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Abstract 
The PESHMELBA model simulates water and pesticide transfers at the catchment scale. Its objective is to help the 
process of decision making in the common management of long-term water quality. Performing the global 
sensitivity analysis (GSA) of this type of model is necessary to trace the output variability to the input parameters. 
The goal of the present work is to perform a GSA, while considering the spatio-temporal nature and the high 
dimensionality of the model. The output considered is the surface moisture simulated over a two-month period 
on a catchment of assorted mesh elements (plots). The GSA is performed on the dynamical outputs, rewritten 
through their functional principal components. Sobol’ indices are then estimated through polynomial chaos 
expansion on each principal component. The analysis differs between the two types of behaviour observed in the 
surface moisture outputs. The hydrodynamic properties of the surface soil have a dominant influence on the 
average surface moisture. Nonetheless, the parameters describing deeper soil layers influence the output 
dynamics of those plots where the surface moisture is saturated. We obtain Sobol’ indices with high precision 
while using a limited number of model estimations and considering the models spatio-temporal nature. The 
physical interpretation of the GSA confirms and augments our knowledge on the model. 
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model 
 

 

1.  Introduction 
Pesticide use is a major issue in sustainable agriculture and water quality. Therefore, it is important to have the 
knowledge and the tools to best estimate the risks associated with their use and propose appropriate corrective 
actions. The PESHMELBA model (Pesticides and Hydrology: modeling at the catchment scale), Rouzies et al. 
(2019) simulates processes involved in water and pesticide transfers at the catchment scale, in order to compare 
different scenarios of landscape management and their impact on water quality. 
 
An important step in the journey to PESHMELBA’s operational use is to understand the model variability. Global 
sensitivity analysis (GSA) is useful in this case, as it can trace the output variability back to its input parameters. 
It can also verify the model consistency with respect to the physical processes and enhance the understanding 
of the modeled behavior. However, PESHMELBA outputs are both space and time dependent and the application 
of global sensitivity analysis to spatio-temporal environmental models can be challenging and dependent on the 
particular case studied. 
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Traditionally, variance-based sensitivity analysis Sobol’ (2001) was developed for scalar outputs (Saltelli et al., 
2008). For models with multivariate output (spatial or temporal), extensions of the Sobol’ indices were 
introduced in Lamboni et al. (2011); Gamboa et al. (2014); Xu et al. (2019) or Roux et al. (2021). Other extensions 
explore dependence measures that are not variance-based. Such measures include the HSIC (Da Veiga, 2015; 
Marrel et al., 2015) or random forests (Antoniadis et al., 2021). 
 
However, by obtaining the sensitivity indices for the whole multivariate output, one can overlook the 
sensitivities of locally-based behaviors. Thereby, Saint-Geours et al. (2014) distinct between GSA at multiple 
scales. The smallest scale would be to perform GSA on each component of the output, while larger scale GSA 
studies indices with respect to several components included in a domain of interest. As a matter of fact, if Sobol’ 
indices are available for each component, it is possible to aggregate them through a weighted sum to obtain the 
generalized Sobol’ indices from Gamboa et al. (2014). In such a manner, the non-aggregated indices bring insight 
into local behaviors’ sensitivities, while the aggregated indices synthesize this information over the whole 
domain of interest (spatial or temporal). Still, for models whose outputs have high temporal (or spatial) 
resolution, performing local sensitivity analysis on each component (time step or mesh cell) is not always 
possible. Furthermore, Campbell et al. (2006) argue that this can lead to redundant results, and propose to 
project high dimensional outputs to polynomial or adaptive bases, then perform GSA of the components in the 
reduced-dimension space. This approach is particularly interesting if the extracted components can also be 
interpreted as physical signatures of the model behavior. The case of functional principal component basis and 
the corresponding aggregation of the Sobol’ indices obtained on each component is studied in (Lamboni et al., 
2011; Xiao & Li, 2016). 
 
In environmental science modeling, the extensions were used in various areas. For instance, a sensitivity analysis 
on the spatialized maximum water depth of a coastal flooding risk model in Perrin et al. (2021); both a temporal 
and a spatial sensitivity analysis of a model describing nitrogen transfers in Ferrer Savall et al. (2019); and a 
comparison between various sensitivity indices on a spatio-temporal radionuclide atmospheric dispersion model 
in De Lozzo & Marrel (2017). A sensitivity analysis was also performed for spatially distributed PESHMELBA 
outputs in Rouzies et al. (2023) by calculating site specific sensitivity indices, then aggregating them to blocks 
via the definition provided in Gamboa et al. (2014), but without studying the sensitivity of the dynamics of 
PESHMELBA.  
 
As the previous examples show, there is no universal methodology for performing a sensitivity analysis on spatio-
temporal models. Both the choice of the sensitivity index and its estimator can be guided by various model 
properties such as the space resolution, time resolution or the nature of the input parameters (scalar or 
multivariate). Other important aspects are the number of input parameters and the cost of a model run, since 
the number of model runs needed for sensitivity analysis increases with the number of input parameters. 
 
Metamodels, in particular polynomial chaos expansion (PCE), can be used for sensitivity index calculation at a 
reasonable cost and high efficiency. They are especially useful when the model studied is computationally 
expensive or has a large input space. Indeed, building a PCE via Least Angle Regression (Blatman&Sudret,2011) 
needs a significantly lower number of model simulations than other Monte Carlo based methods. Furthermore, 
once the metamodel is built, the sensitivity index calculation is analytical (Sudret, 2008). Applications of PCE for 
Sobol’ index calculation can be found in Fajraoui et al. (2011) or in Rouzies et al. (2023). For multidimensional 
outputs, principal component analysis (PCA) can be used prior to PCE to reduce the dimensionality, as done for 
an urban drainage model in Nagel et al. (2020). Furthermore, PCA can be used to find particular geometric 
features in the output. In that case, sensitivity indices can bring insight in the underlying physical processes of 
the model, as proposed in Garcia-Cabrejo & Valocchi (2014) and tested on a simple problem of reactive transport 
in porous media. To the best of our knowledge, such methods were not yet deployed on hydrological or pesticide 
transfer models. 
 
In the present work, we perform a global sensitivity analysis of the spatio-temporal, highly dimensional, process-
based water and pesticide transfer model PESHMELBA. We are particularly interested in detecting different 
behaviors in the model dynamics, and analyzing which inputs drive their occurrence. Another objective is to 
deploy this type of method for spatio-temporal outputs, such as those of distributed hydrological models 
(whether physically-based or semi-conceptual), as this has never been done on spatio-temporal variables in 
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hydrology, but essentially on integrated variables, mostly cumulative outputs or quality criteria such as Nash–
Sutcliffe model efficiency coefficient (Saltelli et al., 2019; Rouzies et al., 2023). 
The outputs considered are the surface moisture outputs simulated over a two-month period on a catchment 
of assorted mesh elements (plots). In this study, the plots are observed one at a time. The sensitivity analysis is 
performed on their temporal outputs, which are rewritten through their principal components. Then, Sobol’ 
indices are estimated through polynomial chaos expansion on each principal component. 
 
The article is organized as follows. Section 2 describes the methodology, a brief description of Sobol’ indices and 
their estimation via polynomial chaos expansion, then the functional principal component decomposition and 
two generalizations of sensitivity indices when the outputs are multidimensional. Section 3 presents the case 
study. The model PESHMELBA is introduced and the meaning of its input parameters explained. The results are 
presented in Section 4 in the following order. First, the resulting functional principal components are interpreted 
for each plot, then each PCE is validated, the Sobol’ indices obtained are reported and commented by making a 
connection with the physics of the model. Finally, the Sobol’ indices are aggregated temporally and spatially to 
the catchment scale. 
 

2. Methodology 
Let ℳ: ℝ௄ → ℝ be a model with K mutually independent scalar inputs 𝑋ଵ, … , 𝑋௄ and a scalar output 𝑌. 

𝑌 = ℳ(𝑋ଵ, … , 𝑋௄) = ℳ(𝑿) 

2.1 Sobol’ Indices 

The Sobol’ indices are a widely accepted way of quantifying the sensitivity of the model output on the input 
parameters. The Sobol’ approach is variational; it studies the impacts of input parameters on the output 
variance. 
 
Let 𝐷 be the variance of the model output 𝑌 : 

𝐷 = 𝕍𝑎𝑟 (𝑌). 
 
Let 𝐷௜  be the variance of the expectation of the output conditioned on input parameter 𝑋௜: 

𝐷௜ = 𝕍𝑎𝑟(𝔼[𝑌 ∣ 𝑋௜]). 
 
Then, the first order Sobol’ indices of the input parameter 𝑋௜  are defined as the ratio between the conditional 
variance and the total variance of the output (Sobol’, 2001): 

𝑆௜ = 𝐷௜/𝐷.  
 
Let 𝐷௜భ,…௜ೞ

 be the variance of the expectation of the output conditioned on the set of input parameters 
൛𝑋௜భ

, … 𝑋௜ೞ
ൟ minus the variance of the expectation of the output conditioned on all of its subsets: 

𝐷௜భ,…௜ೞ
= 𝕍𝑎𝑟൫𝔼ൣ𝑌 ∣ 𝑋௜భ

, … 𝑋௜ೞ
൧൯ − ෍  

𝔗ೞ

 𝐷௜భ,…௜ೖ
, 

𝔗௦ = ൛{𝑖ଵ, … 𝑖௞}: {𝑖ଵ, … 𝑖௞} ⫋ {𝑖ଵ, … 𝑖௦}ൟ. 
 
Similarly, the Sobol’ index of the higher-order interactions of input parameters 𝑋௜భ

, … 𝑋௜ೞ
 is defined as the ratio 

between the conditional variance of the output to those parameters minus the variances of the output 
conditioned to any other subset of the concerned input parameters, and the total variance of the output: 

𝑆௜భ,…௜ೞ
= 𝐷௜భ,…௜ೞ

/𝐷. 
 
The total Sobol’ index of input parameter 𝑋௜  is defined as the sum of all Sobol’ indices of those sets which contain 
it. 

𝑆்೔
= ෍  

𝔗ೞ

 𝐷௜భ,…,௜ೞ
/𝐷, 

𝔗௦ = ൛{𝑖ଵ, … , 𝑖௦}: ∃𝑘, 1 ≤ 𝑘 ≤ 𝑠, 𝑖௞ = 𝑖ൟ. 
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As all Sobol’ indices of first order and Sobol’ indices of higher orders sum up to 1, an alternative definition for 
the total Sobol’ index is: 

𝑆்೔
= 1 − 𝑆∼௜, 

where 𝑆∼௜  is the sum of all Sobol’ indices 𝑆௜భ,…௜ೞ
 that do not include index 𝑖. 

 
Sobol’ indices have some nice properties such as explaining explicitly the influence of a parameter on its own 
(first order Sobol’ indices) or in interaction with other parameters (total Sobol’ indices). However, estimating 
them is not always an easy task, especially when it comes to large models with many input parameters and 
computationally expensive simulations. 

2.2 Polynomial chaos expansion and the link with Sobol’ indices 

Except for simple analytical models, Sobol’ indices are typically calculated via stochastic methods (Saltelli et al., 
2008). Obtaining precise Sobol’ indices via these methods requires an efficient exploration of the input 
parameters’ space. One of the main challenges is dealing with large input spaces. Many points are needed to 
explore a highly dimensional space (curse of dimensionality). As each point is evaluated via the original model, 
this task becomes difficult when the original model is computationally expensive. In this work, polynomial chaos 
expansions (PCE) are used to reduce the cardinality of the experimental design. 
 
The model output can be rewritten via its polynomial chaos expansion decomposition as: 

𝑌 = ෍  

𝜶∈ℕ಼

𝑦𝜶Ψ𝜶(𝑿) = ℳ(𝑿) (1) 

 
where 𝐾 is the number of input parameters, {Ψ𝜶}𝜶∈ℕ಼ is a basis of multivariate orthonormal polynomials, 
constructed according to the marginal probability density functions 𝑓௑೔

 of the input parameters, 𝜶 ∈ ℕ௄  is the 
vector of multi-indices, i.e. 𝜶 = (𝛼ଵ, 𝛼ଶ, … , 𝛼௄)  where each 𝛼௜  corresponds to the partial degree with which the 
𝑖th entry parameter 𝑋௜  is represented in the basis component Ψ𝜶  and 𝑦𝜶  are the coefficients (𝑦𝜶  are the 
coordinates of the output 𝑌 in the new vectorial space defined by the basis {Ψ𝜶}𝜶∈ℕ಼). 
 
Once the model ℳ is rewritten via its polynomial chaos expansion, the Sobol’ indices are obtained analytically 
from the coefficients 𝑦𝜶, (Sudret, 2008). Indeed, by additioning the squares of all coefficients 𝑦𝜶  whose multi-
index’s 𝜶 only non-null index is the 𝑖th index 𝛼௜ ≠ 0, and dividing it by the total variance of the PCE metamodel 
𝐷, we obtain the Sobol’ index of first order of the input parameter 𝑋௜: 

𝑆௜ = ෍  

𝜶∈𝔗೔

 𝑦𝜶
ଶ/𝐷, 

𝔗௜ = ൛𝜶 ∈ ℕ௄: 𝛼௜ > 0, 𝛼௝ஷ௜ = 0ൟ, 

𝐷 = 𝕍𝑎𝑟 ൥ ෍  

𝜶∈ℕ಼

 𝑦𝜶Ψ𝜶(𝑿)൩ = ෍  

𝜶∈ℕ಼

𝜶ஷ{଴}

 𝑦𝜶
ଶ. 

 
Similarly, by additioning the squares of coefficients 𝑦𝜶  whose multi-index 𝜶 satisfies certain properties, the 
Sobol’ indices of the interactions of input parameters and the total Sobol’ indices are also obtained analytically: 

𝑆௜భ,…,௜ೞ
= ෍  

𝜶∈𝔗೔భ,…,೔ೞ

 𝑦𝜶
ଶ/𝐷, 

𝔗௜భ,…,௜ೞ
= ൛𝜶 ∈ ℕ௄: 𝑗 ∈ {𝑖ଵ, … , 𝑖௦} ⇔ 𝛼௝ ≠ 0ൟ, 

𝑆்೔
= ෍  

𝜶∈𝔗೅೔

 𝑦𝜶
ଶ/𝐷, 

𝔗்೔
= {𝜶 ∈ ℕ௄: 𝛼௜ > 0}. 
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Thus, the difficulty and the computational cost of calculating the Sobol’ indices for the original model ℳ can be 
replaced with the difficulty and the computational cost of finding a polynomial chaos expansion ℳ௉஼ா  which 
approximates the behavior of the original model “well enough”. 
 
Section 2.3 explains how to estimate ℳ௉஼ா, how to limit the cardinality of the experimental design and lastly, 
how to evaluate if ℳ௉஼ா  is true to the original model. 

2.3 Estimation of a polynomial chaos expansion 

Let the model ℳ: ℝ௄ → ℝ from the beginning of Section 2 be the original model for which we want to build a 
PCE. Let 𝑓௑೔

 be the marginal probability density function of input parameter 𝑋௜. The goal is to estimate a ℳ௉஼ா  

polynomial chaos expansion of the original model by using a limited number 𝑁train  of original model evaluations: 

ℳ(𝑿) = 𝑌 ≈ ෍  

𝜶∈𝒜೛,೜
಼

𝑦𝜶Ψ𝜶(𝑿) = ℳ௉஼ா(𝑿) 

The first step in PCE approximation is to choose the truncation scheme for 𝜶, denoted by 𝒜௣,௤
௄ . Popular 

truncation schemes limit the maximum degree with which the input parameters 𝑋௜  are represented in the basis. 
This is done by setting an upper limit 𝑝 such that 𝛼௜ < 𝑝 for every 𝑖. The heuristics behind this truncation being 
that most of the influence of the input parameters is captured in low orders of the multivariate polynomials (Le 
Gratiet et al., 2015). For a PCE metamodel with 𝐾 input parameters and 𝑝 the maximum degree of the basis 

polynomial, the cardinality of the basis 𝑐𝑎𝑟𝑑 ൫𝒜௣
௄൯ = ൬

𝐾 + 𝑝
𝑝

൰ increases exponentially with respect to the 

number of input parameters 𝐾. 
 
To further reduce the basis cardinality, the degree of interaction between the input parameters can be limited. 
This is done by introducing 𝑞 ∈ (0,1) and imposing the 𝑞-norm of 𝜶 to be limited by 𝑝, i.e. ∥ 𝜶 ∥௤=

൫∑௜ୀଵ
௄  𝛼௜

௤
൯

ଵ/௤
< 𝑝. Limiting the interactions between input parameters is justified with the sparsity of effects (Le 

Gratiet et al., 2015). This type of truncation shows a drastic decrease in cardinality of 𝒜௣,௤
௄  for a fixed 𝑝. Once 

the truncation scheme is chosen, the creation of the basis {Ψ𝜶}𝜶∈𝒜೛,೜
಼  is straightforward, as it is characterized by 

the marginal probability density functions 𝑓௑೔
. The estimation of the PCE reduces to the estimation of the 

coefficients 𝑦𝜶. To estimate the PCE coefficients 𝑦𝜶  comes down to a linear regression on a training sample of 

pairs of inputs and model outputs ቄ൫𝐱ଵ, ℳ(𝐱ଵ)൯, ൫𝐱ଶ, ℳ(𝐱ଶ)൯, … , ቀ𝐱ேtrain , ℳ൫𝐱ேtrain ൯ቁቅ. 
 
The number of coefficients 𝑦𝜶  to estimate is equal to 𝑐𝑎𝑟𝑑 ൫𝒜௣,௤

௄ ൯ . In order for the linear regression to be 
successful, 𝑁train  should be at least as big as the number of coefficients to estimate. However, the lack of the 
hypothesis 𝑁train ≫ 𝑐𝑎𝑟𝑑 ൫𝒜௣,௤

௄ ൯ can further be tackled via least angle regression (LARS, Blatman & Sudret 
(2011). 
 
Whether the approximated metamodel ℳ௉஼ா  is a good replacement of the original model ℳ is evaluated via 

the coefficient 𝑄ଶ  on a test set ቄ൫𝐱ଵ, ℳ(𝐱ଵ)൯, ൫𝐱ଶ, ℳ(𝐱ଶ)൯, … , ቀ𝐱ேtest , ℳ൫𝐱ேtest ൯ቁቅ. These simulations are not 
used for the calculation of the PCE metamodel coefficients 𝑦𝜶. The coefficient 𝑄ଶ  measures the quality of the 
prediction of a linear regression: 

𝑄ଶ = 1 −
∑  

ேtest 
௡ୀଵ   ൫ℳ(𝐱௡) − ℳ௉஼ா(𝐱௡)൯

ଶ

∑  
ேtest 
௡ୀଵ   (ℳ(𝐱௡) − ℳഥ )ଶ

, (2) 

where ℳ(𝐱௡) is the evaluation of the original model for input parameters set to values 𝐱௡,  ℳ௉஼ா(𝐱௡) is the 
evaluation of the PCE metamodel for input parameters set to values 𝐱௡, and ℳഥ  is the mean of all original model 
evaluations, ℳഥ = ∑௡ୀଵ

ேtest  ℳ(𝐱௡). The closer the 𝑄ଶ is to 1, the better is ℳ௉஼ா  in approximating ℳ.  
 
The estimated Sobol’ indices are calculated analytically from the coefficients of ℳ௉஼ா: 

𝑆̂௜ = ෍  

𝜶∈𝔗೔
∗

 
𝑦𝜶

ଶ

𝐷̂
, (3) 
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𝔗௜
∗ = ൛𝜶 ∈ 𝒜௣,௤

௄ : 𝛼௜ > 0, 𝛼௝ஷ௜ = 0ൟ , 

𝐷̂ = 𝕍𝑎𝑟 ቎ ෍  

𝜶∈𝒜೛,೜
಼

 𝑦𝜶Ψ𝜶(𝑿)቏ = ෍  

𝜶∈𝒜೛,೜
಼

𝜶ஷ{଴}

 𝑦𝜶
ଶ. 

 
The precision of the estimated Sobol’ indices can be evaluated through bootstrap confidence intervals (Dubreuil 
et al., 2014). They are obtained by creating multiple resamples with replacement of the original experimental 
design and calculating the Sobol’ indices from each resample. 

2.4 Sensitivity analysis when model outputs are multidimensional 

In previous sections we have seen the definitions of Sobol’ indices and their estimation for a model with 𝐾 
independent scalar inputs and a scalar output. However, it often happens that the model whose sensitivity we 
wish to study produces outputs over a given time period. 
 
Let ℳ be a model with 𝐾 independent scalar inputs and a dynamic output over a time interval 𝒯 : 

𝑌(𝑡) = ℳ(𝑿, 𝑡),    𝑡 ∈ 𝒯. (4) 

Set 𝜇(𝑡) = 𝔼[𝑌(𝑡)] and assume the output random function to be square integrable: ∫
𝒯

 𝔼(𝑌ଶ(𝑡)) 𝑑𝑡 < ∞. 
We can rewrite the output random function via its principal component (PC) expansion: 

𝑌(𝑡) = 𝜇(𝑡) + ෍  

௝

𝐻௝𝐯௝(𝑡), (5) 

where 𝐯௝(𝑡) is the 𝑗th functional principal component (also called harmonic or mode), and 𝐻௝ ∈ ℝ is the 𝑗th 
functional principal component score (Ramsay & Silverman, 2005). 
 
By decomposing the random variable 𝑌(𝑡) into its principal components (Eq. 5), the variability of 𝑌(𝑡) is 
rewritten in terms of the variabilities of the principal component scores 𝐻௝. The variability of the 𝑗th PC score  
𝐻௝  is denoted with 𝜆௝. The 𝜆௝  are decreasing with respect to 𝑗 by construction. 
 
By truncating the series to the first 𝐽 PCs we obtain an approximation of the output: 

𝑌(𝑡) ≈ 𝜇(𝑡) + ෍  

௃

௝ୀଵ

𝐻௝𝐯௝(𝑡), (6) 

which accounts for ∑௝ୀଵ
௃  𝜆௝/∑௝  𝜆௝  of the total variance in the output 𝑌(𝑡). Oftentimes, 𝐽 is chosen by first setting 

the percentage of total inertia observed in the output that we wish to account for. Then, the number of PCs 𝐽 
that should be kept is deduced. Another choice is to directly set the number of PCs that will be studied. As the 
scores 𝐻௝  are scalar quantities, all theory developed in previous sections for models with scalar outputs can be 
applied. Thus, Sobol’ indices can be obtained for one PC at a time. Furthermore, in order to have a synthetic 
sensitivity index for dynamic outputs, rather than sensitivity indices on each PC, the following definition of a 
generalized sensitivity index is proposed in Lamboni et al. (2011): 

𝐺𝑆𝐼௪ =
∑  ௝   𝜆௝𝑆𝐼௪,௝

∑  ௝ 𝜆௝

, (7) 

where 𝑤 is the group of the input parameters, 𝑆𝐼௪,௝ is the sensitivity index of inputs 𝑤 on the 𝑗௧௛  PC. 
 
Gamboa et al. (2014) propose another way of aggregating sensitivity indices calculated on individual outputs of 
a model with multidimensional outputs: 

𝐴𝑆𝐼௪ =
∑  ெ

௠ୀଵ  𝕍𝑎𝑟൫𝑌(௠)൯𝑆𝐼௪,௠

∑  ெ
௠ୀଵ  𝕍𝑎𝑟(𝑌(௠))

, (8) 

where 𝑌(௠) is the 𝑚th  component of the 𝑀-dimensional output and 𝑆𝐼௪,௠  is the sensitivity index of the set of 
input parameters 𝑤 on the 𝑚th  component of the output. 
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The two definitions coincide when the total variability of the output can be described with a finite number of 
principal components (De Lozzo & Marrel, 2017). 
 

3. Case study 
The PESHMELBA model simulates water and pesticide transfers at the catchment scale of the Morcille river in 
the Beaujolais wine region. The heterogeneity of the catchment’s soil and vegetation types is represented by 
dividing the catchment in different plots. In the studied case, the virtual catchment is divided in 𝑀 = 14 plots, 
each belonging to one of three soil units (SU): SU1 (sandy soil), SU2 (sandy soil on clay) or SU3 (heterogeneous 
sandy soils), illustrated in Figure 1. The virtual catchment is presented with more details in Rouzies et al. (2023). 
 

 

 
Figure 1: The decomposition of the virtual catchment in 14 plots numbered with 𝑚 ∈ {1, … ,14}. Each plot belongs to one of 
the three possible soil units, depicted by different fillings and has one of two possible vegetation types, depicted by the plot’s 
borders (vegetative filter strips have a bold green border, whereas vineyard plots have fine black borders). The separation of 
the soil column under each plot into three soil horizons (surface, intermediary and deep) is illustrated in the upper right corner. 
The depths of the soil horizons varies from one SU to another. Image credit: Rouzies et al. (2023). 
 

 
PESHMELBA is a three-dimensional model, where the heterogeneity of the soil layers along the vertical axis is 
also taken into account. Indeed, the soil column under each plot is decomposed in three layers (soil horizons), 
as in Figure 1. The depth of the soil horizons and their soil properties vary from one SU to another. The soil 
horizons are considered internally homogeneous when it comes to soil hydrodynamical properties. 
 
PESHMELBA has a modular structure, simulating the physical processes of each soil compartment, then coupling 
them via the OpenPALM coupler (Buis et al., 2006). The coupling allows for water and pesticide transfers to 
occur via three types of transfer pathways: infiltration (Richards’ equation solved by Ross, 2003), surface runoff 
(kinematic wave equation) and lateral exchanges (Darcy law). Surface runoff occurs on the surface of the 
catchment, whereas lateral exchanges refer to subsurface transfers occurring in saturated zones. One may refer 
to Rouzies et al. (2019) for more details. 
 
Representing the physical properties of each soil horizon of the catchment results in a large number of input 
parameters. A typical step prior to the calculation of sensitivity indices, is to reduce the number of inputs of 
interest through a screening step on a small experimental design, before performing the variance-based analysis 
on a larger one, limited to the selected inputs (Saltelli et al., 2008). In our case, the number of inputs kept for 
the calculation of Sobol’ sensitivity indices is reduced from 145 to 52 with the elementary effects method 
(Morris, 1991) (not shown here). The marginal probability distributions of the 𝐾 = 52 input parameters 
represent the variability of the parameters across the Morcille catchment and are determined from previous 
studies and available data on the soil, vegetation and pesticide properties of the Morcille catchment, (Frésard, 
2010; Peyrard et al., 2016). The distributions are listed in Table S1 in Supplementary Material and justified in 
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details in Rouzies et al. (2023). Furthermore, the hydrological input parameters are assumed independent (Song 
et al., 2015). 
 
A soil unit is always made out of the same soil horizons; plots {1,2,3,11} ∈ 𝑆𝑈1 are all made of the same soil 
horizons, and the same goes for {4,10,14} ∈ 𝑆𝑈2 and {7,9,12} ∈ 𝑆𝑈3. The previously listed plots correspond to 
vineyard plots, while the remaining plots {5,6,8,13} correspond to vegetative filter strips. A vineyard plot and a 
vegetative filter strip belonging to the same soil type differ in their surface soil horizon. Indeed, the surface 
horizon of the vegetative filter strip has a higher infiltration capacity and adapted hydrodynamical properties, 
while the intermediary and deep horizon maintain the same properties as the vineyard plot. 
 
 

 
                                                                                          
 
Figure 2: Top row: rainfall time series. The same rainfall time series was used for all simulations and plots. Bottom row: surface 
moisture outputs of 20 PESHMELBA model simulations with different input parameter values. Different simulations are 
represented with various shades between orange and purple following no particular order. Outputs are reported for two plots, 
𝑚 = 13 on the left and 𝑚 = 4  on the right. 

 
As an example, the plot 8 and the plot 9 are both of soil type SU2, but 8 is a vegetative filter strip, whereas 9 is 
a vineyard plot. The physical properties of the deep and intermediary horizons of both plots are described by 
the input parameters with the suffix interm_soil2 and deep_soil2, respectively. The physical properties of the 
surface soil horizon of plot 9 are described with the input parameters having the suffix surf_soil2; whereas the 
input parameters describing the properties of surface soil horizon of plot 8 are named with the suffix surf_soil2(V 
FZ). 
 
The output studied in this work is the surface moisture series simulated at 2712 consecutive time steps, 
corresponding to roughly 2500 hours or three months. The output consists in 𝑀 = 14  time series, one for each 
plot. An illustration of these outputs is provided in Figure 2 for two plots, 𝑚 = 13  and 𝑚 = 4. It can be seen 
that the dynamics of the outputs is closely driven by rainfall events. Indeed, the peaks in surface moisture are 
reached right after the rain events. 
 
Furthermore, we observe that most outputs of plot 𝑚 = 13  result in the saturation of the surface moisture 
starting from around time 𝑡 = 1500ℎ. A study of the saturations of the fourteen plots is reported in Table 1. 
Two groups are identified. Plots {2,3,7,9,13} = 𝒢sat  show a saturation in water retention during at least 100 
hours for a significant part of the simulated outputs. On the other hand, the surface moisture of plots 
{1,4,5,6,8,10,11,12,14} ∉ 𝒢sat  do not present long periods of saturation. The definition of the two groups does 
not affect the methodology, as the same approach is deployed on all plots. Rather, it is introduced for a further 
explanation of the results, which vary between the two groups. 
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Note that, the rainfall time series used for the simulation is the same across all simulations and plots; its value 
is fixed to a time series measured on the catchment in a typical winter scenario. Furthermore, as the time steps 
are close, we consider the time to be continuous. The model can be written as: 

⎣
⎢
⎢
⎡

𝑌(ଵ)(𝑡)

𝑌(ଶ)(𝑡)
⋮

𝑌(ெ)(𝑡)⎦
⎥
⎥
⎤

= ℳ(𝑿, 𝑡), 𝑡 ∈ 𝒯, (9) 

with 𝑀 = 14 the number of plots, 𝑿 ∈ ℝ௄ the 𝐾 = 52 input parameters and 𝒯 the considered time period. 
 
 
Table 1: Number of simulations (out of Ntrain = 3000) presenting a saturated surface moisture for more than 100 hours of the 
simulated period. The surface moisture is considered saturated when equal to the water content at saturation, thetas_surf. 
Figure S1 in Supplementary Material illustrates 100 simulated outputs of the fourteen plots. 

𝑚 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

saturated simul. 0 1246 877 0 0 0 2943 0 3000 0 0 20 2483 0 

 

4. Results and discussion 
A space-filling experimental design of 𝑁train = 3000 points is created over the 𝐾 = 52 dimensional input space. 
The space-filling design used is a latin hypercube, optimized with the maximin criteria. The PESHMELBA model 
is evaluated in these points and this sample is used to calculate the first two principal components for each plot. 
Section 4.1 shows the principal component analysis and interprets the principal components. The same sample 
is used to build a metamodel for the first two principal components of each plot. A second latin hypercube 
sample of 𝑁test = 1000 points is generated on the 𝐾 = 52 dimensional input space for the evaluation of the 
metamodels. Section 4.2 studies the quality of the metamodels built. The Sobol’ indices for the principal 
components of the dynamic outputs are found analytically from the metamodel coefficients following Section 
2.2 and Section 2.3. In Section 4.3 the Sobol’ indices are reported and their physical meaning is commented. 

4.1 Functional principal components 

One plot 𝑚 ∈ {1, … ,14} is fixed and its 𝑁train = 3000 temporal outputs 𝑌(௠)  are observed. The outputs 
represent the surface moisture time series of the plot 𝑚 over the period 𝒯. For a fixed plot m, the model can 
thus be written as in Eq. 4. Then, a functional principal component basis is found for the plot m. The basis is 
truncated to the first two components: 

𝑌(௠)(𝑡) ≈ 𝜇(௠)(𝑡) + 𝐻ଵ
(௠)

𝐯ଵ
(௠)(𝑡) + 𝐻ଶ

(௠)
𝐯ଶ

(௠)(𝑡). 

The part of the total variance explained with the first two principal components PC1 and PC2 is listed in Table 2 
per plot. Two groups of plots with similar behavior are identified. One group, with more than 90% of the total 
output variability explained with PC1 and less than 3% with PC2, and a second group, where the variability 
explained by PC1 is a bit lower, but still superior to 80%, whereas PC2 accounts for more than 7%. Interestingly, 
the two groups coincide with {2,3,7,9,13} ∈ 𝒢sat  and {1,4,5,6,8,10,11,12,14} ∉ 𝒢sat , the groups identified in 
Section 3 by a study of their outputs. Furthermore, plots in 𝒢sat  have a larger total variability.  
 

Table 2: Total variability per plot ∑௝  𝜆௝
(௠) and its percentage captured with the 𝑗th PC, i.e. 𝜆௝

(௠)
/∑௝  𝜆௝

(௠), for 𝑗 ∈ {1,2}. 

𝑚 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

∑௝  𝜆௝
(௠) 1.85 2.36 2.10 1.94 1.87 2.04 2.21 1.89 2.66 1.99 1.87 1.85 2.80 1.83 

𝑃𝐶1 0.99 0.82 0.89 0.96 0.99 0.95 0.85 0.99 0.81 0.96 0.99 0.94 0.83 0.97 

𝑃𝐶2 <0.01 0.16 0.08 0.02 <0.01 0.02 0.07 <0.01 0.10 0.02 <0.01 0.03 0.13 0.02 

𝑃𝐶1 + 𝑃𝐶2 0.99 0.98 0.97 0.98 0.99 0.97 0.92 0.99 0.91 0.98 0.99 0.97 0.96 0.99 
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Figure 3: Perturbations on the first two PCs of plots 𝑚 = 4 ∉ 𝒢sat  on the left column and 𝑚 = 13 ∈ 𝒢sat  on the right column. 
The top row shows the perturbations in the direction of PC1, the bottom row shows the perturbations on PC2. The mean of 
the sample outputs is presented with a solid black line. The red dotted line and the blue dashed line represent the output that 
is three standard deviations away from the mean in the direction of the corresponding PC. 

 
As for the interpretations of principal components, PC1 scores (𝐻ଵ) show a strong positive correlation with the 
output at all times 𝑡, and relatively little variation across time (Figure 4). Such behavior is observed across all 
plots, with correlations not descending below 0.75, except for some time steps coinciding with the saturated 
periods of plots. PC1 can thus be interpreted as the global amount of surface moisture during the whole 
simulated period. Indeed, the perturbation on the mean in the direction of the eigenfunction 𝐯ଵ(𝑡) (upper row 
of Figure 3) manifests as a vertical shift of the whole output time series. 
 
 

 
 

Figure 4: Correlations between the principal component scores 𝐻௝
(௠) and the output soil moisture at time t, for each PC (rows), 

and for each plot 𝑚 (curve color). The first column reports the plots 𝑚 ∈ 𝒢sat  and the second column 𝑚 ∉ 𝒢sat . 
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The interpretation of PC2 is different in the two groups. For the group 𝑚 ∈ 𝒢sat , PC2 scores (𝐻ଶ) present a low 
but positive correlation which stays constant up until around 𝑡 = 1500, where it shows a change of sign. The 
correlation then stays negative during the next couple of hundreds of hours (or until the end of the simulation 
for 𝑚 = 13). The period with negative correlation corresponds to the periods where a part of simulations of the 
indicated plots start to saturate (Figure S1 in Supplementary Material). PC2 is thus interpreted as the contrast 
between the soil moisture observed during the saturated period and outside the period of saturation. The 
second group, 𝑚 ∉ 𝒢sat , shows a succession of positive and negative correlations, where the changes of sign 
correspond to rainfall events. This represents a contrast between the surface moisture right after rainfall, and 
the surface moisture after a longer period of time has passed. It can further be interpreted as the surface soil 
layer infiltration rate. The interpretations of PC2 are also illustrated as perturbation on the mean in the direction 
of the eigenfunction 𝐯ଶ(𝑡) (Figure 3). It can be seen that such perturbation results in a contrast during the 
saturation period for 𝑚 = 13 and a change of amplitude for 𝑚 = 4. 

4.2 Polynomial chaos expansion 

For each plot 𝑚 ∈ {1, … ,14}, a PCE is built independently for the first principal component (PC1). A PCE is also 
built for the second principal components (PC2) of plots 𝑚 ∈ {1, … ,14} ∖ {1,8,9,11}. Indeed, the plots {1,8,9,11} 
are excluded as their PC1 alone already accounts for more than 99% of the total variability in the training sample 
(Table 2). 
 
To sum up, the following input-output relations are estimated through PCE: 

𝐻ଵ
(௠)

= ℳଵ
(௠)(𝑿)                  ∀𝑚 ∈ {1, … ,14} 

𝐻ଶ
(௠)

= ℳଶ
(௠)(𝑿)                      ∀𝑚 ∈ {1, … ,14} ∖ {1,8,9,11} 

Where 𝐻ଵ
(௠) (resp. 𝐻ଶ

(௠)) are the scores obtained on PC1 (resp. PC2) of plot 𝑚 and 𝑿 is the vector of the 𝐾 = 52 
independent input parameters with marginal distributions reported in Table S1 in Supplementary Material. 
 
For the fitting of the metamodel, the truncation scheme 𝒜௣,௤

௄  is set with 𝑞 = 0.5 and 𝑝 = 10 LARS is used. All 
metamodels are fitted and evaluated via UQLab (Marelli & Sudret, 2014; Marelli et al., 2022). Once all 
metamodels ℳ௝,௉஼ா

(௠)  are obtained, their coefficients 𝑄ଶ  are calculated on a test set of 𝑁test = 1000 samples. 
 

Table 3: Coefficients 𝑄ଶ of the metamodels ℳ௝
(௠) built on the jth principal component of plot 𝑚 for 𝑗 ∈ {1,2}. 

𝒎 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
𝑸𝟐 on 𝓜𝟏,𝑷𝑪𝑬

(𝒎)  1.00 0.99 0.99 0.99 0.99 0.99 0.99 1.00 0.99 0.99 1.00 0.99 0.98 0.99 

𝑸𝟐 on 𝓜𝟐,𝑷𝑪𝑬
(𝒎)  NA 0.80 0.77 0.99 NA 0.97 0.82 NA 0.80 0.98 NA 0.95 0.78 0.99 

 
 
The coefficients 𝑄ଶ  calculated on the test set are reported in Table 3. The values of 𝑄ଶ  are superior to 0.99 for 
all plots on the PC1. When it comes to the coefficients 𝑄ଶ  of the metamodels built on the PC2, ℳଶ,௉஼ா

(௠) , they are 
slightly lower for some plots. More in particular, the parcels {4,6,10,12,14} ∉ 𝒢sat  have an 𝑄ଶ > 0.95, whereas 
the parcels from 𝒢௦௔௧ = {2,3,7,9,13} have lower 𝑄ଶ  values, ranging from 0.77 for plot 𝑚 = 3 up to 0.82 for plot 
𝑚 = 7. 
 
These lower values on ℳଶ,௉஼ா

(௠)  can be explained by the choice of our methodology and the nature of the PC2. 
Indeed, plots belonging to group 𝒢௦௔௧  present mostly outputs that reach a saturation point, resulting in a plateau, 
at some point of the simulation period. However, not all simulations of the sample have this behavior, some 
simulations do not reach a saturation point, as it can be seen on Figure 2 for plot 𝑚 = 13. Calculating the 
principal components of such outputs, while using the 𝐿ଶ  norm as the distance measure, results in a separation 
on the PC2 for the two types of behavior. Two distinct clusters are thus observed, one containing the simulations 
reaching a plateau (lower scores on the PC2), while the other containing simulations with no plateaus (scoring 
higher on the PC2). However, the cluster of simulations with lower scores on the PC2 has a larger cardinality 
(2800) than the cluster with the higher scores (200). Thus, when the PCE is evaluated on these scores, it 
replicates essentially the behavior of the simulations reaching saturation. Figure 5 shows the comparison 
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between the metamodel and the PESHMELBA model outputs. The ℳ௉஼ா  estimates well the behavior of lower 
scores, but it fails in replicating the behavior producing the simulations that do not reach saturation. 
 

 

 
Figure 5: Comparison of the outputs generated by the original model ℳଶ

(ଵଷ) versus the outputs generated by the polynomial 
chaos metamodel ℳଶ,௉஼ா

(ଵଷ)  for the PC2 of plot 𝑚 = 13. The test set is made out of 𝑁test = 1000  points 

 
A slight increase of 𝑄ଶ  is achieved when the values of 𝑝 and 𝑞 are augmented. In spite of the improvement in 
the 𝑄ଶ, the Sobol’ indices calculated in both cases remain qualitatively the same. In addition, no improvement 
is observed in the precision of their estimates. The results for the Sobol’ indices presented in Section 4.3 are 
listed for the metamodels built for 𝑝 = 10, 𝑞 = 0.5 which is a good compromise for the numerical cost. 

4.3 Sobol’ indices 

Once the metamodels are built as presented in Section 4.2, the Sobol’ indices are calculated analytically via Eq. 
3, for the PC1 of plots 𝑚 ∈ {1, … ,14} in Section 4.3.1 and for the PC2 of plots 𝑚 ∈ {1, … ,14} ∖ {1,5,8,11} in 
Section 4.3.2. 
 

 
 
Figure 6: Sobol’ indices of total order calculated on PC1 of each plot of the catchment 𝑚 ∈ {1, … ,14}, with corresponding 
bootstrap confidence limits. Rows correspond to soil types SU1, SU2 and SU3. The top seven parameters with the highest total 
Sobol’ index are reported for each soil type. The color and the filling of the bars represent the nature of the input parameters. 
The light, medium and dark brown correspond respectively to those parameters that describe the physical properties of the 
surface, intermediate and deep soil horizon. The different fillings of the bars correspond to those parameters that describe 
the soil types SU1, SU2 and SU3. The colors and fillings are in line with those from Figure 1. 
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4.3.1 Sobol’ indices on the first principal component PC1 

The Sobol’ indices of total order for the PC1 of each plot of the catchment are reported in Figure 6. First order 
Sobol’ indices are nearly identical to the total order indices, meaning that the direct influence of the input 
parameters on the PC1 surpasses the influence through interaction with other parameters. 

 Soil type SU1 (sandy), PC1. The top row of Figure 6 represents the total Sobol’ indices of the plots of soil 
type SU1 (𝑚 ∈ {1,2,3,5,11}). The largest Sobol’ indices correspond to parameters describing the surface soil 
horizon properties of the soil type SU1. In particular, the input parameter thetas_surf_soil1 (resp. 
thetas_surf_soil1(VFZ)) accounts for more than 90% of the total output variance of the surface moisture of 
vineyard plots (resp. vegetative filter strips). This parameter describes the water content at saturation in a 
given soil, in this case the surface soil horizon of vineyard plots of soil type SU1 (resp. vegetative filter strips 
of soil type SU1). The second most influential input parameter, mn_surf_soil1 (resp. mn_surf_soil1(VFZ)) is 
a parameter governing the relation in Van Genuchten soil hydraulic property description of the surface soil 
horizon of the vineyard plots belonging to soil type SU1 (resp. vegetative filter strips of soil type SU1) (Van 
Genuchten, 1980). 

 Soil types SU2 (sandy soil on clay) and SU3 (heterogeneous sandy soil), PC1. Total Sobol’ indices of plots of 
soil type SU2 (resp SU3) are reported in the middle row (resp. bottom row) of Figure 6. The physical 
interpretation of the results is the same as for the soil type SU1. Once again, the output variability is mostly 
due to the variability of parameters describing the surface soil horizon properties. In particular, the input 
parameter thetas_surf_soil2 (resp. thetas_surf_soil3, thetas_surf_soil2(VFZ), thetas_surf_soil3(VFZ)), 
describing the water content at saturation in the surface soil horizon of the vineyard plots belonging to SU2 
(resp. surface of the vineyard plots belonging to SU3, surface of the vegetative filter stripes belonging to 
SU2 and the surface of the vegetative filter stripes belonging to SU3) has the largest total Sobol’ index (≈
0.9). The second most influential input parameter, mn_surf_soil2 (resp. mn_surf_soil3, mn_surf_soil2(VFZ), 
mn_surf_soil) is a parameter governing the relation in Van Genuchten soil hydraulic property description of 
the surface soil horizon belonging to the corresponding soil type (Van Genuchten, 1980). 

 
We can conclude that, for a fixed plot, the variability of the PC1, interpreted in Section 4.1 as the average surface 
moisture over the observed time period, can be traced back to the variability of the input parameters describing 
the hydrodynamical properties (predominantly water content at saturation) of its surface soil horizon. 
 
However, we find some cases which show influence of deeper soil parameters, such as 𝑚 ∈ {2,13}. Both plots 
𝑚 = 2 and 𝑚 = 13 belong to group 𝒢௦௔௧  and present plateaus in their output time series. The influence of 
deeper soil parameters is more prominent in PC2 and is commented in Section 4.3.2. 
 
The Sobol’ indices presented in Figure 6 are estimated with a high precision, as can be seen from the small 
standard deviations calculated with a bootstrap of 100 runs. This is in line with the high values of the coefficient 
𝑄ଶ  previously seen in Table 3. 
 
4.3.2 Sobol’ indices on the second principal component PC2 

For the second principal component PC2, the Sobol’ indices of total order for all plots except {1,5,8,11} are 
reported in Figure 7. These plots were excluded from this study as their PC2 accounts for less than 1% of the 
total output variance (Table 2). Two types of behavior can be observed in Figure 7. We can identify plots 𝑚 ∈
{4,6,10,12,14} ∉ 𝒢sat  where surface parameters are most influential, and plots 𝑚 ∈ {2,3,7,9,13} ∈ 𝒢sat  where 
deep parameters govern the output variability. 
The dependence on deep soil properties of group 𝒢௦௔௧   communicates that the saturation of the surface moisture 
is not limited to the surface layers. Rather, the whole soil column under the plot is saturated, thus the surface 
runoff observed is due to saturation excess overland flow. 
 
We can conclude that the variability of the contrast in surface moisture during the plateau and outside of the 
plateau for plots 𝑚 ∈ 𝒢sat  can be traced back to the variability of the input parameters describing the 
hydrodynamical properties of its deep soil horizon. The amplitude of the surface moisture time series for plots 
𝑚 ∉ 𝒢௦௔௧) is governed by the input parameters describing the hydrodynamical properties of its surface soil 
horizon. 
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The standard deviations calculated with a bootstrap of 100 runs are depicted on Figure 7 are slightly larger than 
in Figure 6 for plots belonging to 𝒢sat . This is in line with what was observed previously in Table 3; the coefficient 
𝑄ଶ  was lower on the metamodels built on PC2, especially for plots belonging to 𝒢sat . Nonetheless, the precision 
of Sobol’ indices is still satisfactory. 
 
 

 
 

Figure 7: Sobol’ indices of total order calculated on PC2 of plots 𝑚 ∈ {2, 3, 7, 9, 12, 6, 4, 10, 14, 13}, with corresponding 
bootstrap confidence limits. Rows correspond to soil types SU1, SU2 and SU3. The top seven parameters with the highest total 
Sobol’ index are reported for each soil type. The color and the filling of the bars represent the nature of the input parameters. 
The light, medium and dark brown correspond respectively to those parameters that describe the physical properties of the 
surface, intermediate and deep soil horizon. The different fillings of the bars correspond to those parameters that describe 
the soil types SU1, SU2 and SU3. The colors and fillings are in line with those from Figure 1. 
 

 
4.3.3 Aggregation to the catchment scale 

To obtain synthetic sensitivity indices of the input parameters over the whole spatio-temporal domain, the 
Sobol’ indices on PC1 and PC2 from Sections 4.3.1 and 4.3.2 are first aggregated temporally using Eq. 7 where 
𝑗 ∈ 1, 2 and for plot 𝑚: 𝜆ଵ = 𝜆ଵ

(௠) and 𝜆ଶ = 𝜆ଶ
(௠). The temporally aggregated sensitivity indices (denoted 𝐺𝑆𝐼) 

bear close resemblance to the Sobol’ indices on PC1 (Figure 6) and are not reported. Indeed, given that on each 
plot the PC1 accounts for over 80% of the total inertia (Table 2), the Sobol’ indices calculated on PC1 are given 
greater weights in Eq. 7 than PC2. Hence, the influence of deep soil layers on PC2 (Figure 7) is dwarfed. 
 
Finally, the 𝐺𝑆𝐼௪

(௠) indices are aggregated spatially using Eq. 8 with 𝑀 = 14, 𝕍𝑎𝑟 ൫𝑌(௠)൯ = 𝜆ଵ
(௠)

+ 𝜆ଶ
(௠)  and 

𝑆𝐼௪,௠ = 𝐺𝑆𝐼௪
(௠). The obtained aggregated sensitivity indices (𝐴𝑆𝐼) over the whole spatio-temporal domain are 

reported on Figure 8. They are essentially a summary of the results presented in Sections 4.3.1 and 4.3.2. As PC1 
explains over 80% of the total variability of each plot (Table 2), and as thetas_surf has a Sobol’ index superior 
to 0.85 (Figure 6), it comes as no surprise that by doing a weighted average (Eq. 7) and (Eq. 8), the most 
influential parameters are the thetas_surf of all soil types and vegetative filter strips. Note that, input 
parameters influential on plots with high total inertia are given more weight in the 𝐴𝑆𝐼, Eq. 8. In the same 
fashion, the ranking of the 𝐴𝑆𝐼 is influenced by the number of plots belonging to each SU. 
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Figure 8: Aggregated sensitivity indices (𝐴𝑆𝐼). Ten input parameters with the highest 𝐴𝑆𝐼 are reported. The color and filling of 
the bars represents the nature of the input parameters as in Figures 1, 6 and 7. 

 

5. Conclusion 
In this work, variance-based sensitivity indices are calculated for the surface moisture outputs of the 
PESHMELBA model. The sensitivity indices consider both the temporal and the spatial aspect of the output. 
 
Firstly, the most influential input parameters on the output dynamics are obtained for the first two functional 
principal components of every plot on the catchment. The common aspects of the PCs are studied across plots. 
PC1 is interpreted as the average surface moisture, while PC2 is interpreted either as the infiltration rate or, in 
plots that present a long period of saturation of the surface layer, as the contrast between saturated and 
unsaturated periods. The Sobol’ indices show that the average surface moisture and infiltration rate are 
governed by the surface soil hydrodynamic properties. Furthermore, the contrast between the surface moisture 
during saturated periods and unsaturated periods is influenced by deep soil hydrodynamic properties. The 
dependence on deep soil properties reflects the saturation of the whole soil column. Hence, the surface runoff 
observed on these plots is due to saturation excess overland flow. 
 
Then, these sensitivity indices are aggregated temporally and spatially, enabling a synthetic view of the most 
influential parameters on the whole spatio-temporal domain. Notably, the surface hydrodynamic parameters 
have a predominant influence on the catchment’s surface moisture. In particular, the input parameters 
describing the water content at saturation of all soil types constituting the catchment account for more than 
80% of the total output variability. The aggregated indices provide a synthetic view of the most influential 
parameters at the catchment scale, however in order to understand local contributions to the dynamics, the 
Sobol’ indices calculated on the principal components are more informative. 
 
The use of PCE metamodels for the calculation of Sobol’ indices lowers significantly the number of PESHMELBA 
model simulations needed. Indeed, only 3000 model simulations are used to calculate all sensitivity indices with 
high precision. 
 
Further research could focus on the application of cluster based approaches, such as in Roux et al. (2021), thus 
distinguishing the inter and intra variability of the simulations that reach surface moisture saturation and those 
who don’t. Additionally, other sensitivity indices, such as the HSIC could be adapted to spatio-temporal outputs 
and compared to the indices obtained in this work, bringing other information on dependence between inputs 
and outputs in the model. Also, the hypothesis of independence could be relaxed for some input parameters, 
and the Sobol’ indices obtained here compared to a GSA considering correlated inputs, (Iooss & Prieur, 2019; Il 
Idrissi et al., 2021). 
 
Lastly, it is important to note that in the performed study, the interpretation of the principal components and 
the sensitivity indices obtained are dependent on the rain time series, but also on other external conditions 
(catchment properties, evapotranspiration). Indeed, a significantly lighter rain, would not have necessarily led 
to the soil saturation and thus would not have activated the same physical processes and model parameters. 
The variabilities of the external conditions could be included in the GSA by considering them as stochastic inputs, 
using stochastic GSA (Zhu & Sudret, 2021) or PCE based stochastic metamodels (Lüthen et al., 2023). 
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