
Supplementary Material

Global sensitivity analysis of the dynamics of a distributed hydrological model at the catchment scale

Figure S1: The first 100 output time series for all plots m=1..14 (out of 3000 simulations). The number of simulations presenting a saturated soil surface for longer than 100 hours are denoted next to the plot number (previously seen in Table 1). The plots considered belonging to the group \mathcal{G}_{sat} have a bold black frame.

Table S1: PESHMELBA parameters selected for the sensitivity analysis. The suffixes surf, interm and deep specify the soil horizon; soil1, soil2 and soil3 specify the soil type (SU1, SU2, SU3) and (VFZ) denotes vegetative buffer strips. Gaussian, lognormal and uniform distributions are $\mathcal{N}(\mu,\sigma)$, $\mathcal{L}\mathcal{N}(\mu,\sigma)$ and U(a,b), thetar is bounded to [0,1] and the PCE basis accounts for the truncated gaussian, following Marelli & Sudret (2014).

Name	Definition	Unit	Distribution
thetas_surf_soil1	water content at saturation	$[L^3L^{-3}]$	$\mathcal{N}(0.3375, 0.0338)$
thetas_interm_soil1		$[L^3L^{-3}]$	$\mathcal{N}(0.3362, 0.0336)$
thetas_deep_soil1		$[L^3L^{-3}]$	$\mathcal{N}(0.2844, 0.0284)$
thetas_surf_soil2		$[L^{3}L^{-3}]$	$\mathcal{N}(0.3375, 0.0338)$
thetas_interm_soil2		$[L^3L^{-3}]$	$\mathcal{N}(0.3537, 0.0354)$
thetas_deep_soil2		$[L^3L^{-3}]$	$\mathcal{N}(0.4162, 0.0416)$
thetas_surf_soil3		$[L^3L^{-3}]$	$\mathcal{N}(0.3375, 0.0338)$
thetas interm soil3		$[L^{3}L^{-3}]$	$\mathcal{N}(0.3322, 0.0332)$
thetas_deep_soil3		$[L^3L^{-3}]$	$\mathcal{N}(0.316, 0.0316)$
thetas_surf_soil1(VFZ)		$[L^3L^{-3}]$	$\mathcal{N}(0.3375, 0.0338)$
thetas_surf_soil2(VFZ)		$[L^3L^{-3}]$	$\mathcal{N}(0.3375, 0.0338)$
thetas_surf_soil3(VFZ)		$[L^3L^{-3}]$	$\mathcal{N}(0.3375, 0.0338)$
thetar_surf_soil1	residual water content	$[L^3L^{-3}]$	$\mathcal{N}(0.0372, 0.0093)$
thetar_deep_soil1		$[L^3L^{-3}]$	$\mathcal{N}(0.0661, 0.0165)$
thetar_surf_soil2		$[L^3L^{-3}]$	$\mathcal{N}(0.0372, 0.0093)$
thetar_interm_soil2		$[L^3L^{-3}]$	$\mathcal{N}(0,0.0093)$
thetar_deep_soil2		$[L^3L^{-3}]$	$\mathcal{N}(0,0.0093)$
thetar_surf_soil3		$[L^3L^{-3}]$	$\mathcal{N}(0.0372, 0.0093)$
thetar_deep_soil3		$[L^3L^{-3}]$	$\mathcal{N}(0.0612, 0.0153)$
thetar_surf_soil1(VFZ)		$[L^3L^{-3}]$	$\mathcal{N}(0.0372, 0.0093)$
thetar_surf_soil2(VFZ)		$[L^3L^{-3}]$	$\mathcal{N}(0.0372, 0.0093)$
hg_surf_soil1	Van Genuchten water retention curve parameter	[-]	$\mathcal{N}(-9.69, 0.969)$
hg_surf_soil2	Tan Condition trater recention out to parameter	[-]	$\mathcal{N}(-9.69, 0.969)$
hg_deep_soil2		[-]	$\mathcal{N}(-30.18, 3.018)$
hg_surf_soil3		[-]	$\mathcal{N}(-9.69, 0.969)$
hg_surf_soil1(VFZ)		[-]	$\mathcal{N}(-9.69, 0.969)$
hg_surf_soil2(VFZ)		[-]	$\mathcal{N}(-9.69, 0.969)$
hg_surf_soil3(VFZ)		[-]	$\mathcal{N}(-9.69, 0.969)$
mn_surf_soil1	Van Genuchten water retention curve parameter	[-]	$\mathcal{N}(0.2685, 0.0268)$
mn_deep_soil1	•	[-]	$\mathcal{N}(0.2274, 0.0227)$
mn_surf_soil2		[-]	$\mathcal{N}(0.2685, 0.0268)$
mn interm soil2		[-]	$\mathcal{N}(0.1289, 0.0129)$
mn_deep_soil2		[-]	$\mathcal{N}(0.1,0.01)$
mn_surf_soil3		[-]	$\mathcal{N}(0.2685, 0.0268)$
mn deep soil3		[-]	$\mathcal{N}(0.1791, 0.0179)$
mn_surf_soil1(VFZ)		[-]	$\mathcal{N}(0.2685, 0.0268)$
mn_surf_soil2(VFZ)		[-]	$\mathcal{N}(0.2685, 0.0268)$
mn_surf_soil3(VFZ)		[-]	$\mathcal{N}(0.2685, 0.0268)$
Ks_surf_soil2	hydraulic conductivity at total saturation	[cm/h]	LN (2.6291,0.198)
Ks_interm_soil2	,	[cm/h]	LN (2.0292,0.198)
Ks_interm_soil2		[cm/h]	LN (1.2206,0.198)
Ks_deep_soil2		[cm/h]	$\mathcal{LN}(0.3391, 0.198)$
Ks_interm_soil3		[cm/h]	LN (2.3762,0.198)
Ks_surf_soil1(VFZ)		[cm/h]	LN (2.6884,0.198)
Ks_surf_soil2(VFZ)		[cm/h]	LN (2.6884,0.198)
Ks_surf_soil3(VFZ)		[cm/h]	LN (2.6884,0.198)
Kx_surf_soil2	hydraulic conductivity at soil matrix saturation	[cm/h]	$\mathcal{LN}(-2.2926, 0.198)$
Kx_interm_soil2	·	[cm/h]	$\mathcal{LN}(-2.833, 0.198)$
veget_LAImax_1	maximal Leaf Area Index	[-]	U(2,3)
plot_hpond	maximal ponding height of the plots	[cm]	U(0.8,1.2)
river_di	distance between the riverbed and the aquifer	[cm]	U(120,180)
river_ks	hydraulic conductivity of the riverbed at saturation	[<i>cm/h</i>]	LN (2.1268,0.198)