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Supplementary Material 

 

Cross-scale feedbacks and tipping points in aggregated models 
of socio-ecological systems 

 

Supplementary Material A: Case 1: Cascading through system elements 

A.1  Model descriptions: connecting and perturbing variables  

The equations of the ‘threshold’ model read: 
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The below interpretations given for the symbols in Eqns. (1a-c) should be understood as such only for the 
threshold model. 
 
Variables 𝑆(𝑡), 𝑋(𝑡), 𝑍(𝑡) represent unspecified state variables of arbitrary units of measurement, where we can 
interpret 𝑆(𝑡) as some self-amplifying signalling variable, the production of 𝑋(𝑡) is promoted by 𝑆(𝑡), and 𝑍(𝑡) 
in turn is promoted by 𝑋(𝑡). Variables have no specific values but note that the dynamics of the model may 
differ depending on the initial conditions 𝑆(0), 𝑋(0), and 𝑍(0), as will become apparent in the analysis of this 
model. Parameters 𝑟𝑆 is an intrinsic growth rate of 𝑆(𝑡), while 𝑟𝑖  with 𝑖 = {𝑋, 𝑍} are reaction or interaction rates. 
Parameters 𝐾𝑗  with 𝑗 = {𝑆, 𝑋, 𝑍} represent maximal capacities for the respective state variables. In the case of 

𝐾𝑆, it automatically represents the point where growth or influx of 𝑆(𝑡) is balanced with degradation or outflux. 
Parameters 𝐴𝑗 with 𝑗 = {𝑆, 𝑋, 𝑍} represent implicit thresholds similar to what is known as the Allee effect in 

ecology (Stephens & Sutherland, 1999; Van Voorn et al., 2007). This effect, for instance, mimics growth inhibition 
in populations at low densities resulting from various negative effects like increased exposure to predation or 
reduced genetic variability. Here we assume some effects exist that prevent the amplification of interactions 
until sufficient mass or momentum has been accumulated; this could equally apply for some variable with a 
social interpretation, like the percentage of people with a certain opinion. Finally, parameters 𝑚𝑗  with 𝑗 =

{𝑆, 𝑋, 𝑍} represent some decay, break-down, or loss, i.e., if the signal or interaction is not maintained, the mass 
or momentum eventually is lost. 
 
The ‘switch’ model is an extension of the model by Wilhelm (2009) for bistability switches in cells. This model 
underlies, for example, signalling pathways for cell division and cell differentiation. The original model consists 
of two differential equations that can sustain two alternative stable steady states: an ‘OFF’ state, where nothing 
happens (e.g., no cell division), and an ‘ON’ state, where some process initiates (e.g., cell division), and which 
we consider here to be the preferable state. The model reads: 
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= 𝑟𝐴(𝑡)𝐵(𝑡) + 2𝑘1𝐶(𝑡) − 𝑘2𝐵(𝑡)2 − 𝑘3𝐵(𝑡)𝐶(𝑡) − 𝑘4𝐵(𝑡)  Eqn. (2b) 

 
𝑑𝐶(𝑡)

𝑑𝑡
= 𝑘2𝐵(𝑡)2 − 𝑘1𝐶(𝑡)       Eqn. (2c) 

 
Again, the below interpretations given for the symbols in Eqns. (2a-c) should be understood as such only for 
the switch model. 
 
Again, the state variables - here 𝐴(𝑡), 𝐵(𝑡), and 𝐶(𝑡) - have an abstract interpretation. Variables 𝐵(𝑡) and 𝐶(𝑡) 
appeared in the original model by Wilhelm, which consists of Eqn. (2b-c). In that model, the eventual state to 
which the system develops depends on the initial conditions 𝐵(0) and 𝐶(0): these need to be sufficiently large 
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for the system to further develop to the ON state, otherwise it will decay back and remain in the OFF state. To 
jumpstart the bistability switch, we add eqn. (2a) with an additional variable 𝐴(𝑡) that interacts with 𝐵(𝑡). Note 
that time variable 𝑡 appears explicitly in Eqn. (2a), which describes a pulse. The pulse first increases and then 
dies away; for example, it could mimic the waxing and waning of the public reaction to some event. While the 
pulse peaks, it may push 𝐵(𝑡) to a sufficiently high level for the switch to develop to the ON state. Parameters 
𝐴𝑚, 𝐴𝑇, and 𝐴𝑟 are all required to describe a pulse of variable 𝐴(𝑡): 𝐴𝑚 affects the peak of the pulse, 𝐴𝑇 is a 
time-dependent decay rate of the pulse, and 𝐴𝑟 is a density-dependent decay rate. Parameter 𝑟 indicates the 
interaction rate between 𝐴(𝑡) and 𝐵(𝑡). Note, that for 𝑟 = 0 the switch model reduces to the original model by 
Wilhelm (2009). Finally, parameters 𝑘𝑖  with 𝑖 = {1,2,3,4} are reaction rates. 
 

A.2  Supplementary model analysis and results: threshold model Eqns. (1a-c) 

The threshold model displays bistability (i.e., two stable equilibrium states). Depending on the initial conditions 
𝑆(0), 𝑋(0), and 𝑍(0) the system evolves to a zero state in which all variables have collapsed or to a positive 
steady state, which we assume to be the desired state for transitioning.  
 
The development to a positive steady state follows a cascading path in which first variable 𝑆(𝑡) rises, followed 
by 𝑋(𝑡), and finally 𝑍(𝑡). The two displayed scenarios in the main text differ only in the initial condition 𝑆(0); 
one could interpret this as the system being primed to tip, and it just requires a minor push across the threshold, 
which is represented by a small increase in 𝑆(0). A further analysis of the model reveals multiple steady states, 
several of which are stable. The substitution of the parameter values that were used to create the simulations 
in Eqns, (1a-c), and then solving the equations for zero results in fifteen possible steady states. To determine the 
stability of each steady state, we first determine the 3-by-3 Jacobian matrix 𝐽 containing the partial derivatives 
𝛿𝑓𝑖/𝛿𝑥𝑗, where 𝑓𝑖  with 𝑖 = {𝑆, 𝑋, 𝑍} are Eqns. (1a-c), respectively, and 𝑥𝑗 = {𝑆, 𝑋, 𝑍} are the state variables; note 

that several partial derivatives evaluate to zero. Next, for each steady state we substitute the numerical steady 
state value in the Jacobian matrix to determine the eigenvalues of the respective steady state, which will tell us 
whether the steady state is stable or not. Four solutions have three negative eigenvalues and thus are stable 
steady states. These are (𝑆, 𝑋, 𝑍) = (0,0,0), (1,0,0), (1,0.974,0), and (1,0.974,0.974); the first and the last of 
these steady states also appear in Fig. 3. Besides the option for cascading, in which all state variables tip to their 
positive state one after the other, there is the possibility for tipping each of the state variables to a positive state 
separately, following the above ordering. This becomes clearer from a two-dimensional phase portrait of 𝑆(𝑡) 
and 𝑋(𝑡), assuming 𝑍(𝑡) = 0. 
 
 

Supplementary Material B: Diet model details 

This supplementary material outlines more details of the diet model. Table B1 outlines key assumptions in the 
model, and Tables B2-B6 outline the various components of the model - parameters, stocks, variables, and 
flows (following AnyLogic norms - Grigorvey, 2021). 
 

B.1  Model Assumptions 

Table B.1: Diet model key assumptions. 

Model structure assumption Explanation or data 

Simulation steps represent one year and simulations run up 
to 50 iterations (i.e., representing 50 years) 

Appropriate timeframe over which to model these SES 
dynamics. 

The initial population size is set to a unitless reference level 
of 100. Based on the Our World In Data figures (Ritchie et al. 
(2023), the population growth increases but at a slowing 
rate during the next 50 years (from 0.82% in 2021 to 0.16% 
in 2071). 

https://ourworldindata.org/future-population-growth 

It is assumed that 10% of the protein demand by consumers 
can only be met by meat-based proteins. 

We assume a subgroup of people will always be unwilling to 
switch to fully plant-based proteins. 

For model initialization, we assume a distribution of 80% 
meat-based and 20% plant-based protein demand. 

Based on: "What is notable in the above-mentioned data is 
that while the segment of vegans or vegetarians are at 
maximum at 10% of the population, consumers who regard 

https://ourworldindata.org/future-population-growth
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themselves as flexitarian or are interested in reducing meat 
consumption are approximately 30–40% of the population." 
(Aschemann-Witzel et al., 2020) 
We assume flexitarian diet is equivalent to one-third 
vegetarian and the remainder meat-based. 

Agricultural land is assumed to be divided into either land 
for meat-based or plant-based protein production. This 
ignores land used for products like biofuels, timber, or 
providing space for nature conservation, renewable energy 
production, recreation or tourism, etc.  

Outside the scope of this model and its purpose. 

While the change of land use for meat-based to plant-based 
proteins and vice versa is allowed in the model, we assume 
that 30% of the available land is unsuitable for plant-based 
production and can only be used for meat-based protein 
production methods such as extensive livestock or insect 
farming. 

This is a relatively optimistic estimate based on the discussion 
of land use here https://ourworldindata.org/land-use Ritchie, 
H. & Roser, M. (2013) 

For model initialization, we assume a distribution of 75% 
land for meat-based and 25% for plant-based protein 
production. 

Based on Aschemann-Witzel et al., (2020) 

The initial value for arable land is set to 100, but the value 
may increase with demand, assuming that the availability of 
natural land that can be cultivated is not the limiting factor.  

We acknowledge that in reality land is a limited resource and 
the availability of arable land is finite. For the purpose of this 
conceptual model, we further ignore details around the 
investment requirements to change land use resulting from 
new equipment, supplies, management, personnel, and more.  

 
Tables B2-B6 outline the various components of the model - parameters, stocks, variables, and flows (following 
AnyLogic norms - Grigorvey, 2021). 
 

B.2  Diet Model general information 

Table B.2: Diet model general design information. 

Name Value 

General 

Model time units years 

System Dynamics solver 

Differention Equations Method Euler 

Algebraic Equations Method Modified Newton 

Mixed Equations Method RK45+Newton 

Absolute accuracy 1.0E-5 

Time accuracy 1.0E-5 

Relative accuracy 1.0E-5 

Fixed time step 0.001 

Advanced 

Java package name diet_Model 

 
 
 
 
 
 
 
 
 
 

https://ourworldindata.org/land-use


P. Barbrook-Johnson et al. (2024) Socio-Environmental Systems Modelling, 6, 18616, doi:10.18174/sesmo.18616  

 

4 
 

 
Table B.3: Parameters information. 

 
Table B.4: Stocks information. 

Stock Initial 
Value 

Unit Explanation based on model assumption 

Meat_Market_Capacity  80  Share of 
market 
capacity 

All the market capacity is 100 in the first timestep, divided to 
80 units Meat_market_capacity and 20 units 
Plant_based_Market_Capacity . 
During the simulation the capacity of the market between 
these two stocks change based on the demand that market 
receives and the available technology and production. 
The overall capacity of the market might go over 100 which is a 
translation of market expansion during time in real life. 

Plant_based_Market_Capacity  20  Share of 
market 
capacity 

Meat_based_demand  80  Share of 
demand 

All the demand for protein diets are 100 units in the first 
timestep, divided to 80 unit meat demand and 20 unit plant 
demand. 
During the simulation the demand between these two stocks 
changed based on people's preference and population . 
The overall demand might go over 100 if the population growth 
rules it. 

Plant_based_demand  20  Share of 
demand 

Land_for_MeatProduction  75  Unit of land The initial value for arable land is set to 100, but the value may 
increase with demand, assuming that the availability of natural 
land that can be cultivated is not the limiting factor. 
In the first time step the land is divided into 75 units for meat 
production and 25 for plant-based protein, this assumption is 
based on Aschemann-Witzel et al., (2020). 

Land_for_Plant_based_Food  25  Unit of land 

Population  100  Block of 
people 

The initial value of the people is set to 100 unit and it change 
with population growth rate 

 

Parameters Description Default Values Unit 

Personal_Preference  A composite and aggregated parameter, this is 
intended to represent preferences such as 
environmental concerns, sustainability-related 
motives, and animal welfare concerns (Aschemann-
Witzel et al., 2020), next to economic situations, 
religious reasons and ethical reasons for people to 
choose for a particular diet. 

0.2  Unitless  

Tech_Policy_Change_Plant  These are both composite parameters that represent 
available technologies, such as new technologies to 
produce plant-based protein products, subsidies, 
taxes, and policies that support or discourage 
production or consumption of either of the two 
protein alternatives.  

0.5  Unitless  

Tech_Policy_Change_Meat  0.1  Unitless  

Consideration_Meat  Represents landowner and farmer knowledge and 
predisposition about producing specific crops or 
keeping livestock, social norms, and environmental 
concerns. 

2  Unitless  

Consideration_Plant  1  Unitless  

Normative_factor_meat  Represent the demand resulting from social norms 
and governmental policy 

0.066  Unitless  

Normative_factor_plant  0.056  Unitless  
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Table B.5: Variables information. 

Dynamic Variable   Formula  Unit  

Decision_Meat_Land  (Meat_Market_Capacity-Land_for_MeatProduction)>0? 
(Consideration_Meat)*(Meat_Market_Capacity-
Land_for_MeatProduction) : 0  

Unit of land 

Decision_plant_land  (Plant_based_Market_Capacity-Land_for_Plant_based_Food)>0? 
(Consideration_Plant)*(Plant_based_Market_Capacity- 
Land_for_Plant_based_Food) : 0  

Unit of land 

Decision_Meat_use  (((1-
Personal_Preference)+Normative_factor_meat)*Meat_Market_Capa
city)/100<0.9? (((1-
Personal_Preference)+Normative_factor_meat)*Meat_Market_Capa
city)/100:0.9  

Share of demand 

Decision_Plant_Use  ((Normative_factor_plant*Plant_based_Market_Capacity)/10)+Perso
nal_Preference<0.9?((Normative_factor_plant*Plant_based_Market_
Capacity)/10)+Personal_Preference : 0.9  

Share of demand 

Growth_Rate  Get_Growth_Rate(time())  block of people 
/year 

 
 
Table B.6: Flows information. 

Flow  Formula  Unit 

flow  (Population*(Decision_Plant_Use))>0?(Population*(Decision_Plant_Use)):
0  

Share of 
demand/year 

flow1  Population * (Decision_Meat_use)>0? Population * ( 
Decision_Meat_use):0   

Share of 
demand/year 

flow2  Meat_Market_Capacity-Meat_based_demand>0 ? ((Plant_based_demand-
Plant_based_Market_Capacity>0) ? Meat_Market_Capacity-
Meat_based_demand : 0) :0  

Share of market 
capacity/year 

flow3   Plant_based_demand>0 ? Plant_based_demand :0  Share of 
demand/year 

flow4  Meat_based_demand>0 ? Meat_based_demand :0  Share of 
demand/year 

flow5  Plant_based_Market_Capacity- Plant_based_demand>0 ? 
((Meat_based_demand- Meat_Market_Capacity>0)? 
Plant_based_Market_Capacity- Plant_based_demand: 0):0  

Share of market 
capacity/year 

flow8  Decision_Meat_Land>0 ? Decision_Meat_Land :0  Unit of 
land/year 

flow9  Land_for_MeatProduction>30 ? (decision_plant_land>0 ? 
decision_plant_land :0 ):0  

Unit of 
land/year 

flow11  Land_for_MeatProduction<90 ? ((Meat_based_demand - 
Meat_Market_Capacity)* (1+Tech_Policy_Change_Meat)>0 ? 
(Meat_based_demand - Meat_Market_Capacity)* 
(1+Tech_Policy_Change_Meat) : 0):0  

Share of market 
capacity/year 

flow12  Decision_Meat_Land>10 ? Decision_Meat_Land :0  Unit of 
land/year 

flow13  decision_plant_land>10 ? decision_plant_land :0   Unit of 
land/year 

flow14   Land_for_Plant_based_Food<90 ?((Plant_based_demand- 
Plant_based_Market_Capacity)*(1+Tech_Policy_Change_Plant)>0 ? 
(Plant_based_demand- 
Plant_based_Market_Capacity)*(1+Tech_Policy_Change_Plant):0 ) : 0  

Share of market 
capacity/year 
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annual_populati
on_growth  

(Growth_Rate*Population)/100  Block of 
people/year 

 

 

 
Figure B.1: Sensitivity Analysis of land for meat production stock versus changes in Consideration for plant parameter. 

 
 
 

 
Figure B.2: Sensitivity Analysis of Plant Protein Demand stock versus changes in Personal preference parameters. 
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Figure B.3: Sensitivity Analysis of Meat Demand stock versus changes in personal preference. 

 
 

 
Figure B.4: Sensitivity Analysis of Land for Plant Protein stock versus changes in Tech and policy of meat production 
parameter. 

 

Supplementary Material C: Case 3: A model of pyric herbivory in North American 
rangelands. 

Rangelands cover approximately one third of the earth’s land area, with at least one billion people dependent 
on these lands for their livelihoods (Follett and Reed, 2010). Most of the world’s rangelands have been degraded 
by inappropriate land use practices (Millennium Ecosystem Assessment, 2005), primarily overgrazing by 
livestock (Teague et al., 2015). Overgrazing coupled with suppression of fire, exacerbated by global changes in 
atmospheric CO2, temperature, and rainfall, have facilitated continued encroachment of woody plants in what 
formerly were more open grasslands. Research suggests that proper management of the combination of fire 
and grazing (pyric herbivory) at the local level can mitigate woody plant encroachment. In the figure and table 
below, we present the causal relationships and associated equations, respectively, that describe our simple SES 
model representing pyric herbivory on a hypothetical cattle ranch in the rangelands of the southern Great Plains 
of North America. 
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Figure C.1: Box and arrow diagram of the causal relationships represented in the pyric herbivory system. (1) Increased brush 
cover lowers grass production (due in large part to the shading effect on grasses caused by the increased canopy cover of 
woody vegetation). (2) Decreased grass production decreases accumulated fine fuel (decreases accumulation of dry, 
flammable dead grass). (3) Decreased fine fuel decreases burn efficacy (due to insufficient fine fuel to ignite a fire intense 
enough to burn brush). (4) Decreased burn efficacy increases brush cover (due to failure to periodically reduce brush 
sufficiently). (5) Increased stocking rate decreases accumulated fine fuel (via consumption of more live grass before it can 
senesce into dead grass). (6) Increased stocking rate increases annual relative grazing pressure (increases the ratio of grass 
consumption to grass production). (7) Increased grass production decreases annual relative grazing pressure (decreases the 
ratio of grass consumption to grass production). (8) Increased annual relative grazing pressure decreases annual max grass 
(decreases the maximum standing crop of grass, which commonly is used as an indicator of annual grass production). (9) 
Decreased annual max grass indicates decreased ecological condition of rangeland (via its indication of lowered annual grass 
production). (10) Decreased ecological condition of rangeland decreases grass production. (11) Decreased ecological 
condition of rangeland increases social pressure to reduce max stocking rate (to increase ecological condition via reduction 
of annual relative grazing pressure). (12) Increased social pressure to reduce max stocking rate decreases stocking rate. (13) 
Decreased ecological condition of rangeland increases political pressure to reduce minimum burn interval (to increase 
ecological condition via more frequent burns to reduce brush cover). (14) Increased political pressure to reduce minimum 
burn interval decreases minimum legal burn interval. (15) Decreased minimum legal burn interval decreases burn interval. 
(16) Decreased burn interval decreases brush cover. 
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Table C.1: Summary of the parameter values and functional relationships represented in the pyric herbivory model. 

LiveGrass(t+1) = LiveGrass(t) + [max-grass-growth × LiveGrass(t) × den-dep-grass-growth-factor(t) × brush-shading-grass-
growth-factor(t)× EcologicalCondition(t)]- [LiveGrass(t) × prop-grass-loss-to-herbivory(t)] 

max-grass-growth = 0.7 

den-dep-grass-growth-factor(t) = 1 - 0.01 × LiveGrass(t) 

brush-shading-grass-growth-factor(t) = 1 - 0.01 × Brush(t) 

prop-grass-loss-to-herbivory(t) = stocking-rate(t) × 0.02 

  

DeadGrass(t+1) = DeadGrass(t) – [DeadGrass(t) × decomp-rateG] 

decomp-rateG = 0.1 

  

if Month = 1: DeadGrass(t+1) = DeadGrass(t) + LiveGrass(t); LiveGrass(t+1) = 1 

  

Brush(t+1) = Brush(t) + [max-brush-growth × Brush(t) × den-dep-brush-growth-factor(t)] – [Brush(t) × prop-burn-loss-brush(t)] 

max-brush-growth = 0.05 

den-dep-brush-growth-factor(t) = 1 - 0.01 × Brush(t) 

if burn = 1: prop-burn-loss-brush(t) = FineFuel(t) / 100, else prop-burn-loss-brush(t) = 0 

FineFuel(t) = LiveGrass(t) + DeadGrass(t) 

  

EcologicalCondition(t+1) = EcologicalCondition(t) – [grazing-pressure(t) × 0.001] 

grazing-pressure(t) = stocking-rate(t) / LiveGrass(t) 

if stocking-rate = 1: EcologicalCondition(t+1) = EcologicalCondition(t) + 0.01 

  

if stocking-rate(t) > socially-desired-SR(t): stocking-rate(t+1) = socially-desired-SR(t), else stocking-rate(t+1) = stocking-rate(t) 
[for Scenario 1], or stocking-rate(t+1) = stocking-rate(t) + 1 [for Scenario 2] 

socially-desired-SR(t) = 20 – [2 × SocialPressureMaxStockingRate(t)] 

SocialPressureMaxStockingRate(t) = 10 - 10 × EcologicalCondition(t) 

  

if burning-interval(t)  ≠ MinLegalBurnInterval(t): burning-interval(t+1) = MinLegalBurnInterval(t), else burning-interval(t+1) = 
burning-interval(t) 

MinLegalBurnInterval(t) = 5 – [2 × PoliticalPressureMinBurnInterval(t)] 

PoliticalPressureMinBurnInterval(t) = 10 – [10 × EcologicalCondition(t)] 

 
 

 


