-04 6.8e-05 2.9e-05 2.7e-05 4.0e-05 6.2e-05 

eff3 3.3e-04 2.2e-04 3.9e-04 3.5e-04 4.8e-04 7.1e-04 

eff4 2.3e-06 1.3e-05 3.6e-06 4.1e-06 6.1e-06 9.9e-06 

time 1.3746 1.3746 0.1523 0.2757 0.6493 1.2910 

 
For the upper Sobol indices, both control variates estimators have better efficiency than the Bayesian PCE 
methods for all cases, except BPCE(𝑝 = 3) versus cv2 for eff4. The factors of improvement favoring control 
methods range from 0.6 to 11. 

                                                                 
 
2 Linear scrambled Sobol’ sequences with a random digital shift of Matoušek (1998). 
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Table 3: Comparing efficiency of control variate methods and BPCE for estimating upper Sobol’ indices: SIR model. 

Methods cv1(𝑝 = 2) cv2(𝑝 = 2) BPCE(𝑝 = 2) BPCE(𝑝 = 3) BPCE(𝑝 = 4) BPCE(𝑝 = 5) 

eff1 3.7e-05 3.5e-05 1.7e-04 1.5e-04 1.9e-04 2.7e-04 

eff2 4.6e-05 2.4e-05 1.8e-04 1.5e-04 2.1e-04 3.1e-04 

eff3 6.0e-05 7.7e-05 1.9e-04 1.6e-04 2.2e-04 3.1e-04 

eff4 5.1e-07 9.5e-06 4.7e-06 5.6e-06 1.2e-05 1.8e-05 

time 0.4733 0.4733 0.1523 0.2757 0.6493 1.2910 

 
 
Next we compare the control variate methods with the estimators of Owen, Janon, and Azzini. Tables 4 and 5 
display the efficiency of the methods. Table 4 shows that Azzini’s estimator has better efficiency for all cases, 
except the fourth Sobol’ index, where cv1 is better, and Azzini’s estimator has a tie with cv2. The next best 
estimator is cv2, although Janon’s estimator has better efficiency than cv2 in one case. 
 
Table 5 displays the efficiency values for estimating the upper Sobol’ index. cv2 has better efficiency than Jansen, 
Janon, Azzini, in all cases except one. cv1 has the best efficiency for the fourth Sobol’ index among all methods, 
and has better efficiency than Jansen, Janon, Azzini, for the remaining indices except for the second Sobol’ index. 
 

Table 4: Comparing efficiency of Monte Carlo estimators for estimating lower Sobol’ indices: SIR model. 

Methods Owen Janon Azzini cv1(𝑝 = 3) cv2(𝑝 = 3) 

eff1 1.6e-04 5.9e-03 3.8e-05 1.8e-04 7.5e-05 

eff2 1.3e-04 5.2e-03 5.1e-05 1.3e-04 6.8e-05 

eff3 4.7e-03 1.9e-04 1.0e-04 3.3e-04 2.2e-04 

eff4 1.8e-05 5.9e-03 1.3e-05 2.3e-06 1.3e-05 

 
 

Table 5: Comparing efficiency of Monte Carlo estimators for estimating upper Sobol’ indices: SIR model. 

Methods Jansen Janon Azzini cv1(𝑝 = 3) cv2(𝑝 = 3) 

eff1 7.7e-05 7.7e-05 1.4e-04 3.7e-05 3.5e-05 

eff2 3.1e-05 3.1e-05 2.4e-05 4.6e-05 2.4e-05 

eff3 1.4e-03 1.5e-03 1.1e-04 6.0e-05 7.7e-05 

eff4 3.5e-06 3.1e-06 1.4e-05 5.1e-07 9.5e-06 

 

Numerical results reported in Tables 2 and 3 indicate that overall Bayesian PCE with 𝑝 = 3  is the best method in 
terms of efficiency among the different truncation levels. Why are we not implementing the control variate 
methods cv1 and cv2 with this truncation level and instead use the suboptimal choice 𝑝 = 2? We assume there 
may not be sufficient computing resources for the user to conduct a numerical investigation of the optimal 
truncation level in a practical problem, and we propose using the least expensive non-linear model (𝑝 = 2) in 
constructing the control variate estimators even though using the optimal BPCE will likely improve the control 
variate estimators. 

5.2 Stiefel canonical distance model 

We consider the distance model of a matrix and neighborhood under the canonical metric on Stiefel manifold, 

𝐒𝐭𝑛,𝑘: = {𝑈 ∈ ℝ𝑛×𝑘: 𝑈𝑇𝑈 = 𝐼𝑘}. 

 

Let 𝑑st(𝑈̃, 𝑉) be the Stiefel canonical distance between 𝑈̃ and 𝑉 (see Edelman et al. (1998) for details), 

investigating the distribution of 𝑑St(𝑈̃, 𝑉) for 𝑈̃ around some given 𝑈 ∈ 𝐒𝐭𝑛,𝑘 is useful for approximating the 

directional derivative of the Riemannian exponential on 𝐒𝐭𝑛,𝑘. Since this model involves sampling points on a 

manifold, which is nontrivial in general, we specify a strategy as follows. 
 

For any point 𝑈̃ in a neighborhood of 𝑈 ∈ 𝐒𝐭𝑛,𝑘 with orthogonal complement 𝑈⊥, there is a unique skew 

symmetric matrix 𝐴 = −𝐴𝑇 ∈ ℝ𝑘×𝑘  and a real matrix 𝐵 ∈ ℝ(𝑛−𝑘)×𝑘 such that 

𝑈̃(𝐴, 𝐵): = [𝑈 𝑈⊥]exp ([
𝐴 −𝐵𝑇

𝐵 0
]) [

𝐼𝑘
0
]. 
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Here exp (⋅) is matrix exponential. The lower triangular entries in 𝐴 and all entries in 𝐵 naturally give a 
parameterization of points around 𝑈. In the numerical results, we set 𝑛 = 5 and 𝑘 = 2, then there are 7 
parameters 𝐱 ∶= (𝑥1, ⋯ , 𝑥7) that determine 𝐴, 𝐵 as 

𝐴(𝐱) ∶= [
0 −𝑥1
𝑥1 0

] , 𝐵(𝐱) ∶= [

𝑥2 𝑥5
𝑥3 𝑥6
𝑥4 𝑥7

], 

which further determines 𝑈̃ as 𝑈̃(𝐱) ∶= 𝑈̃(𝐴(𝐱), 𝐵(𝐱)). By generating independent samples 𝐱(1), ⋯ , 𝐱(𝑁) from 

uniform distribution on (−1,1)7, and computing 𝑑St(𝑈̃(𝐱), 𝑉) (using the algorithm from Zimmermann (2017)) 

for each x(i), we can approximate 𝔼[𝑑St(𝒩, 𝑉)] on the neighborhood 

𝒩 ∶= {𝑈̃(𝐱): ∥ 𝐱 ∥∞≤ 1  𝑑st (𝑈̃(𝐱), 𝑈) =∥ 𝐱 ∥2} 

via the sample mean.3 
 
We use 4,950,000 function evaluations to estimate the “exact” values for the Sobol’ indices for the inputs 

𝑥1, … , 𝑥7, where the output is 𝑑St(𝑈̃, 𝑉), using Janon’s estimator. The results are shown in Table 6. 
 

Table 6: Sobol’ indices for Stiefel canonical distance model. 

 S1 S2 S3 S4 S5 S6 S7 

lower Sobol’ 0.1686 0.2106 0.1058 0.1596 0.1068 0.0316 0.0560 

upper Sobol’ 0.2366 0.2926 0.1544 0.2300 0.1754 0.0735 0.1243 

 
Tables 7 and 8 display the efficiency of the control variate methods, and the Bayesian PCE method for truncation 
levels 2 through 5, and the computing times. There are seven Sobol’ indices that are estimated. Table 7 presents the 
lower Sobol’ indices, and Table 8 the upper ones. The Bayesian PCE with 𝑝 = 3  seems to be the best method among 
the different Bayesian PCE methods for estimating the lower Sobol’ indices. There is no clear distinction between 
cv1, cv2, and BPCE(𝑝 = 3) methods in Table 7. 
 

Table 7: Comparing efficiency of control variate methods and BPCE for estimating lower Sobol’ indices: Stiefel canonical distance 
model. 

Methods cv1(𝑝 = 2) cv2(𝑝 = 2) BPCE(𝑝 = 2) BPCE(𝑝 = 3) BPCE(𝑝 = 4) BPCE(𝑝 = 5) 

eff1 5.5e-03 1.4e-03 1.7e-03 4.5e-04 1.8e-03 3.3e-02 

eff2 6.9e-05 1.0e-03 3.6e-03 4.6e-04 2.5e-03 4.0e-02 

eff3 4.6e-04 6.4e-04 3.8e-04 4.5e-04 1.9e-03 9.9e-03 

eff4 1.5e-03 1.2e-03 1.2e-03 4.4e-04 4.0e-03 2.6e-02 

eff5 2.6e-04 3.2e-04 3.3e-04 3.1e-04 1.2e-03 8.6e-03 

eff6 1.1e-04 1.8e-04 5.9e-05 1.2e-04 6.4e-04 1.9e-03 

eff7 3.7e-04 3.1e-04 3.2e-04 2.4e-04 9.6e-04 3.9e-03 

time 5.3468 5.3469 3.7488 5.3001 27.5277 70.5805 
 

 
Table 8: Comparing efficiency of control variate methods and BPCE for estimating lower Sobol’ indices: Stiefel canonical distance 
model. 

Methods cv1(𝑝 = 2) cv2(𝑝 = 2) BPCE(𝑝 = 2) BPCE(𝑝 = 3) BPCE(𝑝 = 4) BPCE(𝑝 = 5) 

eff1 2.6e-03 2.3e-03 2.0e-03 1.6e-03 8.2e-03 2.4e-02 

eff2 7.7e-04 1.4e-03 1.7e-03 2.2e-03 8.7e-03 2.4e-02 

eff3 3.8e-04 8.8e-04 3.9e-03 2.4e-03 9.0e-03 3.8e-02 

eff4 5.8e-04 1.4e-03 6.0e-03 4.4e-03 1.1e-02 4.9e-02 

eff5 4.3e-04 6.9e-04 7.1e-03 3.6e-03 1.2e-02 7.2e-02 

eff6 4.5e-04 5.9e-04 1.7e-03 1.2e-03 5.3e-03 3.9e-02 

eff7 2.8e-04 2.8e-04 2.9e-03 2.1e-03 9.6e-03 6.2e-02 

time 6.8774 6.8774 3.7488 5.3001 27.5277 70.5805 

                                                                 
3 Note that for a neighborhood different than the N here, one is expected to find an appropriate parameterization that 
describes such neighborhood with independent parameters in [−1, 1]. 
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For the upper Sobol’ indices, Bayesian PCE with 𝑝 = 3 is again the best method among the different Bayesian 
PCE methods. From Table 8 we see that cv1 and cv2 have better efficiency than the optimal Bayesian PCE 
method in all cases except one. The factor of improvement favoring control variate methods range from 1.5 to 8.3. 
 
Next we compare the efficiencies of the Monte Carlo estimators. Table 9 presents the results for the lower 
Sobol’ indices, and Table 10 presents the upper indices. For the lower Sobol’ indices, cv1 and cv2 have better 
efficiency than all the other methods, for all cases except one, where Azzini has the same result as cv1 for the 
fourth index. The efficiency ratio in favor of cv1 (efficiency of a method divided by efficiency of cv1) ranges from 
0.97 to 1829, and the efficiency ratio in favor of cv2 ranges from 1.28 to 882. For the upper Sobol’ indices, cv1 has 
better efficiency than Owen, Janon, and Azzini for all cases, and cv2 has better efficiency than Owen, Janon, and 
Azzini for all cases except the fifth index. The efficiency ratio in favor of cv1 ranges from 1.25 to 52, and the 
efficiency ratio in favor of cv2 ranges from 0.58 to 58. 
 

Table 9: Comparing efficiency of Monte Carlo estimators for lower Sobol’ indices: Stiefel canonical distance model. 

Methods Owen Janon Azzini cv1(𝑝 = 2) cv2(𝑝 = 2) 

eff1 5.6e-01 1.4e-02 5.8e-02 5.5e-03 1.4e-03 

eff2 1.7e-03 1.3e-01 6.2e-03 6.9e-05 1.0e-03 

eff3 1.5e-03 1.5e-01 8.6e-04 4.6e-04 6.4e-04 

eff4 2.1e-03 1.3e-01 1.5e-03 1.5e-03 1.2e-03 

eff5 4.2e-04 1.7e-01 2.0e-03 2.6e-04 3.2e-04 

eff6 7.6e-04 1.6e-01 1.5e-03 1.1e-04 1.8e-04 

eff7 1.3e-03 1.7e-01 1.5e-03 3.7e-04 3.1e-04 
 

 
Table 10: Comparing efficiency of Monte Carlo estimators for upper Sobol’ indices: Stiefel canonical distance model. 

Methods Jansen Janon Azzini cv1(p = 2) cv2(p = 2) 

eff1 1.3e-01 1.4e-01 1.2e-01 2.6e-03 2.3e-03 

eff2 3.3e-03 3.2e-03 1.1e-02 7.7e-04 1.4e-03 

eff3 9.2e-04 8.1e-04 4.0e-03 3.8e-04 8.8e-04 

eff4 8.2e-04 9.0e-04 7.2e-03 5.8e-04 1.4e-03 

eff5 5.4e-04 5.6e-04 4.0e-03 4.3e-04 6.9e-04 

eff6 1.5e-03 1.5e-03 2.0e-03 4.5e-04 5.9e-04 

eff7 7.3e-04 6.8e-04 3.1e-03 2.8e-04 2.8e-04 
 

6. Conclusions 

Numerical results suggest the proposed control variate methods are competitive when function evaluation is 
expensive, and a low-order (B)PCE expansion is not a good approximation to the function. The Stiefel distance 
model is significantly more expensive than the SIR model, and control variate methods perform better compared 
to the SIR model. The control variate methods also perform better, in general, for upper Sobol’ indices estimation 
than the lower indices. The reason is we use the less expensive Jansen’s estimator in constructing the control for 
the upper indices, as opposed to Owen’s estimator for the lower indices. One can develop control variate 
estimators using other estimators, or other surrogate models than (B)PCE, and explore the benefits of this 
approach in computationally expensive problems. 
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