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Supplementary Material 

 

An overview of variance-based importance measures in the 
linear regression context: comparative analyses and numerical 
tests 

Supplementary Material A: Equivalence between the LMG measures and the 
standardized Johnson indices for the case of two variables 

The equivalence between the LMG and the standardized Johnson indices in dimension two is proved with a 
different demonstration from the one of Thomas et al. (2014) which relies on geometrical arguments. 
 
Proposition 1. If 𝑑 = 2, the LMG and the standardized Johnson indices are equal: 

𝐽𝑗
∗2 = LMG𝑗  for 𝑗 =  1,2 . 

Proof. The correlation matrix 𝑹𝑿,𝑿 is given by: 

𝑹𝑿,𝑿 = 𝑾∗2 = (
𝑤11

∗2 + 𝑤12
∗2 = 1

𝑤12
∗2(𝑤11

∗2 + 𝑤22
∗2)

   
𝑤12

∗2(𝑤11
∗2 + 𝑤22

∗2)

𝑤12
∗2 + 𝑤22
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) 

 
The standardized Johnson index associated with the input 𝑋1 (resp. 𝑋2) is given according to the Eq. (32) by: 
 

𝐽𝑗
∗2 = [𝛼1

∗2𝑤11
∗2 + 𝛼2

∗2𝑤21
∗2] 

 
With 𝛼𝑖

∗ = 𝛽1
∗𝑤𝑖1

∗ + 𝛽2
∗𝑤𝑖2

∗  for 𝑖 ∈ {1, 2}. We then have: 
 

𝐽1
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∗ + 𝛽2
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∗ )2𝑤11

∗2 + (𝛽1
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Because the singular values involved in Eq. (21) are positive, the diagonal elements of 𝑾 and 𝑾∗ are also 

positive. Using Eq. (26), we thus have 𝑤11
∗ = 𝑤22

∗ = √1 − 𝑤12
∗ 2 and after several simplifications, Eq. (33) 

becomes: 
 

𝐽1 = [𝛽1
∗2 + 2𝛽1

∗𝛽2
∗𝑤12

∗ 𝑤11
∗ + 2𝑤11

∗2𝑤12
∗2(𝛽2
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Knowing that, with standardized variables: 
 

𝑏1 = 𝛽1𝜎1 = 𝛽1
∗𝜎𝑌, 

𝑏2 = 𝛽2𝜎2 = 𝛽2
∗𝜎𝑌, 

𝑟 = 2𝑤12
∗ 𝑤11

∗ , 
 

We find that: 

𝐽1
∗ = σ𝑌

−2 [𝑏1
2 + 𝑏1𝑏2𝑟 +

𝑟2

2
(𝑏2

2 − 𝑏1
2)]. 

 
And finally with Eqs. (17): 
 

𝐽1
∗ = LMG1 (and similarly, 𝐽2

∗ = LMG2). 
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Supplementary Material B: Pair plots and results tables on the public datasets 

This appendix gives results tables and pair plots on the previous public datasets presented in Section 7. The 
pair plots provide in the upper panel the CC of each variables’ pair, in the diagonal panel the kernel density 
estimation (or the histogram) of each variable marginal and in the lower panel the scatter plots and fitted 
smoothers of each variables’ pair. 
 

B.1. Independent inputs’ case 
 

 

Figure S1: Data pairs plot for the independent inputs’ case providing: the variable histograms (diagonal), and for each 
variable pair, the CC (upper panel), as well as scatter plots and fitted smoothers (lower panel). 

 

Table S1: Metrics and VIMs for the independent inputs’ case. All indices are in %. 

Input PCC2 SPCC2 SRC2 LMG Johnson PMVD 

X1 98.7 4.49 4.57 3.0 3.01 4.56 

X2 99.3 8.20 8.66 16.7 16.61 10.47 

X3 99.9 73.94 79.16 80.3 80.32 84.91 

Sum 298.0 86.62 92.39 99.9 99.94 99.94 
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B.2. Collinear case 
 

 
Figure S2: Data pairs plot providing: the variable histograms (diagonal), and for each variable pair, the CC (upper panel), as 
well as scatter plots and fitted smoothers (lower panel). 

 

Table S2: Metrics and VIMs for the collinear case data. All indices are in %. 

Input PCC2 SPCC2 SRC2 LMG Johnson PMVD 

X1 98.8 1.16 1.19 0.81 0.62 1.19 

X2 99.3 2.12 2.24 5.81 6.28 2.63 

X3 99.3 2.09 19.85 46.52 46.16 45.92 

X4 99.5 3.00 28.39 46.85 46.92 50.24 

Sum 396.9 8.36 51.67 99.99 99.99 99.99 
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B.2.1 Model with a dummy (not included in the model) correlated input 
 

 

Figure S3: Data pairs plot providing: the variable histograms (diagonal), and for each variable pair, the CC (upper panel), as 
well as scatter plots and fitted smoothers (lower panel). 

 

Table S3: Metrics and VIMs for the non-included correlated input model toy data. All indices are in %. 

Input PCC2 SPCC2 SRC2 LMG Johnson PMVD 

X1 95.67 17.01 102.86 58.1 58.1 99.19 

X2 0.84 0.01 0.04 41.1 41.1 0.04 

Sum 96.50 17.01 102.90 99.2 99.2 99.2 
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B.3. Public dataset on air quality 
 

 
Figure S4: Data pairs plot for the air quality dataset providing: the variable histograms (diagonal), and for each variable pair, 
the CC (upper panel), as well as scatter plots and fitted smoothers (lower panel). 

 
 

 
Figure S5: Linear model prediction vs. observation data for the air quality data: 𝑅2 = 0.625 and 𝑄2 = 0.582. 
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Table S4: Metrics and VIMs for the air quality data. All indices are in %. 

Input n PCC2 SPCC2 SRC2 LMG Johnson PMVD 

Solar.R 1 4.20 1.65 1.90 6.30 6.49 2.65 

Wind 2 20.16 9.47 12.59 22.33 22.91 18.25 

Temp 3 31.33 17.11 29.48 31.96 31.28 39.37 

Month 4 3.70 1.44 1.81 1.65 1.60 1.75 

Day 5 1.34 0.51 0.51 0.26 0.22 0.48 

Sum 6.47 60.73 30.18 46.29 62.49 62.49 62.49 

 
 

B.4. Public dataset on cars prices data 

 
Figure S6: Linear model prediction vs. observation data for the cars data: 𝑅2 = 0.915 and 𝑄2 = 0.911. 

 

Table S5: Metrics and VIMs for the cars data. All indices are in %. The last column gives the sense of variation of inputs with 
significantly influence (LMG> 1). 

Input n PCC2 SPCC2 SRC2 LMG Johnson PMVD Cor. sign 

Mileage 1 21.42 2.31 2.33 2.25 2.24 2.15 - 

Cylinder 2 56.92 11.22 26.39 21.20 21.96 25.65 + 

Doors - 4.43 0.39 1.82 1.22 1.07 0.37 + 

Cruise 3 0.17 0.01 0.02 6.10 5.54 0.03 + 

Sound - 0.45 0.04 0.04 0.42 0.37 0.04  

Leather - 1.26 0.11 0.13 1.35 1.41 0.11 + 

Buick - 0.37 0.03 0.08 0.84 0.86 0.18 + 

Cadillac 4 36.70 4.92 16.39 22.40 22.58 29.57 + 

Chevy 5 0.20 0.02 0.07 6.97 5.68 0.04 - 

Pontiac 6 1.04 0.09 0.30 2.51 2.39 0.12 + 

Saab 7 38.32 5.28 18.80 10.32 11.23 19.68 + 

Convertible 8 34.40 4.45 7.26 13.16 12.95 12.16 + 

Hatchback - 12.10 1.17 2.86 1.70 1.93 0.76 - 

Sedan - 11.19 1.07 4.83 1.08 1.30 0.65 - 

Sum  218.95 31.12 81.34 91.51 91.51 91.51  
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B.5. Ames housing dataset 
 

 
Figure S7: Data pairs plot for the Ames housing dataset providing: the variable histograms (diagonal), and for each variable 
pair the CC (upper panel), as well as scatter plots and fitted smoothers (lower panel). 
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Figure S8: Linear model prediction vs. observation data for the Ames housing data. 

 
 

Table S6: Metrics and VIMs for the Ames housing data considering 10 variables. All indices are in %. 

Input PCC2 SPCC2 SRC2 LMG Johnson PMVD 

SecondFlrSF 16.58 4.43 13.46 6.84 6.31 11.54 

FirstFlrSF 12.79 3.27 14.12 13.89 13.34 24.51 

TotalBsmtSF 4.85 1.14 3.53 12.52 12.28 10.49 

YearBuilt 4.12 0.96 1.97 8.56 8.60 8.38 

YearRemodAdd 3.82 0.88 1.56 8.21 8.09 5.82 

BedroomAbvGr 3.53 0.82 1.68 1.17 1.34 1.08 

KitchenAbvGr 4.40 1.03 1.24 .161 1.60 1.45 

MasVnrArea 3.15 0.72 0.98 7.12 6.73 2.49 

TotRmsAbvGrd 0.69 0.16 0.64 6.42 7.65 0.54 

GarageCars 5.18 1.22 2.22 11.37 11.76 11.41 

Sum 59.10 14.62 41.40 77.70 77.70 77.70 
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Table S7: Metrics and VIMs for the Ames housing data considering 34 variables. All indices are in %. 

Input PCC2 SPCC2 SRC2 Johnson 

LotFrontage 0.59 0.12 0.13 0.96 

LotArea 0.39 0.08 0.10 1.42 

YearBuilt 3.22 0.66 2.12 5.31 

YearRemodAdd 4.53 0.94 1.79 6.05 

MasVnrArea 2.51 0.51 0.72 5.23 

BsmtFinSF1 0.02 0.00 0.01 0.45 

BsmtFinSF2 0.35 0.07 0.08 0.09 

BsmtUnfSF 0.86 0.17 0.54 0.97 

TotalBsmtSF 4.30 0.89 4.31 8.18 

FirstFlrSF 8.06 1.74 9.73 8.67 

SecondFlrSF 10.08 2.22 11.50 4.20 

LowQualFinSF 0.06 0.01 0.01 0.06 

BsmtFullBath 0.42 0.08 0.18 1.93 

BsmtHalfBath 0.01 0.00 0.00 0.06 

FullBath 0.03 0.01 0.02 4.50 

HalfBath 0.11 0.02 0.05 1.71 

BedroomAbvGr 2.54 0.52 1.15 0.85 

KitchenAbvGr 2.89 0.59 0.81 1.25 

TotRmsAbvGrd 0.73 0.15 0.64 4.27 

Fireplaces 1.07 0.21 0.33 4.42 

GarageCars 0.47 0.09 0.54 6.07 

WoodDeckSF 0.61 0.12 0.15 1.95 

OpenPorchSF 0.00 0.00 0.00 1.40 

EnclosedPorch 0.23 0.05 0.06 0.29 

Threeseasonporch 0.00 0.00 0.00 0.03 

ScreenPorch 0.88 0.17 0.19 0.52 

PoolArea 0.38 0.08 0.08 0.07 

MiscVal 2.14 0.43 0.45 0.26 

MoSold 0.00 0.00 0.00 0.02 

YearSold 0.11 0.02 0.02 0.05 

Longitude 0.01 0.00 0.00 1.00 

Latitude 1.34 0.27 0.32 1.77 

Sum 49.27 10.29 36.37 80.20 
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Supplementary Material C: Classification case  

Introduction 

Several metrics and variance-based importance measures (VIMs) have been defined in the main paper in the 
classical linear regression context where the response (output) one tries to fit is a quantitative (often continuous) 
variable, while the predictors (inputs) can be either continuous quantitative variables or qualitative ones (but 
still, numerically valued). However, many practical applications deal with classification data, where the output 
is a categorical variable. In this supplementary material, by the way of the generalized linear model (GLM), we 
give extensions of metrics and VIMs to the linear logistic regression model. We deal with the case of a binary 
output, namely in the context of the linear logistic regression. 
 
The structure of this supplementary material is as follows. Section C.1 reminds some basics about logistic 
regression model. Section C.2 develops the correlation ratio that is the correlation coefficient between an input 
and the binary output. Then, Section C.3 develops the Johnson indices in the logistic regression context. Finally, 
Section C.4 applies all the studied metrics on several simulated or public datasets. In this paper, the same 
acronyms and mathematical notations as those of the main paper are used. 
 

C.1. The logistic regression model 

In a classification problem, the output 𝑌 is no longer continuous (nor quantitative) but binary (e.g. 𝑌 ∈ {0, 1}). 
The GLM (McCullagh & Nelder, 1989) allows considering a binomial distribution for 𝑌 and to perform a linear 
regression on a transformed output (by a so-called link function). For example, if 𝑝 = 𝑝(𝑋) =ℙ(𝑌 = 1|𝑋), the 
logistic regression model writes: 
 

𝑔(𝑝) = log (
𝑝

1−𝑝
) = 𝑋𝛽.     (1) 

 
It is usually called the “regression model on the link scale” and the link function 𝑔(𝑝) is known as the “logit” 
transform. Other transforms such as the “probit” one can be used (McCullagh & Nelder, 1989). 
 
Via the “inverse logit” transform 𝑝 = [1 + exp(−𝑔(𝑝))]−1, the model in Eq. (1) returns probability values as 
predictions. In practice, to predict a binary value for the output, a threshold 𝑠 ∈]0, 1] has to be defined and the 
following predictor is used: 
 

𝑌̂(𝑥∗) = 𝕀{𝑝(𝑥∗)≥𝑠}(𝑥∗)     (2a) 

 

with 𝑝̂(𝑥∗) = [1 + exp (𝑥∗𝛽̂)]−1 .     (2b) 
 
Remark 1. The logistic regression parameters (i.e. 𝛽𝑖 , 𝑖 = 0, . . . , 𝑑 in Eq. (1)) are intrinsically interpretable, through 
an exponential transformation, as odds ratios. The quantity exp(𝛽𝑖) quantifies the marginal effect of 𝑋𝑖 on the 
modeled probability 𝑝. The set of odds ratios, while providing an interpretable tool to quantify input importance 
in the sense of the marginal effect of a variable on the conditional probability, does not fall under the definition 
of an importance measure (IM) for linear models, and are thus out of the scope of this report. In the following, 
the focus is put on IM with respect to the linear link between the inputs and the quantity 𝑔(𝑝). These IMs are not 
directly interpretable with respect to the output of interest. IM on non-linear links between an output of interest 
and the inputs (see, e.g. Raguet & Marrel (2018); Marrel & Chabridon (2021)) are beyond the scope this report 
and will be described in other works. Here, we limit ourselves to the interpretation of 𝑔(𝑝), being aware that IMs 
are not directly linked to the classes of the output (but still highly correlated). 
 
In order to validate the model in Eq. (1), 𝑅2 and 𝑄2 have to be computed. Considering GLM, several metrics can 
be used (see, e.g., Zheng & Agresti (2000) for a review). A popular one is the following (Guisan & Zimmerman, 
2000): 
 

𝑅2 = 1 −
𝐷

𝐷0
,      (3) 
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where 𝐷 and 𝐷0 are, respectively, the deviance and the null deviance. Deviance can be seen as a generalization 
of the variance when the error distribution is non-Gaussian (as provided by the GLM). More precisely, the 
deviance is twice the difference in log-likelihood between the current model and a saturated model (i.e. a model 
that fits the data perfectly). As for the null deviance, it is a generalization of the total sum of squares of the linear 
model. Figure S9 provides an illustrative summary of how these two quantities are connected. Again, other 
coefficients of determination have been proposed for the logistic regression model (Tonidandel & LeBreton, 
2010) but their study is beyond the scope of this report. 
 

 
Figure S9: Illustration of deviance and null deviance for GLM validation (inspired from García-Portugués, 2021). 
 

The 𝑄2 estimation is usually computed from cross-validation residuals. As this formula also involves the variance 
of the observations on the link scale, we compute it by dividing the variance of the linear fits (on the link scale) 
by 𝑅2. 
 
In order to validate the model in Eq. (2a), several criteria are useful: 
 

• If one considers that the important class to be predicted (e.g. typically the one which is critical regarding 
safety purposes) is “TRUE” (𝑌 = 1) and the other class is “FALSE” (𝑌 = 0), the confusion matrix 
distinguishes: 

– the number of true positive (TP): 𝑌 = 1 and 𝑌̂ = 1; 

– the number of true negative (TN): 𝑌 = 0 and 𝑌̂ = 0; 

– the number of false positive (FP): 𝑌 = 0 and 𝑌̂ = 1; 

– the number of false negative (FN): 𝑌 = 1 and 𝑌̂ = 0. 
 

• The error rate is the number of errors (false positive and false negative) divided by the number of 
observations: 

𝜀 =
𝐹𝑃+𝐹𝑁

𝑛
       (4) 

 

• The sensitivity is related to the important class to be predicted. It is the number of good predictions in 
this class divided by the number of observations in this class: 

 

𝜏 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
.       (5) 

 

C.2. Correlation coefficient with the binary output 

In the classification context, 𝑌 is a binary variable which can be treated as a qualitative one. The analogue of CC 
when dealing with a qualitative 𝑌 (of any modalities) and one quantitative 𝑋𝑗 (instead of two quantitative) 
variables is called the correlation ratio (CR). It writes (Saporta, 1990): 
 

𝐶𝑅𝑗 = 𝜂𝑋𝑗|𝑌
2 =

VAR(E[𝑋𝑗|𝑌])

VAR(𝑋𝑗)
      (6) 
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where one can recognize a first-order Sobol’ index (Sobol’, 1993) formula. CR is also equivalent to the coefficient 
of determination (𝑅2) of the linear regression explaining the quantitative variable by the qualitative one (Saporta, 
1990). 
 
Returning to the binary case for 𝑌, from the sample (X𝑛,Y𝑛), it can be easily estimated by: 
 

𝜂̂𝑋𝑗|𝑌
2 =

𝑛0𝑛1

𝑛

(𝑋̅𝑗,0−𝑋̅𝑗,1)2

∑ (𝑋
𝑗
(𝑖)

−𝑋̅𝑗)2𝑛
𝑖=1

      (7) 

 
where 𝑛0 and 𝑋̅𝑗,0 (resp. 𝑛1 and 𝑋̅𝑗,1) are the sample size and the empirical mean of 𝑋𝑗,0 (resp. 𝑋𝑗,1) which is the 

restriction of 𝑋𝑗 to the case {𝑌 = 0} (resp. {𝑌 = 1}). Let us remark that CR can also be used in a regression context 
(case of a quantitative variable 𝑌) when 𝑋𝑗 is a qualitative variable (by exchanging the role of 𝑋𝑗 and 𝑌 in Eqs. (6) 
and (7). 
 

C.3. Johnson indices in the logistic regression context 

Following the calculation methodology of the standardized logistic regression coefficient proposed by Menard 
(2004), Tonidandel & LeBreton (2010) suggests extending the definition of the Johnson indices to the logistic 
regression context. By considering the logistic regression model described by Eq. (1), the standardized logistic 
regression coefficient associated with the variable 𝑋𝑖 is defined as 
 

𝛽𝑖
∗ =

𝜎𝑋𝑖

𝜎𝑙𝑜𝑔𝑖𝑡(𝑔(𝑝))
𝛽𝑖.      (8) 

 
To define the standard deviation 𝜎𝑙𝑜𝑔𝑖𝑡(𝑔(𝑝)), one can use the alternative definition of  

𝑅 = (𝜎𝑙𝑜𝑔𝑖𝑡(𝑔̂(𝑝)))/(𝜎𝑙𝑜𝑔𝑖𝑡(𝑔(𝑝))) and thus calculate the 𝛽𝑖 such as: 

 

𝛽𝑖
∗ =

𝜎𝑋𝑖

𝜎𝑙𝑜𝑔𝑖𝑡(𝑔̂(𝑝̂))

𝛽𝑖𝑅 .     (9) 

 
The idea is then to apply this definition to the methodology previously defined for a classical linear regression. 
The matrices Z𝑛 (associated to a 𝑛-sample) and W (see Section 6.1 of the main paper), as well the matrix Alogit 
are estimated in function of the variables X𝑛 and g𝑛(𝑝) (𝑛-sample of 𝑔(𝑝)) standardized beforehand. In particular, 
we have  
 

𝐴̂𝑙𝑜𝑔𝑖𝑡 = (𝑍𝑛⊺𝑍𝑛)−1𝑍𝑛⊺𝑔𝑛(𝑝) = 𝑍𝑛⊺𝑔𝑛(𝑝) = (𝛼̂𝑙𝑜𝑔𝑖𝑡,𝑗)1≤𝑗≤𝑑.   (10) 

 
The Johnson index associated with the variable 𝑋𝑖 in the logistic regression context is thus given by: 
 

𝐽𝑙𝑜𝑔𝑖𝑡,𝑖 = 𝑅2 ∑ 𝛼𝑙𝑜𝑔𝑖𝑡,𝑗
∗2 𝑤𝑖𝑗

∗2𝑑
𝑗=1     (11) 

 
A natural plug-in estimator of the Johnson index can then be obtained. 
 
 

C.4. Application cases 

Classification problems deal with binary 𝑌 and Section C.1 has developed the linear logistic regression model 

which allows modelling 𝑔(𝑝) = 𝑙𝑜𝑔
𝑝

1−𝑝
 (with 𝑝 = ℙ(𝑌 = 1)). Metrics of such models, fitted on the link scale, are 

then associated to the quantity 𝑔(𝑝) and do not give a direct interpretation of the output on which we focus. 
 
Table S8 provides a summary of the various datasets used in this section and their corresponding characteristics: 
the name and corresponding subsection, the input dimension 𝑑, the number of observations 𝑛, information 
about the presence of quantitative vs. qualitative inputs (qt/ql), and the source of the dataset. The first five rows 
correspond to toy cases with simulated data while the remaining ones correspond to public datasets. Note that 
the +1 sometimes mentioned in the input dimension column refers to the fact that a dummy correlated variable 
is introduced (but without being explicitly part of the model). 
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Table S8: Summary of the toy and public use cases. 

Name § d n qt/ql Source 

Classif #1 4.1 3 100 qt - 

Classif #2 (dummy) 4.1 2+1 100 qt - 

Car prices 4.2 15 804 qt/ql cars dataframe 

(caret package) 

 
 

C.4.1  Illustration on simulation data from toy cases 

We first study the three-dimensional (𝑑 = 3) linear classification model: 
 

𝑌 = 𝕀
{∑ 𝛼𝑖𝑋𝑖≥𝑘}𝑑

𝑖=1
       (12) 

 

with 𝑘 ∈ ℝ and 𝑋𝑖 ∼ 𝒩(0, 1) 𝑖 = 1, . . . , 𝑑. In our case, we take 𝑘 = 0, 𝑎 = (1, 2, 3) and we simulate a 100-size 
sample of 𝑋. The matrix plot is given in Figure S10 (left). 
 
 

 
Figure S10: Data pairs plot for the linear classification case (left) and the dummy-correlated-variable classification case (right). 
The upper panel provides the CC of each variable pair; the diagonal panel gives the kernel density estimation of the marginals; 
the lower panel gives scatter plots and fitted GLM with CI. As the output variable is not continuous but binary, other 
representations are given in the right column and bottom line. 

 
 
On the link scale, the linear regression between the output and the inputs gives 𝑅2 = 1.000 and 𝑄2 = 0.921. By 
taking the threshold 𝑠 (see Eq. (2a)) at the mid-value and classical value 0.5 to distinguish the two classes, the 
classification error rate (Eq. (4)) is 𝜀 = 0 and the classification sensitivity (Eq. (5)) is 𝜏 = 1, which mean a perfect 
fit (as expected). The metrics and the VIMs, from the regression on the link scale, are given in Table S9 and Figure 
S11 (left). It shows that LMG, Johnson and PMVD provide similar results that SRC2 (which is only based on the 
regression coefficients that give a higher weight to 𝑋2 than to 𝑋1). The output corresponds to a threshold 
exceedance that is mainly explained by 𝑋3. 𝑋1 and 𝑋2 compete 𝑋3 only via their interaction effects (concomitant 
large values). Therefore, this interaction effect is shared between these inputs in the LMG/Johnson/PMVD 
approach, and their effect is equalized. 
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Table S9: Metrics and VIMs (in %) for the linear classification data. 

Input VIF CR SRC2 PCC2 SPCC2 LMG Johnson PMVD 

X1 8.86 0.723 8.65 6.86 2.58 5.36 6.27 10.2 

X2 14.83 24.977 37.78 40.54 26.28 35.91 35.19 35.9 

X3 28.63 44.577 58.20 62.22 44.01 58.73 58.55 53.8 

Sum 52.31 70.277 104.62 109.62 72.88 100.00 100.00 100.00 
 

 
We now study a model with 𝑑 = 2 correlated inputs with one dummy variable (i.e. non-included in the model): 
 

𝑌 = 𝕀{𝑋𝑖+𝜂≥1}       (13) 
 

with 𝜂 ∼ 𝒩(0, 0.01) and 𝑋 ∼ 𝒩2 ((0
0
), ( 1

0.9
0.9
1

)). We simulate a 100-size sample of 𝑋. The matrix plot is given in 

Figure S10 (right). 
 
On the link scale, the linear regression between the output and the inputs gives 𝑅2 = 0.951 and 𝑄2 = 0.841. By 
taking the threshold 𝑠 = 0.5, we have 𝜀 = 0.02 and 𝜏 = 0.93. The metrics and the VIMs, from the regression on 
the link scale, are given in Table S10 and Figure S11 (right). PMVD allows drastically decreasing the importance 
measure of 𝑋2 which is only due to its correlation with 𝑋1. One also observes the closeness between LMG and 
the (logistic regression-based) Johnson indices. 
 

Table S10: Metrics and VIMs (in %) for the non-included-input classification model toy data. 

Input VIF CR PCC2 SPCC2 SRC2 LMG Johnson PMVD 

X1 12.3 41.1 11.994 9.176 111.51 64.1 57.9 91.27 

X2 12.3 32.1 0.323 0.126 1.36 31.0 37.3 3.87 

Sum 24.6 73.2 12.317 9.301 112.87 95.1 95.1 95.14 

 
 

 
Figure S11: Estimates (with bootstrap) of the metrics and VIMs in the linear classification case (left) and in the dummy-
correlated-variable classification case (right). 

 

C.4.2  Application to a public dataset: car prices data 
 

We use the car data for a classification exercise (𝑌 is binary) by distinguishing the cars prices above and below a 
given price ($40, 000). The important class to be predicted (𝑌 = 1) is for the high prices. On the link scale, the 
linear logistic regression between the output and the inputs gives 𝑅2 = 0.757 and 𝑄2 = 0.601. By taking the 
threshold 𝑠 = 0.2 to distinguish the two classes, the classification error rate (Eq. (4)) is 𝜀 = 0.037% and the 
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classification sensitivity (Eq. (5)) is 𝜏 = 1. The metrics and VIMs, from the regression on the link scale, are given 
in Table S11. The difference with the regression case is that some variables (as Saab) have no more influence. 
The influence of the three main influential inputs (Cylinder, Cadillac and convertible) are still present. 
 

Table S11: Metrics and VIMs (in %) for the cars classification data. The last column gives the sense of variation of inputs with 
significantly influence (LMG> 1). 

Input n◦ VIF CR SRC2 PCC2 SPCC2 LMG Johnson PMVD 
Cor. 

sign 

Mileage 1 1.01 1.40 0.79 2.26 1.03 4.67 1.42 5.13 - 

Cylinder 2 2.35 18.85 1.94 1.09 1.61 21.68 14.20 27.9 + 

Doors 3 4.61 0.56 1.49 0.00 0.59 1.45 0.81 0.00 + 

Cruise 4 1.55 1.72 0.21 0.00 0.04 2.30 1.06 0.00 - 

Sound 5 1.14 0.26 0.00 0.00 0.02 0.31 0.13 0.02  

Leather 6 1.19 2.00 0.01 0.00 0.03 3.01 0.57 0.00 + 

Buick 7 2.60 0.58 0.05 0.00 0.17 1.20 0.66 0.00 - 

Cadillac 8 3.33 35.14 16.99 0.10 5.25 20.90 27.05 31.3 + 

Chevy 9 4.41 1.63 0.32 0.00 0.03 3.11 1.91 0.00 - 

Pontiac 10 3.42 1.20 0.44 0.00 0.30 3.34 1.15 0.00 - 

Saab 11 3.56 0.87 18.91 0.00 0.42 3.10 15.44 0.15 - 

convertible 12 1.63 8.78 13.47 1.69 5.10 8.90 10.56 11.2 + 

hatchback 13 2.45 0.42 0.53 0.00 0.53 0.51 0.16 0.00  

sedan 14 4.51 0.01 1.79 0.00 0.63 1.27 0.62 0.00 - 

Sum  37.77 73.42 56.93 5.14 15.75 75.74 75.74 75.7  
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