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Abstract 
In global sensitivity analysis (GSA) of a model, a proper convergence analysis of metrics is essential for 
ensuring a level of confidence or trustworthiness in sensitivity results obtained, yet is somewhat deficient 
in practice. The level of confidence in sensitivity measures, particularly in relation to their influence and 
support for decisions from scientific, social and policy perspectives, is heavily reliant on the convergence 
of GSA. We review the literature and summarize the available methods for monitoring and assessing 
convergence of sensitivity measures based on application purposes. The aim is to expose the various 
choices for convergence assessment and encourage further testing of available methods to clarify their 
level of robustness. Furthermore, the review identifies a pressing need for comparative studies on 
convergence assessment methods to establish a clear hierarchy of effectiveness and encourages the 
adoption of systematic approaches for enhanced robustness in sensitivity analysis. 
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1. Introduction 

Good modeling practice (GMP) is essential for the development, evaluation and ultimate utility of 
environmental models (Jakeman et al., 2006). Sensitivity analysis is an indispensable tool (Razavi et al., 
2021; Saltelli et al., 2021) with a long history (Tarantola et al., 2024), and is vital for supporting GMP 
including understanding model behavior and diagnosing problems such as parameter interactions and 
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implausible input-output relationships (Guillaume et al., 2019). A classical definition of sensitivity 
analysis is a pertinent foundation here and is provided by Saltelli et al. (2000) as: “sensitivity analysis 
(SA) is the study of how variations in the output of a model (numerical or otherwise) can be apportioned, 
qualitatively or quantitatively, to different sources of variations, and of how the given model depends 
upon the information fed into it”. 
 
SA has comprehensive and diverse literature across many domains and has been fertile ground for the 
development of new methods, principally for global sensitivity analysis (GSA) whose convergence this 
paper is concerned with. In the environmental modeling literature, the broad range of uses of GSA has 
made it a subject of increasing attention, such as in Castaings et al. (2012), Estrada & Diaz (2010), 
Nossent et al. (2011), Pianosi et al. (2016), Ravalico et al. (2010), Saltelli & Annoni (2010), and Yang 
(2011). This attention to numerical GSA methods is required because it is usually unrealistic to consider 
analytical SA methods, in particular for environmental models due to their uncertainty, complexity and 
non-linear nature (Wang & Solomatine, 2019). Moreover, any method devised for GSA has its own 
purposes, strengths and weaknesses depending on the model and its problem context. Therefore, 
computational GSA methods have become a popular means of investigating the influences of model 
parameters and inputs (both often referred to as factors) on model responses (Khorashadi Zadeh et al., 
2017). In the hydrological domain alone, for example, GSA has already been applied widely to well-
known models like MODFLOW, VIC, Noah-MP and SWAT (Mai & Tolson, 2019).  
 
In terms of software for computational GSA methods, there is now much available. Douglas-Smith et al. 
(2020) have summarized the recent nature and trend of mainstream software tools and techniques that 
have been developed. In regards to development of convergence assessment in software packages or 
libraries, Pianosi et al. (2015) created the SAFE toolbox, initially for MATLAB/Octave and now extended 
to R and Python, to support robustness assessment and convergence of sensitivity indices, along with 
extensive visualization tools. Designed for both non-specialists and experienced users, it features fully 
commented code. Moreover, a unique survey (Pianosi et al., 2020) was conducted to measure its 
success in adoption. Hsieh et al. (2020) developed the pksensi package in R to include a convergence 
assessment method for sensitivity indices in Sarrazin et al. (2016). Razavi et al. (2019) built a software 
toolbox VARS-TOOL that includes VARS (Razavi & Gupta, 2016b, 2016a), progressive Latin Hypercube 
sampling (Sheikholeslami & Razavi, 2017), convergence testing to give the “Reliability” convergence 
measurement for the purpose of ranking in Razavi and Gupta (2016b), and the grouping method for 
screening in Sheikholeslami et al. (2019a). Furthermore, Sun (2021) implemented several convergence 
assessment methods for ranking purposes from the literature in a GitHub library SAConvergenceAnalysis 
with open access, while Jakeman (2023) provides metrics for assessing convergence in regard to 
surrogate-based estimates of sensitivity rankings. 
 
There are several ways of categorizing the use of GSA, which is a fundamental consideration in selecting 
a GSA approach and assessing the convergence of its results. The commonly applied one separates 
sensitivity analysis into four application categories: screening (or factor fixing), ranking (or factor 
prioritization), variance cutting, and factor mapping (Saltelli et al., 2007; Sarrazin et al., 2016). Recently, 
a modern list of possible SA purposes is summarized as: (a) scientific discovery; (b) dimensionality 
reduction; (c) data worth assessment; and (d) decision support (Razavi et al., 2021). Depending on the 
purpose of using GSA for the model of interest, one should choose methods applicable to the 
appropriate category. Furthermore, by assessing convergence, we mean a practice that involves 
monitoring and measuring convergence, indicating stability of model factors and confidence against 
sample size, and reporting on and justifying assumptions/choices that were made in the process. 
 
In any GSA exercise, there are several methodological steps that must be undertaken, and these 
constitute a workflow as enunciated by Pianosi et al. (2016). Most fundamentally, a series of samples 
must be taken from the model parameter space and, along with a given set of model inputs or forcings, 
the model is run forward for each sample to generate a response surface of the model. In the socio-
environmental domain, inputs will typically be defined temporally and often spatially as well. Metrics 
or indices may be chosen to calculate quantities of interest of the model response, which can involve 
either some function of the model outputs alone or some error measure of the outputs with respect to 
observations (Shin et al., 2013). Thus, performance metrics of actual model responses is one way of 
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doing GSA. Razavi and Gupta (Gupta & Razavi, 2018; Razavi & Gupta, 2019) concluded that a specifically 
targeted aspect of the quantities of interest, a compressed set of properties that characterize the 
quantities of interest, and the spatio-temporally varying quantities of interest themselves are also types 
of responses in addition to the performance metrics. For example, Berezowski et al. (2015) utilize spatial 
distribution rather than metrics to show how the WetSpa model is sensitive to spatial input data. A 
fundamental consideration is to decide when adequate sampling of parameter space has been achieved 
that indicates sufficient or acceptable confidence in the metrics calculated (Khorashadi Zadeh et al., 
2017). 
 
Attempts to identify the factors that may affect the results of an SA exercise have been tailored to each 
problem at hand. The number of samples is the most obvious factor impacting the performance of SA. 
In addition to sample size, various authors have concluded that not only is the model used a key factor 
but collectively they have suggested the following crucial ones influence the outcomes of an SA exercise: 
complexity, computational budget, model input related factors (boundary conditions, parameters 
chosen, prior distribution, parameter ranges, correlation, natural properties, definition, scale, and 
measurement errors), the defined objective function, the objective(s) of the SA and associated 
definition of them, the selection of appropriate GSA methods, monitoring of convergence, and 
estimation of the uncertainty in SA measures (Crosetto et al., 2000; Devak & Dhanya, 2017; Qian & 
Mahdi, 2020; Song et al., 2015; Wang et al., 2013; Yang, 2011; Yang et al., 2012). 
 
Therefore, many considerations potentially affect the results, and ultimately the convergence, of a GSA. 
These are largely recognized in Pianosi et al. (2016) in their proposed complete workflow on the 
application of sensitivity analysis methods. They characterized the performance of a GSA exercise as 
being impacted by eight influences: experimental set-up, the GSA method (often called the estimator 
of specified sensitivity indices), the input/factor variability space, the sampling strategy, the sample size, 
the robustness and convergence assessment, visualization of results, and assessment of credibility with 
respect to the SA results in the sense of matching underlying assumptions. They also mentioned issues 
with respect to observational errors in the forcing and model response data, the potential for model 
emulation, and dealing with unsatisfactory model behavior. Furthermore, the authors extended their 
workflow depiction to provide a systematic review of SA methods and linked SA with other fields 
including uncertainty analysis, model calibration, model diagnostic evaluation, dominant controls 
analysis, decision making, and model emulation.  
 
In GSA, the approach to assessing convergence markedly differs between using quantitative and 
qualitative measures, reflecting their intrinsic methodological disparities. Quantitative measures offer 
numerical estimations of the impacts that parameters have on model outputs, facilitating precise 
comparisons and rankings. In contrast, qualitative measures provide insights into the existence and 
patterns of sensitivities without assigning explicit numerical values, thereby prioritizing the 
identification of influential parameters rather than quantifying their impact. Consequently, convergence 
in quantitative measures is typically assessed through numerical thresholds or criteria, whereas 
qualitative measures rely on the consistency of observed patterns across successive model simulations. 
 
This divergence in qualitative and quantitative approaches underscores the complexity of establishing 
a unified framework for convergence assessment of GSA methods. The challenges are further 
compounded by the findings of Sarrazin et al. (2016). They highlighted existing gaps in the practice of 
GSA convergence, noting that there is lack of uniformity in how convergence is defined, convergence 
criteria and thresholds are often not clearly established, and the number of samples required can vary 
significantly for different models even when applying the same GSA method. These observations 
suggest that although the GSA community has made significant advancement in the GSA field, the 
application of convergence analysis exhibits variability that could impact the reliability of GSA measures.   
 
It is important to acknowledge that sampling strategies significantly influence the outcomes of various 
sensitivity analysis methods. While they do not directly measure convergence, sampling strategies 
significantly contribute to the efficiency of convergence assessment by optimizing the number of 
samples needed. Numerous studies have reported how different sampling methods affect the rates of 
convergence, underscoring that more effective sampling strategies (in consort with convergence 
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assessment) can enhance the exploration of the parameter space (Anstett-Collin et al., 2015; Janssen, 
2013). This is because the performance of sampling methods, along with the quality of the generated 
samples, directly determines the efficiency and robustness of any sampling-based analysis 
(Sheikholeslami & Razavi, 2017). However, as the focus of this paper is not on sampling methods, we 
will not delve into this topic in depth. 
 
In this paper, we aim to summarize the contributions of different convergence assessment methods 
from previous convergence studies of GSA. A comprehensive historical perspective, specifying what has 
been contributed by a large number of authors in the environmental literature with respect to the 
choice of methods and models investigated, is undertaken so that readers can easily identify where they 
might search for particular information. But the historical perspective also serves to indicate that so-
called findings tend to be case-dependent in regard to models, methods and choices therein. This case 
dependency reinforces the need for decision choices in the GSA procedure to be transparent and, 
wherever possible, alternatives at least to be discussed if not investigated for appreciating the 
robustness of outcomes with respect to decision choices. Nevertheless, we suggest some prime choices 
to consider when undertaking a convergence analysis for its assessment. Next, convergence assessment 
methods based on different application purposes are introduced and discussed. 
 

2. Review of convergence assessment 

This section brings together literature on the techniques that have been developed for assessing the 
convergence of GSA methods. The connections and relationships among the convergence assessment 
methods discussed in this section are depicted in Figure 1, and a comprehensive list of corresponding 
references is provided in Table 1. Although the selection of a threshold for convergence reached can be 
a somewhat arbitrary factor or depend on computational budget, it should still be selected based on 
thoughtful and careful considerations. The threshold selected affects not only the final sample size 
attained but also the speed in reaching convergence. In simple terms, convergence is essentially reached 
when the results for sensitivity measures of interest and pertinence do not change within a certain 
tolerance by adding more model runs.  

 

 

Figure 1: The connection and relationships among the convergence assessment methods discussed in this paper are 
illustrated. The process of GSA initiates with identifying the purpose and acquiring sensitivity measures. The choice 
of convergence assessment method is then precisely aligned to main accuracy. Based on this purpose, the 
methodologies for monitoring convergence can be broadly categorized into screening, ranking, employing indices, 
and evaluating the agreement between multiple GSA methods. The confidence interval plays a critical component 
in various methods, enhancing the robustness of the analysis. The culmination of this process is the visualization, 
which facilitates the interpretation and communication of the findings. 
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Depending on the purpose of the sensitivity analysis study, the actual measurement of convergence 
may differ. Sarrazin et al. (2016) and Awad et al. (2019) both argued that the convergence of sensitivity 
quantities should be measured differently based on the required precision for indices, ranking, or 
screening. In the literature, the purpose “screening” is often defined as the procedure of classifying 
model parameters into separate groups according to their sensitivity levels, guided by specific criteria. 
On the other hand, the purpose “ranking” refers to the act of organizing the model parameters in the 
order based on their relative significance in terms of sensitivity measures. Finally, the purpose “indices” 
pertains to the process of obtaining accurate sensitivity measures within a specified level of confidence. 
In this section, we review and comment on the existing methods for monitoring the convergence of GSA 
results.  
 
 
Table 1: References related to methods for assessing convergence rates (Note *: unclear as to who proposed the 
method first; **: paper that proposed the method first; ***: paper that applied the method but not the one which 
proposed the method) 

CONVERGENCE ASSESSMENT References 

Precision of convergence based on purpose (Awad et al., 2019; Sarrazin et al., 2016) 

The sum of sensitivities of insensitive 
parameters may be significant 

(Hart & Gremaud, 2019; Hartmann et al., 2018; Mailier et al., 
2011; Touzani & Busby, 2014; Zhang et al., 2013) 

Sheikholeslami grouping strategy (Sheikholeslami et al., 2019a)** (Huo et al., 2019; Khan & 
Kaklis, 2021; Sheikholeslami et al., 2021; Sheikholeslami et al., 
2019b)  

Dummy parameter* (Khorashadi Zadeh et al., 2017; Liu et al., 2019a; Peeters et al., 
2018; Peng et al., 2020; Sun et al., 2022; Upreti et al., 2020)  

• Discussion on dummy parameter (Castaings et al., 2012; Khorashadi Zadeh et al., 2017; Mai & 
Tolson, 2019; Marino et al., 2008) 

Confidence Interval (CI)   

• Bootstrap 
- Suggestions on CI threshold 

(Archer et al., 1997; Isaksson et al., 2008) 
(Baroni et al., 2018; Ghasemizade et al., 2017; Herman et al., 
2013; Zhan & Zhang, 2013; Zhang et al., 2013) 

• Central Limit Theorem* (Yang, 2011) 

• Replication* (Sun et al., 2021, 2022; Tarantola et al., 2012) 

• Model Variable Augmentation (MVA) (Mai & Tolson, 2019) 

"Empirical" Sensitivity Measures* (Dai & Ye, 2015; Mai & Tolson, 2019; Sheikholeslami et al., 
2021; Sheikholeslami & Razavi, 2017; Wang et al., 2020) 

Agreement between multiple GSA methods   

• Set reference method (Moreau et al., 2013; Sarrazin et al., 2016; Uliana et al., 2019; 
Zhan et al., 2013) 

• Two-step SA procedure (Faggianelli et al., 2017; Moreau et al., 2013; Song et al., 
2013a, b; Specka et al., 2019) 

• Small group of parameters dominant (Saltelli et al., 2004, 2007; Uliana et al., 2019; Wagener & 
Pianosi, 2019) 

• Asymmetric pattern of sensitivity (Saltelli et al., 2004) 

• Agreement on dominant parameters (Confalonieri et al., 2010a) 

• No agreement on nondominant 
parameters 

(Cosenza et al., 2013; Sheikholeslami et al., 2017; Song et al., 
2012) 

• Contradicting results between 
multiple GSA 

(Cloke et al., 2008; Kavetski & Clark, 2010; Razavi & Gupta, 
2019; Reusser et al., 2011;Saltelli & Bolado, 1998; Tang et al., 
2007) 

• Comparison of GSA methods (Ciric et al., 2012; Confalonieri et al., 2010a, b; Gupta & Razavi, 
2018; Kroll et al., 2016; Medina & Muñoz, 2020a; Paleari et al., 
2021; Sheikholeslami et al., 2017; Sun et al., 2022) 

Sarrazin et al. Convergence Formula (Sarrazin et al., 2016) 

• Proposed similar formula (Ghasemizade et al., 2017; Gilquin et al., 2021; Leolini et al., 
2018; Reinhart et al., 2020) 

(Table continued on next page) 
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Table 1 (Continued) 

CONVERGENCE ASSESSMENT References 

"Variability" (Vanrolleghem et al., 2015) 

"Reliability" (Razavi & Gupta, 2016b) 

• Extended "Reliability" (Sheikholeslami et al., 2019a) 

Position Factor (Ruano et al., 2012) 

• Suggested threshold (Branger et al., 2015; Likhachev, 2019) 

• Cosenza version (Cosenza et al., 2013) 

• Robles version (Robles et al., 2014a, 2014b) 

• Liu version (Liu et al., 2019b) 

Top-down Coefficient of Concordance 
(TDCC) 

(Iman & Conover, 1987) 

• Quantification of Plasticity  (Confalonieri et al., 2012)** (Paleari & Confalonieri, 2016; 
Ravasi et al., 2020; Silvestro et al., 2017; Touhami et al., 2013)  

• Other comparable methods   

- Calibrated visual criterion (Garcia et al., 2019) 

- Savage score (Gilardelli et al., 2018)*** 

- Kendall's coefficient of 
concordance  

(Nguyen & Reiter, 2015)*** 

- Vigna correlation index (Vigna, 2015) 

- Other rank coefficient of 
concordance 

(Borroni, 2013; Coolen-Maturi, 2014) 

 

2.1  Arbitrary thresholds and grouping 

In defining a threshold for convergence of a measure, one should be careful to recognize potential risks. 
Unfortunately, it is still quite common for researchers to set an arbitrary threshold for identifying 
sensitive or insensitive parameters.   
 
It is risky to seek convergence by removing non-sensitive parameters from the model due to possible 
correlations with sensitive parameters (Mailier et al., 2011), and this may also result in model variations 
that are not explained in the lower dimensional space (Hart & Gremaud, 2019). Moreover, the sum of 
small sensitivity index values of certain parameters may constitute a significant proportion of the output 
variance (Touzani & Busby, 2014) to be considered. One example in Zhang et al. (2013) is that 10% of 
the total-order effect (combination of the first-order and total-effect) was set as the threshold for 
sensitivity, but the sum of index values of insensitive parameters was actually higher than 10% in a few 
cases. In the study proposed by Hartmann et al. (2018), 0.3 was chosen to be the threshold for 
neglecting parameters, but those parameters in fact had larger sensitivities in total than the sensitive 
ones. Additionally, Wang et al. (2022) proposed a proof-of-concept adaptive method. They investigated 
the impact of excluding those factors that have no effect, or negligible effect, on the quantities of 
interest. They warned that fixing should be based on its impact on the question being asked, and that 
the default values chosen for factor fixing can considerably influence the anticipated error. 
 
For screening, invoking an assumed threshold seems to be the most prevalent approach in literature. 
Some examples here bear testimony. Neumann (2012) used a value for the first-order index greater than 
0.1 as sensitive and 0.05 for the total-effect. A first-order index value greater than 0.01 has been 
commonly used as a sensitivity threshold for EFAST (Cosenza et al., 2014; Peng et al., 2020; 
Vanrolleghem et al., 2015), and for the total-effect index value of less than 0.1 has been used to define 
non-influential parameters (Cosenza et al., 2014).  
  
Zhan and Zhang (2013) used 0.05 to separate sensitive parameters, whereas sensitive parameters 
slightly larger than 0.05 were set as a separate group deemed slightly sensitive for both the Sobol’ 
method and Importance Measurement. Tang et al. (2007) used 1% of variance as the threshold for 
sensitive parameters, and also set a highly sensitive group where each parameter contributed more 
than 10% of the variance. In addition, various approaches have been taken to group parameters into 
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three or more categories. For example, for the extended-FAST method, Zhao et al. (2019) partitioned 
the sensitivity of parameters into low (0.05 to 0.1), medium (0.1 to 0.2) and high (> 0.2) groups. In 
general, 0.1 and 0.05 are the most common choices for variance-based sensitivity analysis methods 
when choosing a threshold for screening/grouping purposes, a behavior to mimic the 90% or 95% 
confidence interval. However, the choice of arbitrary threshold(s) is not recommended, as it is unlikely 
to avoid Type I or II errors from the ensuing classifications. Additionally, the sensitivity measures may 
have confidence intervals themselves, and the lower bound and the upper bound of the confidence 
intervals could sit on different sides of the threshold; thus, these sensitivity measures representing 
particular parameters may be recognized as a different sensitive group in a different sensitivity analysis 
experiment. Building on this, it has been demonstrated that parameters with higher sensitivities can 
achieve their final ranking or indices outcomes more quickly, even with limited sample sizes. This is 
because less sensitive parameters continue to shift their rankings and introduce fluctuations in their 
indices even with minor changes in sample size (Khorashadi Zadeh et al., 2017; Nossent et al., 2011). 
 
In advancing the use of grouping, Sheikholeslami et al. (2019a) reviewed existing grouping strategies for 
GSA methods and proposed a new factor grouping strategy with a detailed flowchart, intended 
especially for high-dimensional models. This newly developed factor grouping strategy utilizes both 
bootstrap and agglomerative hierarchal clustering to group factors, and it also uses two different 
strategies (an elbow method or a minimum robustness-based method) to find the optimal number of 
groups. This grouping method was tested on the Sobol’ G-function and a highly-parameterized MESH 
model to achieve a noticeable reduction in computational effort. 
 
Although many studies have mentioned the latter grouping method (Gabriele & Francke, 2020; Do & 
Razavi, 2020; Gupta & Razavi, 2018; KC et al., 2020; Koo et al., 2020; Şalap-Ayça et al., 2021), only four 
studies other than the original in Sheikholeslami et al. (2019a) seem to have implemented this grouping 
method for actual applications. Thus, Huo et al. (2019) used it and found it required less parameter 
sampling. To test the performance of the data-driven VISCOUS method, Sheikholeslami et al. (2021) 
implemented the grouping method to identify crucial processes. In Sheikholeslami et al. (2019b), this 
grouping method was also applied to the study of the STAR-VARS and Sobol’ methods on the HBV-SASK 
rainfall-runoff model and the MESH land surface-hydrology model. It was also applied in Khan and Kaklis 
(2021) to a 104-parameter computer-aided ship design based on Free-Form Deformation.  

2.2  Dummy parameters 

Dummy parameters are sometimes used to assess convergence for some GSA exercises. The approach 
consists of adding a dummy parameter in the calculation of sensitivities without modifying the actual 
model. An easy set-up of the dummy parameter for any particular model output 𝑓(𝑥) is  

𝑓𝑑𝑢𝑚𝑚𝑦(𝑥) = 𝑓(𝑥) + 0 ⋅ 𝑥𝑑𝑢𝑚𝑚𝑦  

 
The sensitivity of the dummy parameter is directly estimated through the fundamental principles of 
GSA using different independent sample sets. By design, the variability of dummy parameters does not 
theoretically influence the model outputs nor the sensitivity estimates for the other parameters. 
Moreover, the calculation of the sensitivity measures for the dummy parameters does not increase the 
intended number of model runs, and the sensitivity of a dummy parameter provides a potential 
threshold for approximation of the error for the sensitivity analysis (Khorashadi Zadeh et al., 2017). 
Several attempts have been made to utilize the dummy parameter approach in GSA: as the influential 
threshold (Khorashadi Zadeh et al., 2017; Upreti et al., 2020); approximation of random noise (Peeters 
et al., 2018); judgement of whether the sensitivity indexes of certain parameters are significantly 
different from zero (Liu et al., 2019a); the accuracy of activity scores based on different gradient 
approximation methods (Sun et al., 2022); and validation of the effectiveness of selected screening 
thresholds (Peng et al., 2020).  
 
The effectiveness of the dummy parameter strategy is seriously impacted by the sample size as large 
errors in dummy parameter sensitivity can be observed at low sample size (Castaings et al., 2012). In 
addition, Castaings et al. (2012) found for density-based sensitivity analysis applied to the Ishigami-
Homma function that the error in sensitivity of the dummy parameter significantly reduces when the 
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number of replicates grows toward the number of base samples. Khorashadi Zadeh et al. (2017) stated 
that, in theory, the index value of dummy parameters should ultimately converge to zero with a large 
enough number of samples. However, Mai and Tolson (2019) obtained a non-zero index value for their 
dummy parameter even with a sufficiently large number of samples. Marino et al. (2008) also pointed 
out that the index value of dummy parameters would be small but non-zero due to aliasing and 
interference effects. Thus, the non-zero approximation error yielded by dummy parameters makes it 
unrealistic to obtain an extremely precise index value for sample-based sensitivity analysis methods for 
complex models when faced with a limited computational budget. 
 
The dummy parameter approach does not function for certain GSA methods, such as the Morris method, 
and indeed the variance-based Sobol’ method with specific estimators. The reason is that dummy 
parameters can only be used when permitted by the sampling method. If only one parameter is being 
varied at a time, then dummy parameters are not effective. For example, the Morris method aggregates 
elementary effects by permuting a single model parameter each time to provide a global view of 
sensitivity, and this renders the dummy parameter to always be zero. In regard to the variance-based 
Sobol’ method, Khorashadi Zadeh et al. (2017) used the Sobol’ 1993 estimator (Sobol, 1993) for the 
first-order sensitivity index and the Homma 1996 estimator (Homma & Saltelli, 1996) for the total-effect 
sensitivity index. These two estimators require the evaluation of the expected value of the model output 
𝑓0, but 𝑓0 is the only term where the approximation errors of the dummy parameter derive. With the 
use of other estimators for the first-order and total-effect indices, the expected value 𝑓0 is not needed, 
and the dummy parameter will always have zero sensitivity. Furthermore, it has been argued that the 
Sobol’ 1993 and Homma 1996 estimators not be recommended anymore because these two estimators 
are inefficient compared to other estimators, such as the Formula (b) and Jansen 1999 proposed in 
Saltelli et al. (2010). Additionally, employing a single dummy parameter may be insufficient for 
accurately assessing approximation errors; therefore, utilizing multiple dummy parameters is 
recommended to comprehensively evaluate their sensitivity bounds without requiring significant extra 
computational effort.   

2.3  Sequential approach  

The sequential approach, or multi-stage sampling (Sheikholeslami & Razavi, 2017), involves increasing 
the number of samples required for a sensitivity analysis study step by step, allowing the stability of 
index values to be examined, often visually (Vanrolleghem et al., 2015), till the difference between two 
consecutive steps is within a certain tolerance (Benedetti et al., 2011; Cosenza et al., 2014). In GSA 
studies that do not set the sample size a priori, there is reasonably widespread usage of the sequential 
approach since the plots involved can easily display whether or not the trend in the sensitivity measure 
has converged to a specific value. 
 
The sequential approach can be used alone or coupled with other convergence monitoring methods 
such as bootstrapping. To inspect the convergence of estimated indices, Zhan and Zhang (2013), for 
example, gradually increased the base sample size in their study by 100 uniform steps. Tang et al. (2007) 
also examined statistical convergence as a function of increasing sample size to find the sufficient 
sample size for LHS in Regional SA in evaluating the lumped Sacramento soil moisture account model, 
which is in contrast to directly following the sample factor approach suggested by Sieber and 
Uhlenbrook (2005). Hart and Gremaud (2019) coupled the sequential approach with replication of Sobol’ 
indices to understand the sampling variability in the Sobol’ G-function. 
 
In the application of the sequential approach, visualization plays a crucial role in elucidating the 
convergence process and the stability of sensitivity indices. Various visualization techniques, such as 
convergence plots, offer intuitive insights into the stepwise refinement inherent in the sequential 
approach. These visualization tools not only support the interpretation of the incremental results but 
also provide a graphical representation of the convergence status, underscoring the synergy between 
these methods. 
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2.4 Confidence interval 

A common way of monitoring convergence in sensitivity analysis and quantifying the confidence interval 
(CI) of measures is by using bootstrapping. There are many different settings for the bootstrap used in 
the SA literature in regard to confidence interval level and number of resamples from the original set, 
such as 95% CI with 100, 1000 or 2000 resamples, 95% CI along with 25th and 75th percentiles for 500 
resamples, and 300 resamples without indicating the percentage of CI required (e.g. Garcia et al., 2019; 
Huo et al., 2019; Nossent et al., 2011; Tang et al., 2007; Wang et al., 2018). Even with so many different 
choices of the number of resamples for bootstrapping, 95% seems to have been the most universal 
choice of CI width. Of course, the choice of width of a confidence interval can be arbitrary and should 
reflect the purpose and context of a study. Essentially, it is a question of whether a 95% CI is too small 
or too large for certain model studies. For example, Baroni et al. (2018) set convergence as being 
reached by increasing the sample size of the Sobol’ method until the upper bound of the 95% CI is less 
than the threshold of 0.1. The 95% CI has also been chosen in many other studies (Ghasemizade et al., 
2017; Zhan & Zhang, 2013; Zhang et al., 2013), whilst Herman et al. (2013) stated that “convergence 
was considered acceptable if the 95% confidence interval represented less than 10% of the sensitivity 
index value for the most sensitive parameters”.  
 
Despite the common use of bootstrapping, it has limitations and is not suitable in every case. Archer et 
al. (1997) pointed out that reliable percentiles need a large number of original samples, and a skewed 
bootstrap distribution can also impact the performance. Isaksson et al. (2008) found that bootstrapping 
behaves poorly with limited samples in the application of SA for computationally intensive models. In 
other words, the performance and reliability of bootstrapping are significantly impacted by the number 
of samples. Furthermore, the choice of bootstrapping with replacement (Nossent et al., 2011; Yang, 
2011) or without replacement (Pappenberger et al., 2008) can significantly impact the confidence 
interval. As stated in the supplementary file of Khorashadi Zadeh et al. (2017), bootstrapping with 
replacement would produce a biased and overestimated confidence interval due to “small vertical 
jumps in the empirical distributions” caused by the multiple presences of the same samples, and this is 
resolved by using bootstrapping without replacement. 
 
Other than bootstrapping, there have been other choices for calculating the confidence interval. The 
Central limit theorem (CLT) with 95% CI was tested by Yang (2011) along with the bootstrap; however, 
Yang found that CLT performs poorly for complicated models and requires more model runs than 
bootstrapping for a 5-parameter model. The use of replications, where independent sets of samples are 
taken and the model output re-evaluated with each new sample set, has also been applied in several 
studies (Sun et al., 2021, 2022; Tarantola et al., 2012). Thus, the standard errors of all the replications 
can be used to estimate the chosen confidence interval. The choice between bootstrapping and 
replication depends on computational budget, but replication has a better chance of exploring 
previously missed parts of the parameter space, whereas bootstrapping can only extract information 
from a set group of sampled parameter values. Indeed, methods that use existing samples (e.g., 
bootstrapping) by definition are limited to the existing sample set. If there is part of parameter space 
that has not been explored in the existing sample set, then the analysis results will be biased. Only 
replication has the capacity to include points in areas that were underrepresented in the original sample 
set. 
 
Recently, Mai and Tolson (2019) proposed a new method to compete with bootstrapping called Model 
Variable Augmentation (MVA), which is able to operate at low sample sizes where bootstrapping is 
known to be unreliable; however, the implementation of MVA for measuring confidence intervals has 
to be decided a priori. MVA is defined as 

𝑦𝑀𝑉𝐴 = 0 ⋅ 𝑧0 +  𝑧1𝑓(𝑥) −  𝑧2𝑓(𝑥) + 𝑐𝑓(𝑥), 
 
where 𝑓(𝑥) is the original model output, 𝑧0, 𝑧1, and 𝑧2 are augmented variables, and c is a constant to 
keep the variance of the new model output 𝑦𝑀𝑉𝐴  the same as the original one.  
 
Furthermore, MVA uses the concept of the dummy parameter, shown as the term 0 ∗ 𝑧0, which may 
render this method inappropriate under certain circumstances (see Section 2.2 Dummy Parameter). 
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Unfortunately, there has been no further testing or application of MVA, even among the eight 
documents that cited the work in Mai and Tolson (2019). 

2.5  “Empirical” sensitivity measures 

Even though many models, especially environmental models, can be complex, computationally heavy, 
and not amenable to analytic calculations of exact sensitivity indices, “true” sensitivity indices have 
been calculated by taking a huge number of samples and, accordingly, model runs. Although the term 
“true” has been utilized in the literature to describe sensitivity indices achieved through extensive 
sampling, we have elected to change this terminology to “empirical”, to reflect the nature of these 
measures more appropriately as based on observed data and analysis, acknowledging the inherent 
approximations and methodological choices involved in sensitivity analysis. For example, Wang et al. 
(2020) used 106 Monte Carlo simulations to calculate the “empirical” Sobol’ sensitivity indices for the 
10-dimensional HBV-SASK hydrological model. Dai and Ye (2015) obtained the so-called reference values 
of indices from 2 × 106  quasi-Monte Carlo samples and associated model simulations ( 8 × 106  of 
model runs) for calculating the absolute errors in total-effect sensitivity index. Sheikholeslami et al. 
(2017) took 5 × 105 LHS parameter sets to generate the “empirical” CDF of model responses. In Mai 
and Tolson (2019), “the true rankings of the inputs were assigned based on the rankings from a 105 
model run SA”. Sheikholeslami et al. (2021) used approximately 1 million model runs to obtain the 
“empirical” sensitivity indices of the Sobol’ method for the HBV and VIC hydrological models. This 
calculation of “empirical” sensitivity indices can be a good way of confirming the sensitivity results at 
relatively low sample size but may not be practical for environmental model studies that are constrained 
by the computational budget. 

2.6  Agreement between multiple SA methods 

Assessing the agreement between different sensitivity analysis methods is also used to check the 
robustness of a sensitivity analysis and, of course, such assessment can be used in conjunction with 
convergence analysis. Due to fundamental differences in the basis of GSA methods from various 
categories, it can be reassuring if the importance of a set of parameters or inferences is, in general, 
confirmed across different methods. A simple approach is to set one method as the reference method 
and check if other methods agree with this it.  
 
Campolongo et al. (2007) proposed the Morris method as a sensible screening tool to use in sequence 
with more computationally demanding methods. This approach is corroborated by several studies 
(Moreau et al., 2013; Sarrazin et al., 2016; Song et al., 2013a; Zhan et al., 2013) as stated by Uliana et 
al. (2019). In fact, there are several papers that have used the Morris method first to reduce the number 
of parameters and then hand the reduced model to another GSA method (usually variance-based SA 
methods) for further analysis. Such a strategy has been called a two-step sensitivity analysis procedure. 
Faggianelli et al. (2017), for example, used the Morris method to screen a 112-parameter office building 
model first, then applied the Sobol’ method to the 10 most important parameters identified by the 
Morris method. Specka et al. (2019) also used the two-step SA, with the Morris method first then EFAST, 
applied to a 200-parameter Agro-ecosystem MONICA model. Song et al. (2013b) applied the Morris 
method first then EFAST on a forest growth model 3-PG. Similarly, Moreau et al. (2013) used Morris to 
screen first, leaving the 6 most important parameters for the analysis of variance (ANOVA) with 
fractional factorial design involved. 
 
Various studies have shown that only a small group of parameters are dominant in regard to sensitivity 
no matter how complex the model is (Saltelli et al., 2004, 2007; Uliana et al., 2019; Wagener & Pianosi, 
2019), which indicates an asymmetric pattern in the distribution of sensitivity for model parameters 
(Saltelli et al., 2004). Additionally, for a Water Accounting Rice Model, Confalonieri et al. (2010a) found 
agreement between GSA methods in terms of the similar importance of parameters. For insensitive 
parameters, however, this agreement may not exist (Cosenza et al., 2013; Sheikholeslami et al., 2017; 
Song et al., 2012). This phenomenon explains the intention of using different GSA methods for the same 
study for the purpose of comparison in terms of efficiency, computational cost and, of course, the 
sensitivity results. Among them, Tang et al. and Yang (Tang et al., 2007; Yang, 2011) both pointed out 
the superiority of the Sobol’ method for nonlinear models with strong interactions, though Herman et 
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al. (2013) questioned the efficiency of the Sobol’ method in a spatially-distributed hydrological case. 
  
It has been shown that EFAST  performs better and converges earlier than the Sobol’ method (Zhao et 
al., 2014), and other studies have made a similar observation (Gómez-Delgado & Tarantola, 2006; Wang 
& Solomatine, 2019). However, Wang and Solomatine (2019) used negative sensitivity index values in 
supporting this argument, which means that the sampling was insufficient. Later on, Upreti et al. (2020) 
stated that PAWN is more computationally efficient compared to EFAST. Additionally, KC et al. (2021) 
compared the Morris, Sobol’, EFAST and PAWN methods for estimating sensitivity measures for 
empirical fire spread models, and they concluded that PAWN converged fastest with EFAST being the 
slowest. On the other hand, Khorashadi Zadeh et al. (2017) found no difference in terms of convergence 
rate between the Sobol’ method and PAWN. Of course, the above results are an indication that no GSA 
method is ideal in all circumstances, including in regard to convergence rate (Song et al., 2015) but 
rather depends on the purpose of the SA exercise, the quantitative (be able to quantify the sensitivity 
estimates) or qualitative (be able to rank the parameters or set a threshold in the order of importance) 
aspects of the SA method, and characteristics of the model in question. 
 
There are various methods to measure the agreement between multiple GSA methods. Spearman’s 
rank correlation has been used for comparing the ranking of Morris and Sobol’ sensitivity results in 
several studies (Cosenza et al., 2013; Herman et al., 2013; Song et al., 2012). Additionally, Cosenza et al. 
(2013) listed many methods comparing the agreement of multiple GSA methods such as relevance, 
number of simulations, visual comparisons of scatter plots of sensitivity indices, and Venn diagrams to 
visualize classification into important or non-influential parameters. However, neither Spearman’s rank 
correlation nor Venn diagrams have seen much discussion in terms of their strengths but rather purely 
employment. Position Factor and Top-down coefficient of concordance (TDCC) are also used for 
comparing the agreement between GSA methods, and they will be introduced in following subsections. 
 
Nevertheless, various studies (Cloke et al., 2008; Tang et al., 2007) have reported that different GSA 
methods can yield contradictory sensitivity results for the same model application. To explain these 
observations, Razavi and Gupta (2019) argued that the differences in the fundamental principles and 
philosophies of the different GSA approaches cause the variations in behavior. Reusser et al. (2011) 
reasoned four possible sources of this being: a response surface that is rough (Kavetski & Clark, 2010), 
interference errors (Saltelli & Bolado, 1998), sampling methods used, and algorithms computing the 
partial variance. There are many other studies (Ciric et al., 2012; Confalonieri et al., 2010a; Gupta & 
Razavi, 2018; Kroll et al., 2016; Medina & Muñoz, 2020a; Paleari et al., 2021; Sheikholeslami et al., 2017; 
Sun et al., 2022) that have compared multiple SA methods, but their results will not be applicable in all 
contexts. Future studies should carefully consider variations in choices among their own experimental 
set-ups and other possible influences on results so that conclusions are more conditional and 
transparent by stipulating the assumptions and context relevant to the study. 

2.7  Sarrazin et al. convergence formulas 

Sarrazin et al. (2016) developed three convergence criteria illustrated through empirical studies (a 5-
parameter HyMod model, a 13-parameter HBV model, and a 50-parameter SWAT model). One criterion 
is the adjusted and weighted rank correlation coefficient coupled with the bootstrap for ranking, 
whereas the other two criteria assess the convergence of the Morris and Sobol’ methods by keeping 
the maximum difference of the upper bound and lower bound of sensitivity results in a certain range 
for screening and indices. These convergence criteria are also employed in subsequent application to a 
vegetation-recharge model (Sarrazin et al., 2018). For assessing the convergence of a sensitivity index 
value, they proposed a criterion called 𝑠𝑡𝑎𝑡𝑖𝑛𝑑𝑖𝑐𝑒𝑠 , and it is defined as 

𝑠𝑡𝑎𝑡𝑖𝑛𝑑𝑖𝑐𝑒𝑠 = max
𝑖=1…𝑘

(𝑆𝑖
𝑢𝑏 −  𝑆𝑖

𝑙𝑏), 

 

where 𝑆𝑖
𝑢𝑏 and 𝑆𝑖

𝑙𝑏 are the upper and lower bounds of the sensitivity index value of the i-th parameter, 
and k is the number of parameters. Sarrazin et al. use the width of the 95% confidence interval obtained 
by bootstrapping and found 𝑠𝑡𝑎𝑡𝑖𝑛𝑑𝑖𝑐𝑒𝑠 = 0.05 to be a reasonable threshold for the criterion to indicate 
convergence.  
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For ranking of sensitivities, Sarrazin et al. (2016) modified and weighted a rank correlation coefficient 
as the criterion called 𝑠𝑡𝑎𝑡𝑟𝑎𝑛𝑘𝑖𝑛𝑔, and it is defined as 

𝜌𝑠,𝑗,𝑚 =  ∑ |𝑅𝑖
𝑗

−  𝑅𝑖
𝑚|

max
𝑗,𝑚

(𝑆𝑖
𝑗
,   𝑆𝑖

𝑚)2

∑ max
𝑗,𝑚

(𝑆𝑖
𝑗
,   𝑆𝑖

𝑚)2𝑘
𝑖=1

𝑘
𝑖=1 , 

where 𝑆𝑖
𝑗
 and 𝑆𝑖

𝑘 are the index values and 𝑅𝑖
𝑗
 and 𝑅𝑖

𝑘  are the ranks of i-th parameter using j-th and m-

th samples accordingly. In addition, a single scalar was developed to aggregate 𝜌 of all possible pairs 
with 

𝑠𝑡𝑎𝑡𝑟𝑎𝑛𝑘𝑖𝑛𝑔 = 𝑄
𝑗,𝑚

0.95(𝜌𝑠,𝑗,𝑚), 

and convergence is considered reached when it is below 1. The authors also proposed a similar measure 
𝑠𝑡𝑎𝑡𝑠𝑐𝑟𝑒𝑒𝑛𝑖𝑛𝑔 for screening, and it requires a pre-defined threshold T to be set in order to form a subset 

𝑋0 of less sensitive model parameters: 

𝑋0 =  {𝑥𝑖 𝑤ℎ𝑒𝑛 𝑆𝑖 < 𝑇}, 
 

and the indicator using the subset 𝑋0 is defined as 

𝑠𝑡𝑎𝑡𝑠𝑐𝑟𝑒𝑒𝑛𝑖𝑛𝑔 =  max
𝑥𝑖 ∈ 𝑋0

(𝑆𝑖
𝑢𝑏 −  𝑆𝑖

𝑙𝑏), 

 

where 𝑥𝑖  is the i-th model parameter, 𝑆𝑖  is the sensitivity measure of 𝑥𝑖, and 𝑆𝑖
𝑢𝑏 and 𝑆𝑖

𝑙𝑏 are the upper 
bound and lower bound of the 95% confidence interval of 𝑆𝑖  correspondingly. The threshold T is set as 
0.05 by Sarrazin et al. to take the subset as lower-sensitivity rather than non-sensitive. The convergence 
of the screening result is considered reached when 𝑠𝑡𝑎𝑡𝑠𝑐𝑟𝑒𝑒𝑛𝑖𝑛𝑔 is below 0.05. 

 
Numerous studies have mentioned, implemented, or adopted the idea of these criteria for assessing 
convergence, while other studies (Asensio-Sevilla et al., 2020; Chaney et al., 2016; Medina & Muñoz, 
2020b) have invoked some of their arguments about convergence or have taken their advice on 
suggested sample size for a direct application. Among them, Wate et al. (2020) adopted the Sarrazin 
indices and convergence criteria in using the variance-based Sobol’ method for a stochastic building 
performance simulator (S-BPS) and found them useful for assessing error in estimating indices with a 
sequential approach. Gschwend et al. (2017) applied the Morris method to investigate different liquid 
fuels through a thermodynamic engine model, assessing convergence of the absolute elementary effect 
using the Sarrazin indices. In the context of a physiologically-based pharmacokinetic model, Hsieh et al. 
(2018) utilized the Sarrazin et al. convergence criteria by checking the range of the 95% confidence 
interval for both Sobol’ indices and Morris indices but with a threshold of 0.1 rather than 0.05. Later, 
Hsieh et al. (2020) coded an R package pkensi to include the 𝑠𝑡𝑎𝑡𝑖𝑛𝑑𝑖𝑐𝑒𝑠   criterion. For a hydrogen 
predictive model, Seo et al. (2021) used the Sarrazin indices convergence criteria with the Sobol’ 
method, although they obtained negative index values for certain parameters even when the criteria 
indicated convergence. KC et al. (2021) compared four GSA methods for empirical fire spread models 
(Dry Eucalypt and Rothermel), but they interpreted the index criteria of Sarrazin as checking if the 
maximum difference between consecutive index values is less than 0.05. Similarly, use of the maximum 
difference in indices of two consecutive runs as a stopping criterion for estimating the Sobol’ index can 
also be seen in other studies (Gilquin et al., 2021; Leolini et al., 2018), though the threshold can be 
different. Reinhart et al. (2020) used the width of the confidence interval to monitor the convergence 
of Sobol’ indices for a drainage water recycling model, but they visually evaluated the convergence of 
ranking rather than applying the ranking criteria of Sarrazin et al. (2016). Ghasemizade et al. (2017) 
considered a width of the confidence interval below 0.14 rather than the default 0.05 as acceptable 
using the Sobol’ method for the HydroGeoSphere model. 
 
A few studies (Chisari et al., 2018; Cruz May et al., 2021; Hsieh et al., 2021) have claimed or implied that 
their results satisfied the convergence criteria of Sarrazin et al. (2016) but did not show any results 
related to the criteria. KC et al. (2020) stated that they applied the three criteria from Sarrazin et al. to 
wildfire models with the Morris, Sobol’ and EFAST methods, but did not show much detail in terms of 
results from the criteria. Awad et al. (2019) compared the Morris extension method and Sobol’ method 
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on a bilinear theoretical model and a civil engineering non-linear model with the use of three criteria. 
 
In terms of criticisms, Garcia et al. (2019), in the context of the Morris method followed by the Sobol’ 
method in a two-step SA, argued that the convergence criteria in Sarrazin et al. (2016) could lead to a 
computational surcharge when the goal is only to ensure convergence of the most important 
parameters. Gokarakonda et al. (2019) pointed out that Nguyen and Reiter (2015) did not obtain 
satisfactory results by using the rank correlation coefficients recommended in Sarrazin et al. (2016), but 
in fact those authors used Kendall’s coefficient of concordance rather than the Sarrazin et al. (2016) 
criteria. 

2.8  “Variability” 

To identify if convergence is reached, Vanrolleghem et al. (2015) set a cut-off threshold (CT) for a 
normalized sum of the sensitivity indices, and the “Variability” of this normalized sum was examined 
through increasing model runs. 

𝑉𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑦 =  [
(∑ 𝑆𝑖

𝑗𝑘
𝑖=1 )

𝑁𝑀𝐶
−  (∑ 𝑆𝑖

𝑗𝑘
𝑖=1 )

𝑁𝑀𝐶−1

𝑘
] ⋅ 100, 

 

where 𝑆𝑖
𝑗
 is the sensitivity index of i-th input of j-th model output, k is the number of parameters, and 

𝑁𝑀𝐶  and 𝑁𝑀𝐶−1 are two sets of samples. 
 
Of the 50 plus documents that have cited the “Variability” work of Vanrolleghem et al. (2015) so far, 
only three papers seem to have applied “Variability” for monitoring convergence. Likhachev (2019) 
applied the Morris method to the titanium nitride (TiN) B-spline dispersion model and assessed the 
convergence of μ* using “Variability” with a threshold of 3% by increasing trajectories. Kroll et al. (2016) 
used “Variability” to monitor the convergence for the Morris and EFAST methods applied to a 
wastewater treatment plant model (WWTP). Finally, Salviano et al. (2021) employed “Variability” to 
check the convergence of the smoothing spline ANOVA method of GSA. However, only the study of 
Likhachev (2019) presented the values of “Variability” through a plot (cumulative variability of μ* versus 
number of trajectories r) to obtain a sufficient number of trajectories, and no value of “Variability” was 
found in the other two studies. 

2.9  “Reliability” 

In order to utilize the information provided by bootstrap resamples, Razavi and Gupta (2016b) proposed 
a measure they termed Reliability for assessing ranking. The “Reliability” indicates the number of 
resamples in bootstrapping required to provide the same rank as the original sample set, and it is 
defined as 

𝑅𝑒𝑙𝑖 =
∑ 𝜑(𝑃𝑖, 𝑃𝑖

𝑗
)

𝑁𝐵
𝑗=1

𝑁𝐵
 

 

where 𝑁𝐵  is the number of bootstrap resamples, 𝑃𝑖  and 𝑃𝑖
𝑗
 are the rank of i-th parameter obtained from 

the original sample set and the j-th bootstrap resample accordingly. The function 𝜑(𝑃𝑖 , 𝑃𝑖
𝑗
) is defined 

as 

𝜑(𝑃𝑖 ,  𝑃𝑖
𝑗
) =  { 

0         𝑃𝑖 ≠ 𝑃𝑖
𝑗
 

1         𝑃𝑖 = 𝑃𝑖
𝑗

 

 
This “Reliability” measure was also called a “Robustness” measure in Razavi et al. (2019). Of the 60 plus 
documents that have cited Razavi and Gupta (2016b), only five studies seem to have used “Reliability” 
for the assessment of convergence, whereas a few studies (Akomeah et al., 2019; Razavi & Gupta, 2019) 
have mentioned the “Reliability” measure but did not employ it. Using VARS-50 for a hydrological model, 
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Bajracharya et al. (2020) compared different model evaluation metrics based on “Reliability”. While the 
error in the slope of the flow duration curve (SFDC) was found to have low reliability, it was still 
recommended as SFDC can identify the sensitivity of parameters overlooked by conventional error 
metrics. For the Noah-MP land surface model, Huo et al. (2019) measured the “robustness” of 
multivariate adaptive regression splines (MARS), though this measure is basically the originally-termed 
Reliability measure. To complement a grouping method, Sheikholeslami et al. (2019a) extended use of 
the Reliability measure to take into account factor grouping. Additionally, Sheikholeslami et al. (2017) 
assessed the ranking of the Regional SA (RSA) (Hornberger & Spear, 1981) and VARS methods using 
Reliability for the 10-parameter RIVICE model.  

2.10  Position Factor 

A measure called Position Factor (PF) has been used in some studies to “evaluate the convergence of 
ranking (stability in ranking) numerically”, where “parameter ranking is considered to be stable when 
the value of the position factor is low” (Ruano et al., 2012). Although 66 documents have cited Ruano 
et al. (2012), only a limited number of studies have actually employed the Position Factor. On the other 
hand, the Position Factor concept has received a lot of development in the process, as indicated below.  
 
The original Position Factor is defined as 

𝑃𝐹 =  ∑
𝑃𝑖

𝑗
− 𝑃𝑖

𝑚

𝐴𝑣𝑔
𝑃

𝑖
𝑗
𝑃𝑖

𝑚

,

𝑘

𝑖=1

 

 

where k is the number of parameters, 𝑃𝑖
𝑗
 and 𝑃𝑖

𝑚  are the rank of the i-th parameter obtained from the 

j-th resample and the m-th resample accordingly, and 𝐴𝑣𝑔
𝑃𝑖

𝑗
𝑃𝑖

𝑚  is the average of 𝑃𝑖
𝑗
 and 𝑃𝑖

𝑚. 

 
Likhachev (2019) used the Position Factor to measure the difference in ranking obtained with different 
numbers of trajectories, considering the threshold of reliable ranking to be when PF < 2. Branger et al. 
(2015) used the Position Factor to monitor the ranking by the Morris method for an energy-economy 
model Res-IRF. Similarly, they also considered PF = 2 as the threshold, which was claimed to be robust 
to an increase in samples. In addition, they considered the convergence of PF over a range of sample 
sizes with low values rather than stopping at the first low PF value. Sreedevi et al. (2019) applied the 
Position Factor for the SHETRAN model to measure the differences in ranking by the Morris method 
obtained with different trajectories; however, the threshold invoked for the Position Factor is not stated, 
and the final PF was larger than 2. 
 
A modified position factor 𝑃𝐹𝑎𝑏𝑠  was proposed by Cosenza et al. (2013) to use the absolute value of the 
ranked difference of parameters between resamples.  

𝑃𝐹𝑎𝑏𝑠 =  ∑
|𝑃𝑖

𝑗
−  𝑃𝑖

𝑚|

𝐴𝑣𝑔
𝑃𝑖

𝑗
𝑃𝑖

𝑚

𝑘

𝑖=1

 

 
Later, Robles et al. (2014a, 2014b) normalized 𝑃𝐹𝑎𝑏𝑠  by dividing by the maximum of the Position Factor 
𝑃𝐹𝑚𝑎𝑥 . Furthermore, it was considered that the convergence criteria are to obtain two consecutives 
𝑃𝐹𝑛𝑜𝑟𝑚 values of less than 0.3.  

𝑃𝐹𝑛𝑜𝑟𝑚 =  ∑
|𝑃𝑖

𝑗
−  𝑃𝑖

𝑚|

𝐴𝑣𝑔
𝑃𝑖

𝑗
𝑃𝑖

𝑚

𝑘

𝑖=1

⋅
1

𝑃𝐹𝑚𝑎𝑥
 

 
Liu et al. (2019b) modified the Position Factor by changing the numerator to a varied weight based on 
the sensitivity measures, and this new Position Factor was also compared with the original Position 
Factor:  
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𝑃𝐹𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 =  ∑
|𝜇𝑖

∗(𝑗)
− 𝜇𝑖

∗(𝑚)
| /𝜇𝑖

∗(𝑗)

𝐴𝑣𝑔
𝑃𝑖

𝑗
𝑃𝑖

𝑚

.

𝑘

𝑖=1

 

 
Along with previous studies (Ge & Menendez, 2014; Zhan et al., 2013), Liu et al. (2019b) argued that 
the significance of a specific parameter depends on the magnitude of the sensitivity measure (say μ*) 
rather than the rank. Moreover, a change in rank does not reflect a great change in the sensitivity 
measure. Thus, it was suggested that the judgment of the original Position Factor purely based on 
rankings is not wise and that an unnecessarily large number of trajectories would be required to reach 
convergence. 

2.11  Top-down Coefficient of Concordance with Savage score 

The Top-down Coefficient of Concordance (TDCC) (Iman & Conover, 1987) measures the correlation 
between parameter ranks and weights the top-ranking parameters more. It is usually coupled with the 
Savage score (Savage, 1956), which is the expected value of the order statistic using a sample from a set 
distribution to form an increasing sequence, to quantify the agreement between multiple sensitivity 
measures obtained from different sample sets or configurations, especially for the purpose of ranking. 
The TDCC is defined as 

𝑇𝐷𝐶𝐶 =  
∑ [∑ 𝑠𝑠(𝑆𝑖

𝑚)𝑅
𝑗=1 ]

2
−  𝑅2 ⋅ 𝑘𝑘

𝑖=1

𝑅2 [𝑘 −  ∑
1
𝑖

𝑘
𝑖=1 ]

, 

 

where k is the number of parameters, R is the number of resamples, 𝑆𝑖
𝑚  is the index value of i-th 

parameter obtained by m-th resample, and 𝑠𝑠(𝑆𝑖
𝑚) is the savage score of 𝑆𝑖

𝑚 defined as 

𝑠𝑠(𝑆𝑖
𝑚) = ∑

1

𝑖

𝑘

𝑖=𝑃𝑖
𝑚

 . 

 
Here 𝑃𝑖

𝑚  is the rank of i-th parameter obtained by m-th resample. 
 
Studies (Ciric et al., 2012; Confalonieri et al., 2010a; Confalonieri et al., 2010b; Marino et al., 2008; 
Paleari et al., 2021) have implemented the TDCC with Savage score for measuring several items: the 
ranking between multiple SA methods; the adequacy of sample size (Brembilla et al., 2015; Krishnan et 
al., 2021; Krishnan & Aggarwal, 2018; Lebedeva et al., 2012); for different combinations of inputs 
(Jabloun et al., 2018); for different simulation days (Specka et al., 2019); for different parameter 
variation ranges (Tan et al., 2017); or for the difference between pairs of species (Locatelli et al., 2017). 
For a specific crop model, Confalonieri et al. (2012) proposed a quantification measure of L (of plasticity) 
that combined TDCC with the standard deviation of a normalized agrometeorological indicator (SAM), 
and this indicator has been mentioned or used in several studies (Paleari & Confalonieri, 2016; Ravasi 
et al., 2020; Silvestro et al., 2017; Touhami et al., 2013). 
 
There have been attempts to use the Savage score as a standalone convergence measurement. Gilardelli 
et al. (2018) used the Savage score to compare the ranking obtained by the Morris and EFAST methods, 
whilst Campolongo et al. (2007) used it to identify the least sensitive parameters by ordering the sum 
of scores from each parameter for a revised Morris method. However, Garcia et al. (2019) pointed out 
that the Savage score assigns a low score to parameters that are only important to one model output in 
favor of parameters important to multiple model outputs. 
 
TDCC is not the only measure for assessing a coefficient of concordance. Kendall’s coefficient of 
concordance (KCC) was also used in several studies for the purpose of ranking (Nguyen & Reiter, 2015). 
However, KCC gives equal weight to all of the parameters regardless of their ranking, and Helton et al. 
(Helton et al., 2005; Locatelli et al., 2017) deemed KCC inappropriate for finding important parameters 
because KCC serves as a bad indicator when insignificant parameters are the majority of the model 
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parameters. Although TDCC has been widely adopted in many SA studies, there are other correlation 
indices warranting consideration in the future. The correlation index proposed by Vigna (2015) 
considers if there is a tie between the measurements, as ties are not dealt with in the current setting of 
TDCC. If a model has multiple parameters with the same sensitivity analytically, a correlation index, such 
as TDCC, is unable to provide a correct ranking indicator, as TDCC gives a much higher value than the 
threshold even if the sample size is adequate for other ranking measurements. In addition, there are 
several new weighted rank coefficients of concordance measures (Borroni, 2013; Coolen-Maturi, 2014) 
that could also be considered and tested in future ranking studies.  

2.12  Visualization 

The utility of visualization techniques in GSA is particularly pronounced when applied in conjunction 
with the sequential approach, detailed in Section 2.3. The sequential approach’s step-by-step 
refinement of sample sizes offers rich data for visual analysis, enabling researchers to graphically assess 
convergence and the impact of incremental sample addition. This interplay between visualization and 
the sequential approach, or visualization alone, enhances the reliability and robustness of GSA. It not 
only supports the interpretation of the GSA results (Nossent et al., 2011) but also helps in identifying 
certain patterns and small details not captured by a single or small number of measures.  
 
Convergence plots graphically represent the trend of sensitivity indices as the number of model 
evaluations increases (Yang, 2011), allowing researchers to visually assess when additional simulations 
cease to significantly alter the outcome, or to view the sensitivity indices of multiple model parameters 
together, thereby visually identifying general patterns. Similarly, plots displaying confidence limits 
around sensitivity indices can be instrumental in illustrating the uncertainty associated with the 
estimated sensitivities, thereby offering another layer of insight into the convergence and reliability of 
the analysis. These plots, as employed in numerous studies such as Sun et al. (2021), make it evident 
when the confidence intervals around sensitivity indices stabilize, indicating convergence. Khorashadi 
Zadeh et al. (2017) used probability density function plots of error measures (NSE and ME) as 
convergence criteria, wherein complete convergence is achieved when the slope of the plot is 
considered flat. Pianosi et al. (2016) summarized 13 examples of useful visualization tools for exhibiting 
GSA results in their appendix, including the most commonly seen plots for the convergence purpose, 
such as the convergence plot and pattern plots. Qian and Mahdi (2020) illustrate several common 
graphical methods, including the boxplot, confidence plot and convergence plot. Among them, the 
slope of the convergence plot is used as an indicator to check the status of convergence in many studies, 
but this depends on the context, how plots are configured, and how the overlap of multiple lines is 
carefully adjusted to increase visibility. While a variety of visualization techniques in GSA are discussed 
here, it is crucial to emphasize that not all directly serve convergence analysis. Techniques such as 
different formats of heat maps (Baroni et al., 2018; Herman et al., 2013; Li & Ren, 2019; Van Werkhoven 
et al., 2008; Wagener et al., 2009) and 3D plots (Mailier et al., 2011; Matthews et al., 2007; Wang et al., 
2013), although valuable for presenting sensitivity analysis results and identifying patterns, may not 
inherently provide information regarding convergence. Nevertheless, when used in conjunction with 
sequential approaches, they can complement the convergence assessment by highlighting patterns or 
discrepancies that warrant further investigation. For example, Likhachev (2019) used 3D plots to show 
changes in the Morris method’s sensitivity measure μ* with respect to the changes in the number of 
trajectories and parameters, along with the cross-sections as 2D plots on the side to exhibit the more 
hidden part. 
 
In order to summarize useful suggestions for avoiding common mistakes and enhancing the usefulness 
of visualization, Kelleher and Wagener (2011) proposed ten guidelines for scientific visualization. These 
ten guidelines list comprehensive recommendations including: the data selection, graphic encoding and 
attributes, the purpose of plotting, axis ranges and aspect ratio, solving overlapping of points in scatter 
plots, using line connection smartly, aggregate datasets, and the selection of color schemes. Additionally, 
they emphasize the importance of scientific visualization and give examples of visualization to illustrate 
their guidelines. 
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2.13  Other convergence approaches 

Other less common convergence approaches include that of Touzani and Busby (2014) who presented 
an error criterion to assess the convergence for derivative-based global sensitivity measures (DGSM) 
and emphasized the impact of influential parameters. The criterion uses an Euclidean norm of DGSM 
indices instead of individual indices. The stopping threshold of this criterion is set as 0.05, but the DGSM 
indices still showed a large fluctuation in the convergence plots past the threshold. Thus, this error 
criterion may need a much lower threshold or some other modifications to be more informative. 
 
Garcia et al. (2019) proposed a calibrated visual criterion in the R platform to mimic the process of 
selecting important parameters by the Morris method in preparing for a two-step SA. In addition, the 
convergence of the calibrated visual criterion was assessed by using bootstrap resamples, similar to the 
concept of “Reliability”. It was tested on the FLBEIA bio-economic fisheries simulation model and found 
to be cheaper computationally than the  𝑠𝑡𝑎𝑡𝑠𝑐𝑟𝑒𝑒𝑛𝑖𝑛𝑔  measure, which is based on the width of 

confidence interval (Sarrazin et al., 2016). 
 

3.  Discussion and future directions 

As has been argued here and elsewhere, there are many influences that impact the results of a GSA 
exercise. Thus, the practice of adopting recommendations from previous studies to select a sample size 
for GSA a priori or finding simple relations between the number of model parameters and sample size 
is largely fraught with uncertainty, especially in terms of realizing trustworthy convergence of SA results. 
Therefore, almost whatever the context of a new study, there are many reasons for the embracing of a 
sequential approach, as the basis in employing convergence analysis whereby convergence is monitored 
with increasing sample size. 
 
For the purpose of screening, setting an arbitrary threshold for sensitivity is not recommended as it may 
cause errors of Type I (i.e., sensitive parameters classified as insensitive) or II (i.e., insensitive parameters 
classified as sensitive), and it may also underestimate the impact of the sum of less sensitive parameters 
(Touzani & Busby, 2014). The dummy parameter approach (Khorashadi Zadeh et al., 2017) constitutes 
use of a more advanced threshold, but it may not be suitable for specific GSA methods such as those of 
Morris (due to the sampling used) or Sobol’ (for select estimators) methods. However, it can still be 
implemented with other methods, such as Active Subspaces (Sun et al., 2022), but one should take care 
implementing it with small sample sizes (Castaings et al., 2012). Many methods, such as the Kendall 
rank correlation (Nguyen & Reiter, 2015), do not seem to have been implemented much, so there needs 
to be more investigation of these methods. The grouping method of Sheikholeslami et al. (2019a) can 
be a suitable choice for multi-group screening, but it still requires more dedicated tests. Similarly, the 
screening criteria of Sarrazin et al. (2016) is easy and straightforward to use, but it also requires more 
comprehensive testing against other methods. 
 
For the purpose of ranking, the Position Factor approach has seen several modifications in form, and 
the modified Position Factor with weighting (Liu et al., 2019b) seems a valuable change as it considers 
the magnitude of the sensitivity measures in evaluating the ranking. In terms of weighting, the ranking 
criterion of Sarrazin et al. (2016) uses bootstrap resamples additionally, and this is more stringent than 
the original Position Factor for detecting convergence. Sun et al. (2022) employed 8 test functions to 
compare the ranking of Activity Scoring (based on the Active Subspace concept) with the variance-based 
Sobol’ method and the Morris method. They used four ranking convergence measurements (Position 
Factor, 𝑠𝑡𝑎𝑡𝑟𝑎𝑛𝑘𝑖𝑛𝑔, “Reliability”, and TDCC), and found that the different approaches to convergence 

reflect different perspectives.  
 
The notion of “Reliability” seeks to inspect the convergence status of each individual model parameter, 
and this gives a different perspective than the Sarrazin et al. (2016) ranking criterion 𝑠𝑡𝑎𝑡𝑟𝑎𝑛𝑘𝑖𝑛𝑔  which 

provides the convergence status in a general view. “Reliability” and 𝑠𝑡𝑎𝑡𝑟𝑎𝑛𝑘𝑖𝑛𝑔  act complimentarily, 

whereas the original Position Factor does not provide additional information compared to visually 
identifying the ranking except if the number of model parameters is huge and visual inspection is not 
practical. The TDCC measure with Savage score is less informative in providing an indicator of 
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convergence status than the other three ranking measurements because it may require more model 
evaluations than other ranking measurements. Ideally, all these ranking convergence measurements 
should be applied and compared under different circumstances with various model characteristics and 
GSA methods. Fortuitously, such comprehensive comparisons can often be achieved by post-processing 
results from the same sampling and model runs. 
 
The Confidence Interval approach is the most obvious option to assess convergence, especially for 
ranking or estimating sensitivity indices. Among the choices for calculating confidence intervals, 
bootstrapping does not require extra model runs compared to replication-based CI, but it also comes 
with the limitation of being biased under certain circumstances. Model Variable Augmentation (MVA) 
has not been tested much, other than in Mai and Tolson (2019), and it utilizes the dummy parameter 
concept, which would have the same drawbacks as that of the dummy parameter alone. The “Variability” 
approach is quite straightforward in that its formula is simple to implement, but it cannot identify 
changes in each individual model parameter when the sum of sensitivity measures does not change. 
The usefulness of a “true”, or more correctly “empirical”, sensitivity measure really depends on how 
one sets up the sensitivity analysis, including which methods are chosen. “Empirical” sensitivity analysis 
works well for simple analytical functions, but for real-world problems, it is not always practical. Running 
a lot of samples does not necessarily mean you will find the absolute true sensitivity; it just moves one 
closer to some converged value, typically with no mathematical proof in support. So, for complex 
models or when the computational budget is too restrictive, the “empirical” sensitivity might not suffice 
though the general trends against sample size may be informative. Last but not least, the indices criteria 
of Sarrazin et al. (2016), as mentioned earlier, cannot directly be used to ensure the convergence of 
individual model parameters, and it also relies on the quality of bootstrap resamples.  
 
Looking to the future, GSA stands on the cusp of significant advancements. Opportunities abound for 
applied studies focused on the convergence of sensitivity analysis that are currently poorly represented 
in the literature. Future GSA studies should fully recognize all potential choices that impact the 
inferences from a GSA exercise and, in the interests of transparency, note the assumptions made and 
hence the conditional nature of the outcomes, including with respect to the convergence attained. 
Secondly, multi-step GSA approaches deserve more attention around applying possible combinations of 
GSA methods at each step, as the current studies have largely but not totally been limited to the Morris 
method followed by one variance-based GSA method. 
 
In addition, while some studies, such as Sarrazin et al. (2016), have begun to address the rate of 
convergence by extracting and discussing convergence rates from various studies, this area remains 
significantly underexplored. Figure 1 in Sarrazin et al. (2016) exemplifies the kind of empirical insights 
that can inform our understanding of convergence rates in GSA. This acknowledgment highlights that, 
although some work has been done, comprehensive testing, investigation and analysis remain 
paramount for advancing our decisions and ensuring more reliable GSA results. While such studies lay 
a foundation, enhancing GSA software tools is essential for advancing the field and ensuring reliable 
results. Future efforts should focus on detailed convergence indicators across varying sample sizes to 
refine GSA methods.   
 
If the response surface of the model in question is smooth, emulation has much potential to be a more 
computationally efficient approach (Budamala & Baburao Mahindrakar, 2020; Wang et al., 2014), as it 
can simplify and reduce the dimension of models through the development of model response surfaces 
(Yang et al., 2018) and reduce sampling and the associated number of model runs (Wang et al., 2020). 
Furthermore, emulation methods such as Polynomial Chaos (Hu et al., 2015; Shin et al., 2015) and 
Artificial Neural Networks (Sudheer et al., 2011; Wu et al., 2021) yield sensitivities as a by-product as 
they are smooth approximations and can be differentiated. However, the choice of appropriate 
technique from all existing emulation techniques, the conditions required for building accurate 
response surfaces within a certain tolerance, and the impact of emulation on the convergence of GSA 
exercises are all worth investigating. With respect to making transparent assumptions in GSA exercises, 
an example approach is given by Page et al. (2023) who introduce the CREDIBLE Uncertainty Estimation 
(CURE) toolbox, offering a comprehensive framework for uncertainty estimation. This includes explicit 
documentation of assumptions and choices through a condition tree implementation, aiding in creating 
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an audit trail for model decisions. In line with the CURE toolbox, a template for listing the context, 
assumptions, and choices in a GSA exercise and its convergence is advocated here as a way forward for 
summarizing and listing choices made, their justification and comparison among alternatives. Such a 
template could also provide guidance at each step of the GSA application and support the transparency 
of the process and its learnings more widely for future convergence studies. Additionally, this template 
would be refined iteratively through future GSA applications in shaping an optimal pathway for 
achieving and communicating a level of assurance of GSA applications within the available resources.  
 

4.  Conclusions 

With foremost attention given here to progress and applications in the field of environmental modeling, 
we have listed and commented on the available convergence assessment methods and covered a 
wealth of applications to be found in the literature. If the purpose of a GSA exercise is somewhat flexible 
and the computational budget is limited, then screening/ranking can take fewer samples to converge 
than estimating specific indices. For assessing convergence, a sequential approach, with incremental 
increases in sample size and visualization of convergence rates, should generally be easy and worthwhile 
to adopt as it allows one to assess, or appreciate by visualization, whether and to what extent 
convergence is being reached.  
 
There is a straightforward gap to be filled in that there is a lack of studies carefully testing the various 
convergence analysis methods together. Hence, it is not possible to give a definitive answer on which 
convergence analysis method is superior, though any method will have pros and cons. In concluding our 
examination of GSA in environmental modeling, we underscore the importance of a methodical 
approach to the convergence assessment of sensitivity analysis. To achieve this, we propose the 
following: 

1. Identify the Purpose of Sensitivity Analysis 

• Ranking: If the goal is to rank parameters by their influence on the output. 

• Screening: If the goal is to identify non-influential parameters to reduce model 
complexity. 

• Indices: If the goal is to quantify the sensitivity indices for in-depth analysis. 

2. Consider Model Complexity and Computational Resources 

• For Ranking: 
i. Limited resources: Use the Position Factor (PF) or Top-down Coefficient of 

Concordance (TDCC) with Savage scores to assess the stability of parameter 
rankings efficiently. 

ii. Adequate resources: Apply the Sarrazin 𝑠𝑡𝑎𝑡𝑟𝑎𝑛𝑘𝑖𝑛𝑔  criterion to assess 

ranking stability through weighted rank correlation, enhancing the reliability 
of parameter influence hierarchy. 

iii. Abundant resources: Assess agreement between multiple SA methods to 
ensure robustness in rankings. 

• For Screening: 
i. High-dimensional models: Implement the Sheikholeslami grouping method 

for efficient parameter grouping, reducing computational demands. 
ii. General cases: Implement the Sarrazin 𝑠𝑡𝑎𝑡𝑠𝑐𝑟𝑒𝑒𝑛𝑖𝑛𝑔  criterion to manage the 

maximum difference in sensitivity measures for non-sensitive parameters, 
ensuring efficient screening convergence. 

iii. Consider the Dummy parameter approach with caution, ensuring the 
method is compatible with chosen SA techniques (e.g., avoid when using 
certain Sobol' estimators). 

• For Indices: 
i. Seeking confidence in results: Utilize bootstrapping for confidence interval 

estimation but consider sample size limitations. If bootstrapping is 
unreliable, Model Variable Augmentation (MVA) can be an alternative for 
low sample sizes. 
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ii. Desiring detailed convergence assessment: Apply Sarrazin 𝑠𝑡𝑎𝑡𝑖𝑛𝑑𝑖𝑐𝑒𝑠  to 
monitor the maximum difference in sensitivity index bounds, ensuring 
accurate quantification of parameter impacts. 

 

3. Address Specific Method Limitations 

• Avoid arbitrary thresholds: Recognize the high risk of misclassification due to lack of 
empirical support and the potential for Type I or II errors. 

• Dummy parameter caution: Acknowledge its case-specific nature and incompatibility 
with certain GSA methods, necessitating careful consideration of its applicability. 

4. Advanced Considerations for Refinement and Verification 

• “Variability” and “Reliability”: Employ “Variability” and “Reliability” metrics to further 
verify the stability and reliability of the sensitivity analysis results, especially when 
computational resources allow for extensive resampling or when using bootstrapping 
to assess ranking robustness. 

• Final Verification: For all purposes, especially when results are uncertain or further 
validation is needed, consider a detailed comparison by exploring agreement 
between multiple SA methods or convergence assessment methods to confirm the 
reliability and robustness of the sensitivity analysis results. 

5. Visualization and Communication 

• Utilize advanced visualization techniques for clear interpretation and communication 
of SA results, supporting empirical validation and convergence assessment. 

 
In conclusion, this study has focused on the detailed aspects of GSA within environmental modeling, 
pointing out the essential need for customized approaches to convergence assessment. By thoroughly 
examining various methods and their applications, we highlight the wide range of important factors 
needed for effective convergence assessment, from starting with the goals of the sensitivity analysis to 
balancing model complexity and computational constraints. The steps outlined for detailed convergence 
assessment, along with straightforward advice for overcoming method limitations and making 
improvement, hopefully provide a clear guide for researchers to increase the precision and 
trustworthiness of their GSA applications. Ultimately, this work has aimed to point out the critical 
importance of careful convergence assessment in making sensitivity analyses sound and reliable, thus 
acting as a pillar in helping to move any environmental model development and evaluation forward, 
and in supporting good modeling practice in general.  
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