

Correspondence:
Contact D. Vedder at daniel.vedder@idiv.de

Cite this article as:
Vedder, D., Fischer, S.M., Wiegand, K. & Pe’er, G.
Developing multidisciplinary mechanistic Models: challenges and approaches
Socio-Environmental Systems Modelling, vol. 6, 18701, 2024, doi:10.18174/sesmo.18701

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International
License.

Socio-Environmental Systems Modelling
An Open-Access Scholarly Journal
http://www.sesmo.org

Developing multidisciplinary mechanistic models: challenges and
approaches

Daniel Vedder1,2,3,*, Samuel M. Fischer4, Kerstin Wiegand5,6, and Guy Pe’er1,3

1 Department of Biodiversity and People, Helmholtz Center for Environmental Research - UFZ, Leipzig
2 Institute of Biodiversity, Friedrich Schiller University Jena

3 German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig
4 Department of Ecological Modelling, Helmholtz Center for Environmental Research - UFZ, Leipzig

5 Department of Ecosystem Modelling, University of Göttingen, Germany
6 Centre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Germany

Abstract
Current biodiversity models often struggle to represent the complexity of global crises, as the affected ecosystems
are shaped by many different ecological, physical, and social processes. To understand these dynamics better, we
will need to build larger and more complex ecological models, and couple ecological models to models produced
by other disciplines, such as climate science, economics, or sociology. However, constructing such integrated
models is a significant technical undertaking, which has received little attention by ecological modellers so far.
We review literature from computer science and several other environmental modelling disciplines to identify
common challenges and possible strategies when creating large integrated models. We show that there is a
software-architectural trade-off between modularity and integration, where the former is required to keep the
technical complexity of a model manageable, and the latter is desirable to represent the scientific complexity of
a studied system. We then present and compare five different software engineering techniques for navigating
this trade-off. Which technique is most suitable for a given model depends on the model’s aims and the available
development resources. The larger a model becomes, the more important it is to use more advanced techniques,
such as integrating models from different domains using a model coupling framework. Our review shows that
ecological modellers can learn from other modelling disciplines, but also need to invest in increased software
engineering expertise, if they want to build models that can represent the numerous processes affecting
ecosystems and biodiversity loss.

Keywords
ecological modelling, model complexity, model coupling, FAIR principles, research software

1. Introduction

Mechanistic models (also known as process-based models) have established themselves as an important pillar
of ecological research (Pilowsky et al., 2022). They help us better understand ecological processes and patterns
(DeAngelis & Grimm, 2014), and are increasingly widely used to study the causes and effects of biodiversity loss
(IPBES, 2016). In this, they show great potential for making ecology a more predictive science (McIntire et al.,
2022; Stillman et al., 2016), as well as for supporting decision making (Grimm, Johnston, et al., 2020; Will et al.,
2021).

mailto:daniel.vedder@idiv.de
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://www.sesmo.org/

D. Vedder et al. (2024) Socio-Environmental Systems Modelling, 6, 18701, doi:10.18174/sesmo.18701

2

Mechanistic models are already used to model the full spectrum of biological scales, from individual-level genetic
(Romero-Mujalli et al., 2019) and physiological processes (Sibly et al., 2013) all the way up to macroevolutionary
processes that shape global patterns (Cabral et al., 2017). However, most ecological models only consider a very
small number of processes (Urban et al., 2016), partly because of the complexity of ecosystems and the
multitude of processes that need to be modelled. This is problematic, as gaining a full understanding of the
natural world will require models that integrate multiple processes and organisational levels, including their
interactions across scales (Grimm et al., 2017; Urban et al., 2022).

In addition to integrating the various strands of ecological research, mechanistic models can be used to link
ecology to other scientific disciplines. This is vital in the context of complex issues such as Global Change, where
we need to understand how ecosystems and biodiversity affect and are affected by both physical domains such
as climate (Urban et al., 2016) and socio-economic domains such as agriculture (Malawska et al., 2014).
Ultimately, if we want to gain a deep, holistic understanding of the natural world we live in, we will not just need
more comprehensive ecological models, but also integrated models that create a link between ecology and the
physical and social sciences (Cabral et al., 2023).

Building such larger and more integrated models entails high scientific complexity, and there is a lively discussion
among ecological modellers about whether and when this is necessary and how to deal with this (e.g. Sun et al.,
2016; Lorscheid & Meyer, 2016; Topping et al., 2015). However, there is comparatively little discussion about
the technical aspects of constructing large models. Models are software systems that also have a high technical
complexity; thus, creating large integrated models will mean building large complicated software (Sanders &
Kelly, 2008; Johanson & Hasselbring, 2018; Vedder, Ankenbrand et al., 2021).

Of course, there are multiple dimensions in which model software can be improved, including increased realism
and computational efficiency. However, with the growing importance of interdisciplinary, and especially social-
ecological, research, the aim of combining models from multiple domains has taken on new urgency (Cabral et
al., 2023; Urban et al., 2022). While we should continue to think about how to build better monodisciplinary
models (“go deep”), we should at the same time strive to build more multidisciplinary models (“go wide”).

Therefore, with this review, we address the question of how such model integration can be practically achieved.
We juxtapose relevant principles from the computer science literature on software engineering with examples
from current practice in ecological modelling. To help link the two, we also draw on the wider literature on
scientific computing, and include examples from other modelling fields such as climate modelling. We identify
the challenges in creating large integrated models, and discuss the advantages and disadvantages of different
techniques that can be used to build them. We end by drawing together concrete and practical advice for
creating large integrated models.

2. The trade-off between modularity and integration

Large, interdisciplinary models are challenging to build both scientifically and technically (Vedder, Ankenbrand
et al., 2021). The larger model software becomes, the more its creation must be treated as software engineering
and not merely as software development (Johanson & Hasselbring, 2018; see Box 1 for terminology). Engineering
large software systems is hard, and computer scientists have been thinking for decades about how to deal with
their inherent and unavoidable complexity (see e.g. the seminal papers by Brooks 1986; Dijkstra 1972).

A fundamental solution to address this complexity is the concept of modularity, and the related concepts of
encapsulation and abstraction (e.g. Abelson et al., 1996; McConnell, 2004). Complex software systems are easier
to develop and understand when they are split into semi-independent subsystems. Two complementary aspects
of modularity are “low coupling” and “information hiding” (Beck & Diehl, 2011). Low coupling means that each
subsystem should be as self-contained as possible, with few links to the rest of the program. This makes it easier
to develop, test, and analyse each subsystem in isolation. Information hiding means that each subsystem should
have a defined and restricted interface through which the rest of the program can access its functionality without
having to know the implementation details. This makes it possible to treat each subsystem as a “black box”,
reducing the complexity of the complete system and making it much easier to think about and design.
Additionally, it means that subsystems are easier to replace if and when that is necessary. Thus, the concept of
modularity is directly applicable to the development of mechanistic models in ecology, and is indeed used in a
similar manner to deal with scientific complexity (Lorscheid & Meyer, 2016).

D. Vedder et al. (2024) Socio-Environmental Systems Modelling, 6, 18701, doi:10.18174/sesmo.18701

3

Box 1: Glossary of software terms.

Clean code
Computer code that is easy to read, understand, and modify (see Martin, 2009, for an in-depth discussion).

Code base
The complete set of source code files for a software application, often taken to include the associated input files and
documentation.

Complexity ceiling
The maximum attainable complexity of a code base. As the size and technical complexity of a code base increases, the
difficulty and cost of adding new features and fixing bugs increases further and further, partly due to accumulating technical
debt. Eventually, further development becomes unfeasible and the software must be rewritten or left as-is. Good software
engineering and clean code can raise the complexity ceiling (cf. Martin, 2009).

Model coupling
The joining of two or more models, so that the output of one is used as input for another. May be accomplished using data
files, software packages, network connections, or coupling frameworks (see sections 3.3 to 3.5, and the overview in Belete
et al., 2017).

Modularity
When referring to the internal structure of a code base: the property of being subdivided into semi-independent modules,
or the degree of subdivision. Structuring software into self-contained modules makes it easier to understand and modify,
as most changes will only affect a small subset of the entire code. (See Abelson et al. 1996, and McConnell 2004, for detailed
discussions.)

Software architecture
The internal structure of a code base, including its organisation into packages, files, classes, and/or functions. Designing
this is an important part of software engineering.

Software engineering
The science and practice of developing software applications. The term emphasises the planning, design, and quality
control procedures required for implementing large software projects (cf. McConnell, 2004). This is in contrast to the terms
“programming” or “software development”, which often focus more on the actual act of writing code.

Technical debt
Unnecessary technical complexity in a code base that makes it difficult to understand and work with. This may be caused
by a software architecture that is either too simple or too complicated, a disregard of the principles of clean code, or
incomplete documentation. Although writing such suboptimal code may be faster at first, the resulting (unnecessarily high)
technical complexity makes future development harder and slower unless the software quality is improved (i.e. the debt is
“paid back”).

However, the technical aim of keeping subsystems independent can come into conflict with the scientific desire
to represent the numerous interlinkages between domains in the real world (Lippe et al., 2019; Topping et al.
2015). Many ecological models include interactions between processes at different scales (e.g. climate change
and animal breeding behaviour), or between different entities at the same scale (e.g. predator and prey species).
This requires the model source code to be sufficiently integrated to allow these interactions to be represented.
On a technical level, the degree of integration of a software can be measured as the number of linkages between
its components (e.g. the number of functions or variables in one component that are referenced outside of this
component). The greater the number of linkages, the higher the integration and the lower the modularity (Beck
& Diehl, 2011).

Therefore, there is a scientific desire for greater integration to increase realism and a technical desire for greater
modularity to increase code tractability, leading to a trade-off between these two model software properties.
Modellers must be aware of this trade-off, and carefully weigh the scientific benefits of increased integration
against its associated technical complexity costs. We therefore recommend the principle of writing model code
that is “as modular as possible, as integrated as necessary”.

D. Vedder et al. (2024) Socio-Environmental Systems Modelling, 6, 18701, doi:10.18174/sesmo.18701

4

3. Techniques for creating integrated models

Below, we examine practical approaches for reconciling the scientific need for model integration with the
technical imperative of software modularity. For this discussion, we use the terms “model” and “component” in
a very specific sense. By “model” we mean a stand-alone executable software that is designed to represent one
or more aspects of the physical world. By “component” we mean a subsystem of such a model, that handles one
aspect of the model’s purpose and interacts with the model’s other components. Such a component may be a
software module, package, or library, or even another model. Consequently, a stand-alone model may also be
used as a component when it is coupled together with other components to create an integrated model. The
definitions of model and component in this context are therefore functional and not mutually exclusive: a model
is executable, a component interoperable.

Multiple techniques can be used to create large integrated models, each with their own benefits and drawbacks
(Brandmeyer & Karimi, 2000). Fundamentally, the important questions are how to implement and link
components. As complex software usually involves work by multiple developers or even teams of developers,
the tasks of creating (and extending or adapting) components and models will often be done by different people
and sometimes by different groups. It is therefore important to consider both the perspectives of component
developers and model developers.

In this section we will present five techniques, which represent increasingly advanced types of software
architectures that allow progressively greater levels of complexity to be handled. These are: monolithic models,
components as modules, components as packages, ad-hoc model coupling, and framework model coupling (Fig.
1a). The techniques are characterised by differing degrees of interdependence between the model and its
components (Fig. 1b). Our selection of techniques is not meant to be comprehensive, but rather aims (1) to show
the breadth of available options, (2) give examples of how they have been used in ecological modelling, and (3)
discuss important differences between them. We do not propose that any of these techniques are always better
or worse than the others; instead, we examine how well they suit specific research questions or organisational
contexts. In this analysis, we focus on the seven aspects listed in Table 1 and summarised in Fig. 2.

Figure 1: Different technical approaches to creating integrated models (A). The graph (B) illustrates conceptually how
independent components are of models and vice versa in each technique, i.e. how closely a specific component is tied to a
specific model.

D. Vedder et al. (2024) Socio-Environmental Systems Modelling, 6, 18701, doi:10.18174/sesmo.18701

5

Table 1: Different software engineering techniques have different advantages and drawbacks, making them suitable for different modelling purposes and contexts. For a graphical summary of this table,
see Figure 2.

 Monolithic models Components are modules Components are packages Ad-hoc model coupling Framework model coupling

Degree of
integration

Maximal integration: every
part of the code can access
every other part.

Depending on the choice of
modularisation technique
(different files, classes, etc.),
every part of the code can
often still access every other
part where necessary. It is up to
the developers to self-impose
limits on the number of
interconnections to ensure a
suitable level of modularity and
integration.

Packages are designed to offer a
public interface, a set of functions
and/or classes that can be called
by users of the package, while
making their internal workings
inaccessible to users. This makes
for strong modularity, and
consequently low integration.

While each component model is
originally self-contained, the
individualised coupling process
allows developers to connect
components quite closely to each
other, thus achieving an
intermediate degree of integration.

Adapting models to be used as
components in framework
coupling requires giving them a
standardised API (similar to
packages). Therefore, the
interaction possibilities with
each component are clearly
defined and restricted, giving a
very modular architecture with
a low to medium degree of
integration.

Contributors Typically built by individuals
or small teams, who have a
complete overview of the
source code.

Typically built by small teams.
Different team members will
usually work on different
sections, although all team
members will have access to
the complete source code.

Most packages are developed by
independent developers or
teams. Developers of different
packages may at times
collaborate explicitly, e.g. by
adjusting a package to provide
functionality required for a
specific application.

Generally used to bring together
the work by a small number of
developer teams.

Establishing a coupling
framework requires a high
amount of coordination among
many different teams of
modellers. Once this hurdle has
been taken, framework model
coupling enables collaboration
across a wide range of teams
and disciplines.

Can combine
languages

Generally built in a single
programming language.

Generally built in a single
programming language.

Many programming languages
can be combined with packages
built in other languages, although
this may be tricky to set up.

Models written in different
languages can be readily coupled
using techniques such as in- and
output file exchanges or network
connections.

Models can use any language
supported by the targeted
coupling framework.
Alternatively, models can
provide a wrapper to a
supported language.

Components are
model-
independent

As monolithic models only
have a single component,
this component is the
model and the two are not
independent of each other
in any way.

Components in modular models
are written specifically for the
model they are a part of, and
are therefore typically
dependent on other parts of
this particular model.

Packages are usually built to
provide general functionality
independent of a specific use
case, and hence independent of
the model they are included in.
How dependent a model is on a
given package depends on the
availability of other packages
offering equivalent functionality.

Because each component is itself a
model, components are technically
independent of each other.
However, the coupling process may
involve adapting the constituent
models to be able to interact with
each other, so there is a greater
degree of mutual dependence than
with framework coupling.

In framework coupling, each
component is a separate model
that can also be used on its own,
or in combination with other
models in a different integrated
model. Thus, there is maximum
independence of the
components from the model.

(Table continued on next page)

D. Vedder et al. (2024) Socio-Environmental Systems Modelling, 6, 18701, doi:10.18174/sesmo.18701

6

Table 1 (continued)

 Monolithic models Components are modules Components are packages Ad-hoc model coupling Framework model coupling

Difficulty of
creating
components

Creating a monolithic
model is comparatively
easy, as the software
architecture is usually
simple, the overhead
associated with packages or
coupling frameworks is
avoided, and developers
have complete control over
their code.

Each component is intended to
be small and self-contained,
making the creation of
components easy.

Every programming language has
its own guidelines on how to
create packages. Designing a
good package API takes some
thought, as it must consider both
the current and future needs of
package users as well as those of
the developers.

The difficulty of creating each
component model depends strongly
on its own complexity. Planning for
model coupling already during the
design phase of a model allows the
component model to be kept
minimal and at a lower level of
complexity, thus reducing the
difficulty of implementation.

As each component is itself a
model, the difficulty of creating
it depends on its own type and
complexity.

Difficulty of
coupling
components

As monolithic models only
have a single component,
this question is not
applicable.

Because the developers have
full control over all parts of the
source code, aligning
components with each other is
straightforward.

Loading packages into a software
is very simple. The biggest
challenge is that model
developers may have to adapt
their model to the requirements
of the utilised packages.

Coupling models can be tricky, as
input and output data have to be
carefully aligned. Modellers need to
ensure scientific compatibility (e.g.
of scales), as well as setting up the
technical communication between
components.

Adjusting a component model
to be compatible with a
framework requires some
work, but once this has been
done, the technical aspects of
coupling models within the
framework are designed to be
quick and easy.

Difficulty of
extending model

Extending a monolithic
model becomes
progressively harder, as the
lack of a clear internal
structure leads to a rapidly
mounting technical
complexity that eventually
precludes further
development (“complexity
ceiling”, see Glossary in Box
1).

Greater modularity makes
adding new functionality much
easier than with monolithic
models. But as there is still a
relatively high degree of
integration, these models are
likely to hit their complexity
ceiling earlier than models with
a stronger separation of
components.

Due to the high modularity of a
package-based design, adding
new functionality later on is not
more difficult than the original
model creation.

Because the components are
specifically aligned to each other,
extending an ad-hoc coupled model
further involves a lot of detail work
to integrate new components with
the existing structure. This may
rapidly become unfeasible.

Extending an integrated model
is technically very simple, as
long as any new components
are compatible with the
coupling framework.

D. Vedder et al. (2024) Socio-Environmental Systems Modelling, 6, 18701, doi:10.18174/sesmo.18701

7

Figure 2: Different software engineering techniques have different advantages and drawbacks, making them suitable for
different modelling purposes and contexts. This figure offers a qualitative comparison of a number of relevant points as a
summary. For more detailed descriptions, see Table 1.

3.1 Monolithic models

The simplest way to implement a mechanistic model is as a monolithic, purpose-built software that encompasses
exactly those entities and processes relevant to the study question (Grimm & Railsback, 2005). Focusing on a
specific question allows the developers to reduce complexity by excluding anything that is not directly necessary.
At the same time, every part of the model can easily interact with every other part, allowing full integration.
Hence, there is a low engineering overhead to the initial model construction. It is likely that the great majority
of ecological models fall into this category, as modellers typically create new models for their specific needs and
rarely share code (Bell et al., 2015; Berger et al., 2024).

The problem with this design is that, because every part of the code can influence every other part, the
complexity of the code can end up increasing exponentially as new features are added. Eventually, the project
may experience a “complexity ceiling” effect, where the code base has become so complicated that the
developers struggle to expand it further without breaking existing functionality (Martin, 2009). This is why
computer science developed modular programming techniques such as object-oriented programming, as these
subdivide and thereby greatly reduce the complexity of code bases (cf. Brooks, 1986). Experience thus shows
that the total complexity that can be represented with monolithic designs is much lower than with a modular
design, and continuously adapting such models to new questions becomes harder and harder (Johanson &
Hasselbring, 2018).

One example of an ecological model that was built with this technique is the GeMM model, which was designed
to study eco-evolutionary dynamics of plant communities on islands (Leidinger et al., 2021). The original model
design was well-suited to a number of questions relating to this study system (e.g. mechanisms of species
invasions; Vedder, Leidinger et al., 2021). However, adapting the model to study terrestrial bird populations
proved challenging and required the adaptation of large portions of code, making the whole code harder to
understand (Vedder et al., 2022). Other examples of open-source models using the monolithic approach are the
dispersal model of Sieger and Hovestadt (2021), the grazing models by Fust and Schlecht (2018) and Simon and
Fortin (2020), or the butterfly model by Evans et al. (2019).

D. Vedder et al. (2024) Socio-Environmental Systems Modelling, 6, 18701, doi:10.18174/sesmo.18701

8

3.2 Components are modules

Modellers that anticipate having to deal with large numbers of entities and processes may adopt a more modular
approach (Bell et al., 2015). This is also important if the model is expected to grow beyond the scope of the
original study. The simplest way of increasing modularity is by internally subdividing the code base and clearly
specifying how the different modules interact with each other. This will generally include splitting up the code
into multiple files and folders, and can be aided by programming language features such as Python or Julia
modules or C/C++ header files, as well as by classes and interfaces in object-oriented programming languages
such as Java.

This subdivision requires a little forethought, and developers must be careful to keep the interaction between
modules as limited as possible (McConnell, 2004). Still, such an architecture is not hard to set up, and offers
large flexibility for integration where that is necessary. Thus, this technique is well-suited to models that include
multiple domains with multiple interactions. It probably works best for small to medium-sized models and
developer teams, as the still comparatively high degree of integration likely will pose a significant complexity
burden for very large models that are worked on by many different people or multiple teams.

One example of a model that applies this technique to good effect is ALMaSS, which simulates animal species in
agricultural landscapes (Topping et al., 2003). It includes modules for multiple animal and crop species, a number
that has been steadily growing over the last years (e.g. six animal species in Topping (2011); seventeen in the
2022 code base (Topping, 2022)). As another example, the macro-evolutionary model gen3sis uses a modular
approach to allow the user to switch between different implementations of the simulated ecological and
evolutionary processes (Hagen et al., 2021).

Modellers that anticipate having to deal with large numbers of entities and processes may adopt a more modular
approach (Bell et al., 2015). This is also important if the model is expected to grow beyond the scope of the
original study. The simplest way of increasing modularity is by internally subdividing the code base and clearly
specifying how the different modules interact with each other. This will generally include splitting up the code
into multiple files and folders, and can be aided by programming language features such as Python or Julia
modules or C/C++ header files, as well as by classes and interfaces in object-oriented programming languages
such as Java.

3.3 Components are packages

All major programming languages support packages, also known as libraries. This is software that is designed to
be included in other programs in order to perform a specific task, such as statistical analysis or visualisation.
Packages are generally not built to be used as stand-alone executables. They are nonetheless independent of
the programs they are embedded in, and are usable by any program with similar requirements. Thus, whereas
modules (in the sense discussed above) are components that are created for and used solely within a specific
model, packages are components that are meant to be used by many models. This is achieved by defining an
API (application programmer interface) to specify the functions and classes that the given package provides,
which input data it requires, and what output it produces. Because packages are largely self-contained, they
provide a greater degree of modularity than modules. This becomes important as models grow in size,
particularly if the model components are created by multiple developer teams.

By adhering to the specifications for creating packages in their chosen programming language, component
developers can make their code interoperable and easily accessible to other model developers. Many
programming languages offer package repositories to enable rapid dissemination of software, such as CRAN for
R (cf. Ram et al., 2019), pip for Python (cf. Maji et al., 2020), and Pkg.jl for Julia (cf. Churavy et al., 2022). Using
preexisting packages as model components allows model developers to greatly reduce the amount of work they
have to do themselves, while automatically making the code more modular and thus more understandable. In
some cases (particularly with compiled packages known as dynamically-linked libraries), it can also be possible
to include code written in a different programming language in a model, thus allowing developers to benefit
from a wider circle of previous work. On the downside, a package may not offer all the features the model
developers would like, may require the model code to be adjusted to fit the package requirements, or may
induce coding overhead for packaging and maintenance.

D. Vedder et al. (2024) Socio-Environmental Systems Modelling, 6, 18701, doi:10.18174/sesmo.18701

9

Although many ecologists are familiar with the concept of packages for data analysis (cf. Marwick et al., 2018),
using packages as model components is not as widely spread. One example is the plant growth model by
Schouten et al. (2020), who split up their model code into three independent packages that can also be used for
other models. It is also an option to transform complete ecological models into packages, thus making them
components that can be used by others. For example, this was done for the Madingley (Harfoot, Newbold et al.,
2014; Hoeks et al., 2021) and RangeShifter models (Bocedi et al., 2021; Malchow et al., 2021) in order to make
them interoperable with R.

3.4 Ad-hoc model coupling

Sometimes, developers want to link two or more full models together to explore inter-domain effects and
feedbacks. This is known as model coupling, and can be achieved by multiple technical means (Robinson et al.,
2018; Belete et al., 2017). The simplest way is to adapt one or more of the models so that they can use each
others’ output files as input, and then run them sequentially if no feedbacks exist, or update them step-by-step
in turn if feedbacks do exist. Instead of using files (which is simple, but likely to be very slow), the data exchange
can also be implemented using a network connection, or by loading the components as packages (see above).
In any case, the result is an integrated model whose components are themselves stand-alone models, but that
have been adapted to specifically interact with each other. As this adaptation must be done for each set of
models on a case-by-case basis, we refer to this form of coupling as “ad-hoc model coupling”, to differentiate it
from the more generic “framework model coupling” (see below).

Ad-hoc model coupling is well-suited for collaborations among a small number of development teams. Because
the undertaken adaptation is specific to the target models, a relatively high degree of integration can be
achieved. It is also often possible to couple models written in different programming languages. However, having
to adapt two or more existing models to each other is finicky work that becomes rapidly more complex the more
models are involved. Therefore, although this technique can be useful for coupling two or three models, it is not
feasible for building large collections of interoperable models.

Ad-hoc model coupling was used, for example, by Synes et al. (2019) to combine the ecological movement model
RangeShifter with the socio-economic land-use model CRAFTY. This allowed the authors to study the feedbacks
between land use, crop yield, and pollinator abundance. Robinson et al. (2018) describe several other examples
of ad-hoc model coupling, including a three-model coupling of the dynamic global vegetation model LPJ-GUESS
with the climate model IMOGEN and the food system model PLUMv2. These were used to study interlinkages
between agricultural intensification and expansion and climate change.

3.5 Framework model coupling

The climate and earth science modelling communities were the first to realise the need for easy interoperability
of diverse models, and pioneered the technique of framework model coupling (Box 2). A coupling framework
defines a standard interface that all compatible models have to conform to, thus removing the need for case-
by-case model adaptations. It also provides a central software to coordinate the execution of the coupled models
(the controller), as well as utility functions to help with unit conversions, spatial and temporal scale alignment,
and other practicalities of model coupling (Belete et al., 2017). This means that although model developers have
to do some work to adapt their model to a given coupling framework, the model is then (at least in theory)
compatible with any other model adapted to the same framework (Fig. 3). Achieving this kind of standardisation
requires a very high level of coordination among researchers, but has proven highly valuable not just in climate
and earth system modelling, but also in other modelling fields like agriculture (Box 2).

Multiple coupling frameworks are available, often originating in different modelling disciplines and differing in
their specificity and ease of use (Knapen et al., 2013). The most general framework at the moment is probably
OpenMI (Gregersen et al., 2007; Harpham et al., 2019), which was first developed by hydrological modellers but
is now also used to link models in other fields, such as agriculture (Janssen et al., 2011), economics (Bulatewicz
et al., 2010), or pathogen ecology (Shrestha et al., 2013). So far, however, coupling models using frameworks is
still very rare in ecology, despite the technique’s proven potential for achieving large-scale model integration as
called for by Urban et al. (2022) and others.

D. Vedder et al. (2024) Socio-Environmental Systems Modelling, 6, 18701, doi:10.18174/sesmo.18701

10

Figure 3: Conceptual depiction of a model coupling framework. Individual models are available from an open-access
repository, and declare their required input and output variables using the standardised interface defined by the coupling
framework. Modellers select relevant models from the repository (or build their own), and link them using a controller
software provided by the coupling framework, which manages scheduling and data exchange.

Box 2: Case study I: integrated models in climate/earth-system models.

Climate models have been pushing the boundaries of what is computationally and scientifically possible since the 1950s
(Edwards, 2011). Initially, these models were restricted to atmospheric processes, but soon began to be linked to other
earth-system models, such as for the oceans or the cryosphere. In 2003, the Earth System Modelling Framework (ESMF)
was introduced in order to encourage and facilitate this growing cooperation between institutes and disciplines (Hill et al.,
2004). The ESMF consortium created a framework that could be used to integrate existing models into a single application.
It worked by defining a “superstructure” (a basic software interface that component models could connect to) and
providing an “infrastructure” (a collection of utility functions to help components communicate with each other). On the
basis of this, the Earth System Prediction Suite (ESPS) was later set up to provide a curated collection of models that
conform to the relevant standards and can therefore be expected to be readily interoperable (Theurich et al., 2016).

Importantly, the parallel development of multiple, competing modelling approaches fostered positive competitiveness and
robustness in climate science, by exploring the range of possible future climate scenarios according to different models
(Lee et al., 2021). This community approach to modelling has been formalised in the Coupled Model Intercomparison
Project (CMIP; (Eyring et al., 2016)). The consistency with which greenhouse gas emissions were shown to drive climate
change has given these modelling results a very high level of confidence with respect to the anthropogenic contribution to
climate change. Thus, as simple as the question may be (e.g. “What is the effect of anthropogenic greenhouse gases?”),
delivering a robust reply was very much achieved by integrating models, including complex interactions, and testing
multiple models (Manabe, 2019). Moreover, only through such integration could tipping points be studied and further
explored (Armstrong McKay et al., 2022).

This MIP approach (comparing the output of multiple models using standardised input data), pioneered by climate
modelling, has since been extended to other modelling discipline. Examples include the Inter-Sectoral Impact Model
Intercomparison Project (ISI-MIP; Rosenzweig et al., 2017), which also considers ecosystems, or the Biodiversity and
Ecosystem Services Scenario-based Intercomparison of Models (BES-SIM; Kim et al., 2018).

D. Vedder et al. (2024) Socio-Environmental Systems Modelling, 6, 18701, doi:10.18174/sesmo.18701

11

Box 3: Case study II: integrated models in agricultural sciences.

Agriculture is another research field that has a long history of modelling. Several traditions of agricultural modelling may
be identified. First, crop-growth models are used to predict yields under varying management regimes and environmental
conditions (Pan & Chen, 2021). Secondly, farm models are used to assess (primarily economic) policy impacts both on
individual farms and on the regional agricultural sector (Reidsma et al., 2018). Agricultural processes or systems are also
included in models from fields such as human geography, environmental sciences, and ecology (e.g. Le et al., 2008; Schmidt
et al., 2017; Topping et al., 2003).

Although coming from different disciplinary backgrounds, different model types are increasingly being combined in order
to address questions that require multiple perspectives. For example, Piorr et al. (2009) coupled economic and
environmental models to assess the likely effects of the European Common Agricultural Policy on production and
ecosystem health, while Malawska and Topping (2018) did so to investigate the effects of market shifts on farmland species.
More comprehensively, Schreinemachers and Berger (2011) created an integrated model with components for farm
economics and technology, crop growth, water flow, and soil erosion and nutrients.

The merging of modelling disciplines is being encouraged by large-scale projects such as the EU’s SEAMLESS, which aims
to integrate socio-economic and environmental models across scales for policy assessments (Janssen et al., 2011; van
Ittersum et al., 2008), or the Agricultural Model Intercomparison and Improvement Project (AgMIP), which seeks to bring
together crop-growth, farm, and climate models (Rosenzweig et al., 2013). To help this exchange among modellers, the US
Department of Agriculture pushed development of the Object Modelling System (OMS), a lightweight environmental
modelling framework similar to the ESMF (David et al., 2013), while the Agricultural Model Exchange Initiative (AMEI) aims
to establish a modelling community similar to the ESPS (Enders et al., 2018). Although the use of scientific models in
agricultural policy-making is still limited, these efforts are establishing a base of knowledge that is increasingly being drawn
on for policy impact assessments by governments and international organisations and agreements, for instance in the
European Union (Reidsma et al., 2018).

4. Practical recommendations

Moving on from the overview of techniques, in this section we offer recommendations on how to use these
techniques in practice. We are guided by three questions: (1) Which technique is best suited for my purposes?
(2) How can I build components that are readily interoperable with components and models developed by
others? (3) How can I build models that integrate existing components? We summarise our recommendations
in Table 2, and provide more details in the subsections below.

Table 2: Practical recommendations for creating large, integrated models, or components for such models.

Aim Recommendations

Choosing a technique • identify how complex the model should be

 • identify whether suitable components are already
available

 • examine what software expertise is / is not
available in the team of collaborators

 • envision how the model should or could be used in
future

Building interoperable components • follow good coding practice

 • provide detailed documentation

 • make source code public

 • provide software as a package

 • provide bindings to coupling frameworks

Building integrated models • choose modular software architectures

 • build on existing software where possible

 • collaborate with other modellers

 • learn from other modelling disciplines

 • utilise coupling frameworks

D. Vedder et al. (2024) Socio-Environmental Systems Modelling, 6, 18701, doi:10.18174/sesmo.18701

12

4.1 Choosing a technique

The first question to ask when selecting a technique at the beginning of a new modelling project is: How large
and complex should the model become? The greater the desired complexity, the more important it is to use a
more advanced technique (Fig. 1a; Johanson & Hasselbring, 2018). On the other hand, a more advanced
technique may be unnecessarily complicated to use for a simple model. If a model is only intended to be used
for a single, well-defined study, a monolithic model is likely to be the simplest and most efficient option (Section
3.1). If it should be used for multiple studies, and potentially further extended in future, a modular architecture
is highly advisable. If all parts of the model can or should be written by the team itself, this would mean using
“components as modules” (Section 3.2); if existing libraries or packages can be used it becomes “components
as packages” (Section 3.3). For larger models that integrate across domains, coupling with existing models can
be helpful or even essential, either with ad-hoc coupling (Section 3.4) or with framework coupling (Section 3.5).

For any medium- or larger-sized model, the second question is therefore to find out whether there are suitable
components or models already available that can be utilised (either as packages, or for model coupling). These
can be searched for using e.g. Google Scholar, Github, or CoMSES (Rollins et al., 2014). To assess whether a
component or model is suitable, the following questions can help: Does it include the processes and state
variables that are relevant to my research question? Do I have the required input data available? Is the software
open source, and is it well-documented? Does it have an active user community, and/or are the developers easy
to contact? When deciding whether or not to use externally developed software components, one must weigh
the cost of working with software that may not be a perfect match for the project requirements against the cost
of having to develop the desired functionality internally (“buy vs. build”; cf. Brooks, 1986).

The third consideration is the available expertise and experience in software development among the team
members. While monolithic models (Section 3.1) can be constructed by anyone who knows how to program,
the other techniques require a little more knowledge of software engineering principles and tools. In particular
framework model coupling (Section 3.5) has quite a steep learning curve. If the study question requires one of
the more advanced techniques, researchers may decide to invest the time to learn the necessary skills
themselves, collaborate with other researchers who have the expertise, or employ professional developers
(Cohen et al., 2021).

Box 4: Case study III: life history of a large ecological model.

FORMIND (Köhler & Huth, 1998; Bohn et al., 2014; Fischer et al., 2016) is a process-based forest model incorporating
regeneration, competition, growth, and mortality of trees. As individuals are modelled explicitly, the model allows a
detailed analysis of forest structure and productivity under varying environmental conditions. FORMIND has a modular
design, allowing the base model to be adjusted to a wide range of research questions, including the effects of forests
fragmentation (Pütz et al., 2011), landslides (Dislich & Huth, 2012), water competition and droughts (Gutiérrez et al., 2014),
and wild fires (Fischer, 2021).

The components are coupled via the “components are modules” strategy. Nonetheless, model and components remain
strongly linked, to facilitate the exchange of data and the integration of components into the model’s main routines. This
architecture made it easy to add new components to the model without major changes to the historic core. However, with
a growing number of modules, the code base became progressively more complex, making it increasingly difficult to update
the model without breaking functionality.

In recent years, FORMIND has been combined with external software via ad-hoc coupling methods, e.g. to fit the model to
field data (Lehmann & Huth, 2015). Building on the model’s text file interface for data exchange reduced the need for code
changes but also limited flexibility and created a significant computational overhead. Hence, a Python package wrapping
the original C++ code is under development, allowing users to read and manipulate parameters and state variables at
runtime (“components are packages”; first application in Fischer et al., 2024).

Currently, FORMIND is also being coupled with an external soil moisture model (Samaniego et al., 2010) to study forest-
soil interactions. As the two models run at different temporal and spatial scales and efficient data exchange is required for
the intended large-scale simulations, the Python-based framework FINAM (Lange et al., 2023) is used to couple the models
(“framework model coupling”). Implementing the FINAM interface for FORMIND did not require changes to the existing
model and only minimal additional code. As the FINAM interface is model-agnostic, the interface can also facilitate the
integration of FORMIND into comprehensive landscape-scale models of the environment (cf. Cabral et al., 2023; Urban et
al., 2022).

D. Vedder et al. (2024) Socio-Environmental Systems Modelling, 6, 18701, doi:10.18174/sesmo.18701

13

Finally, it is good to have at least a vague idea of how the model to be built could or should be used in future.
The longer it is to be used and the more people are to use it, the more important it is to use one or several of
the more advanced techniques for model construction and coupling (cf. the experiences with the FORMIND
model, Box 4). Although these techniques come with a greater up-front cost in designing the software
architecture and setting up the code base, they make it significantly easier to extend the model in future and to
use it together with software written by other researchers (Fig. 2).

4.2 Building interoperable components

An important insight is that the road to large complex models starts with the development of small interoperable
ones. Therefore, if as a modelling community we want to work towards developing larger models, individual
modellers need to become better at building components and models that can easily be linked up with others
(Bell et al., 2015; Berger et al., 2024).

To build components that can be readily integrated into large models, the aim should be to create high-quality
scientific software products that are as easy as possible for other researchers to (re-)use (Sanders & Kelly, 2008;
McIntire et al., 2022). This requires rigorous application of the FAIR criteria: Findable, Accessible, Interoperable,
and Reusable (Barton et al., 2022; Hasselbring et al., 2020). Essentially, this boils down to learning and following
best practices for software development in computational science in general (Balaban et al., 2021; Wilson et al.,
2014) and ecological modelling in particular (Ropella et al., 2002; Scheller et al., 2010; Vedder, Ankenbrand et
al., 2021).

Important principles here are writing clean code (Filazzola & Lortie, 2022), using version control for open-source
development (Perez-Riverol et al., 2016), using automated testing and code reviews for verification (Holzworth
et al., 2011; Vable et al., 2021), and providing good technical and scientific documentation (Lee, 2018; Grimm et
al., 2020). Communities such as rOpenSci can help modellers write better software by providing detailed
technical reviews (Ram et al., 2019). Creating high-quality software is important to make the code accessible
and usable by others. It also makes code easier to extend by avoiding “technical debt”, i.e. unnecessary technical
complexity that slows down future development (see Glossary, Box 1).

It is crucial that ecological modellers make all their source code openly available and document it sufficiently,
not only for the sake of scientific reproducibility but also to enable others to build on the components they
created (Janssen et al., 2020). This can be done on general-purpose platforms like Github (for collaborative
development) or Zenodo (for code archiving). More narrowly modelling-oriented platforms can provide
additional benefits, by acting as central repositories that make finding useful models and components quick and
easy (Bell et al,. 2015). One such platform is CoMSES, a library of agent-based and individual-based models that
is seeing widespread use in the social sciences but is still little known among ecologists (Janssen et al., 2008;
Rollins et al., 2014).

Modellers should also form the habit of making their software available as installable packages in their preferred
programming language, ideally in a standard package repository (e.g. PyPI for Python or CRAN for R). This lowers
the bar for installing components considerably, making it easier for other researchers to build on existing work.

To improve dissemination of new research software, several journals now allow developers to publish
descriptions of applications and packages as a separate article type (e.g. Methods in Ecology and Evolution,
Journal of Open Source Software). This has the additional benefit of providing scientific incentive (i.e.
publications) for releasing code, which is particularly valuable for early-career researchers.

As ecological models become larger and more complex, the importance of coupling frameworks will increase.
This is particularly true as ecologists seek to couple their models to models from fields that already use such
frameworks, including the physical and social sciences. Therefore, ecologists should learn about existing
frameworks and acquaint themselves with their use (Belete et al., 2017; Knapen et al., 2013). Seen from the
perspective of a component developer, making a component compatible with an established coupling
framework would be a major step toward interdisciplinary model interoperability.

Finally, model interoperability would be greatly aided by the adoption of a unified set of Essential Biodiversity
Variables as standardised input/output variables for models (Jetz et al., 2019). This would enable harmonisation

D. Vedder et al. (2024) Socio-Environmental Systems Modelling, 6, 18701, doi:10.18174/sesmo.18701

14

of model results and ease model coupling, as well as make it easier to interface models with empirical data
sources (Fer et al., 2021; Urban et al., 2022). A coordinated move in this direction would be especially effective
if accompanied by a standardisation of metadata, such as for the recently proposed Reusable Building Blocks
(Berger et al., 2024).

4.3 Building integrated models

As ecologists think about creating large, complex models integrating many different entities, processes, and
domains (e.g. Urban et al., 2016; Urban et al., 2022), they need to think very carefully about the technical
challenges this entails. Building large software well is a significant undertaking, especially as software complexity
does not scale linearly with software size (McConnell, 2004). Research teams need to consider the resources
that are available for development, including time, money, manpower, and know-how. Based on this, they must
decide what level of scientific complexity can be feasibly modelled, and which integration technique is most
suitable to their purpose and context (Sections 3 and 4.1).

When attempting to build large models, researchers must realise the importance of carefully planning the code’s
design and architecture. For this, it is useful to have team members who have trained in software engineering
(Cohen et al., 2021). Studying well-known open-source programs is also an excellent way to learn more about
good software architecture and current practices in software development (e.g. Brown & Wilson, 2011).

The experience of other modelling fields shows that eventually, model complexity grows to such a degree that
coupling frameworks are often the most effective way to further growth (Box 2 and 3). Ecological modelling does
not seem to have reached this point yet, but considering the increasing amount of integration of ecological
models with climate, hydrological, economic, sociological and other models, it can be expected that the field will
reach this stage soon. This is a promising development, but one that brings its own set of challenges. Model
coupling not only involves adaptation of existing software, but also requires models to be made scientifically
compatible with regards to spatial and temporal scales and input and output data (Brandmeyer & Karimi, 2000;
Belete et al., 2017). Coupling frameworks can greatly help with this process, but add their own complexity
overhead. Complicating matters is the range of available coupling frameworks, each established in different
disciplines and available for different programming languages.

It should be noted that it is not an aim that all ecological models should be large and integrated, or that all
modellers need to work with framework model coupling. Smaller models have their place (Sun et al., 2016), and
all techniques can be useful (Section 4.1). However, as argued above, in addition to the small and medium-sized
models we already have, we will need larger and integrated models to study the interdisciplinary questions now
facing science.

In view of all this, it seems an important challenge for the next years of ecological modelling to become better
at building these integrated models. This will include training modellers in software development, as well as
establishing conventions and standards for model publication and coupling. While other fields have been
successfully using coupled models for decades, such coupling is rarely done in ecological modelling. This is an
area where the recently-formed Open Modelling Foundation could be a vital catalyst for future methodological
developments (Barton et al., 2022).

5. Discussion

5.1 The need for large integrated models

Computational models have become essential instruments for scientific research and policy advice. They play a
central role in the work of both the IPCC (e.g. Eyring et al., 2016) and IPBES (e.g. IPBES, 2016), helping us better
understand the global crises of climate change and biodiversity loss, and the interlinkages between them
(Pörtner et al., 2021). However, the use and acceptance of models is much better established in climate change
policy than in biodiversity policy (Urban et al., 2022). This is partly due to insufficient and misaligned
communication between modellers and decision-makers (IPBES, 2016; Will et al., 2021), but also because
ecological and economic modelling fields are only slowly starting to be combined (Vincenot, 2018).

D. Vedder et al. (2024) Socio-Environmental Systems Modelling, 6, 18701, doi:10.18174/sesmo.18701

15

In the face of an ongoing ecological crisis, ecologists seek not only to understand Global Change processes but
also to provide relevant and timely advice to policy makers and stakeholders. To do so, we will need increasingly
advanced models that can provide insight into the multi-scale, multi-domain systems that we study. This
requires expanding our models beyond their current focus on a small number of ecological processes, and
embrace the complexity of real-world systems with their multi-scale pressures (Topping et al., 2015; Urban et
al., 2022). This can only be effectively done by developing a practice of interdisciplinary modelling.

This is relevant in two directions. First, ecological modellers need to link their models to models of other physical
systems. There is a strong tradition of mechanistic modelling in several disciplines in the environmental sciences,
most notably in climate science, but also in areas like hydrology, ecotoxicology, and earth system science more
generally. Ecologists can profit from and contribute to existing model coupling initiatives, such as OpenMI
(Harpham et al., 2019), various Integrated Assessment Models (Harfoot, Tittensor, et al., 2014), or ISI-MIP
(Rosenzweig et al., 2017).

Secondly, ecological modellers should become more involved in the burgeoning field of socio-ecological systems
research. There have been significant recent advances in coupling ecological and socio-economic models (e.g.
Guillem et al., 2015; Synes et al., 2019). Still, there are many challenges in incorporating mutual feedbacks
between human and natural systems (Farahbakhsh et al., 2022), and in representing the multiple scales relevant
to many socio-ecological systems (Lippe et al., 2019). Altogether, scaling up our understanding of socio-
ecological systems, including telecoupled systems, cannot be achieved without much more complex models than
currently exist.

Ultimately, addressing sustainability challenges requires models that combine all three domains: the ecological,
the physical, and the human. For instance, when studying land use change, it is desirable to combine models
from multiple fields, including human geography, ecology, and climate science, in order to understand how
processes in each of the three domains influence processes in the other two (Cabral et al., 2023).

5.2 A way forward

To meet the scientific and technical challenges of creating large integrated models, ecological modellers should
invest into software engineering training, as well as into intra- and interdisciplinary standardisation processes.

In this paper we have introduced a set of software engineering techniques for building models of different sizes
and complexities. Which technique is best suited to a given research context depends on the aim of the model,
the available development resources, and the likely future users of the model. The larger a model becomes, the
more important it is to carefully plan its software architecture and to follow good software engineering practices
(Johanson & Hasselbring, 2018). As a model grows over time, it is also likely that new techniques will become
relevant, as exemplified by the forest model FORMIND (Box 4).

Like many other computational scientists, ecological modellers face the problem that few have had good training
in software engineering (Nowogrodzki, 2019). Although this is understandable given the contents of most
ecology curricula in universities (Farrell & Carey, 2018), it frequently results in code that ignores the most basic
principles of software quality and validation (Prabhu et al., 2011). This issue not only undermines the credibility
of our scientific models, but also impedes researchers’ ability to utilize and expand upon existing software.
(Sanders & Kelly, 2008). It is therefore imperative that we invest into better software training for modellers, and
collaborate with professional software developers to produce reliable and usable model code (Cohen et al.,
2021).

We recognise that this currently faces a number of institutional barriers. Some relate to finances: smaller
research groups often lack the funds to hire professional developers, and getting funding to develop and
maintain research software can be difficult (Nowogrodzki, 2019). Furthermore, research institutes often cannot
offer the job security or salaries that are competitive with those of software developers in industry. Other
barriers relate to culture: because research software is often not valued in itself, but only for the scientific output
it produces, little importance is attached to tasks that make the software itself better, such as improving code
quality and ensuring appropriate documentation (Johanson & Hasselbring, 2018). Especially early-career
researchers in modelling may be pressured to “produce results” as fast as possible, leaving them little time to
gain the technical skills needed to produce more complex software. This in turn contributes to the “yet another

D. Vedder et al. (2024) Socio-Environmental Systems Modelling, 6, 18701, doi:10.18174/sesmo.18701

16

model” syndrome, i.e. the observed profusion of simple models at the expense of more advanced ones
(O’Sullivan et al., 2016). We therefore propose that to create more complex models, ecological modellers should
invest in becoming better software developers. This will require a cultural shift to value code as a scientific
output in its own right (Mislan et al., 2016).

Beyond simply improving the quality of model software, ecological modellers also need to think more about
standardisation of data and metadata, both within ecology and with other disciplines. Within ecology, increased
use of online model repositories such as CoMSES would aid the discoverability of models and model components
(Rollins et al., 2014; Bell et al., 2015). Further development and use of standardised Essential Biodiversity
Variables could help to align the input and output variables of different models, and of models with empirical
data sources, thus allowing easier coupling (Urban et al., 2022). Programs such as BES-SIM can help harmonise
the results of ecological models, and contribute to a more unified and strategic development of the field (Kim
et al., 2018). To collaborate with disciplines outside ecology, ecological modellers need to learn more about
existing standards, frameworks, and collaboration networks. Here, the Open Modelling Foundation is a valuable
initiative to bring together modellers from numerous domains to promote collaboration and standardisation
(Barton et al., 2022). Not least, we can use such connections to learn about how other modelling disciplines have
solved the challenges our field currently faces, as many of these disciplines are methodologically much further
advanced than ecological modelling.

6. Conclusion

To advance ecological modelling, we will need to create larger and more integrated mechanistic models. This is
particularly urgent in light of the growing demand for interdisciplinary modelling to face the dual crises of climate
change and biodiversity loss. We must learn not only to build comprehensive models of biodiversity and
ecosystems, but also to couple these with climate, land use, economic, and other models.

In this review, we highlight the inherent trade-off between integration and modularity, and explain the
associated tension between scientific requirements and technical constraints. We showcase five different
integration techniques and how they are currently being used, as well as discussing their relative strengths and
weaknesses. As practical recommendations, we emphasise that ecological modellers need more training in
software engineering, must adopt FAIR research practices, and should begin to think about how best to apply
existing coupling techniques to ecological models.

Acknowledgements

The authors wish to thank Quillon Harpham and three anonymous reviewers for their valuable inputs on the
topic. DV is funded through the project CAP4GI by the Federal Ministry of Education and Research (BMBF), within
the framework of the Strategy, Research for Sustainability (FONA, www.fona.de/en) as part of its Social-
Ecological Research funding priority, funding no. 01UT2102A. Responsibility for the content of this publication
lies with the authors. DV and GP gratefully acknowledge the support of iDiv, funded by the German Research
Foundation (DFG–FZT 118, 202548816). SMF gratefully acknowledges funding received from the German
Research Foundation (DFG; project ForcTrait).

Author contributions

DV and SMF conceived the idea for the review and developed the figures; DV led the writing of the manuscript;
all authors contributed critically to the drafts and gave final approval for publication.

References

Abelson, H., Sussman, G. J., & Sussman, J. (1996). Structure and interpretation of computer programs (2. ed). MIT Press.
Armstrong McKay, D. I., Staal, A., Abrams, J. F., Winkelmann, R., Sakschewski, B., Loriani, S., Fetzer, I., Cornell, S. E.,

Rockström, J., & Lenton, T. M. (2022). Exceeding 1.5°C global warming could trigger multiple climate tipping points.
Science, 377(6611), eabn7950. https://doi.org/10.1126/science.abn7950

https://doi.org/10.1126/science.abn7950

D. Vedder et al. (2024) Socio-Environmental Systems Modelling, 6, 18701, doi:10.18174/sesmo.18701

17

Balaban, G., Grytten, I., Rand, K. D., Scheffer, L., & Sandve, G. K. (2021). Ten simple rules for quick and dirty scientific
programming. PLOS Computational Biology, 17(3), e1008549. https://doi.org/10.1371/journal.pcbi.1008549

Barton, C. M., Lee, A., Janssen, M. A., Porter, C., Greenberg, J., Swantek, L., Frank, K., Chen, M., & Jagers, H. R. A. (2022). How
to make models more useful. Proceedings of the National Academy of Sciences, 119(35), 4.

Beck, F., & Diehl, S. (2011). On the congruence of modularity and code coupling. Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of Software Engineering, 354–364.
https://doi.org/10.1145/2025113.2025162

Belete, G. F., Voinov, A., & Laniak, G. F. (2017). An overview of the model integration process: From pre-integration
assessment to testing. Environmental Modelling & Software, 87, 49–63.
https://doi.org/10.1016/j.envsoft.2016.10.013

Bell, A. R., Robinson, D. T., Malik, A., & Dewal, S. (2015). Modular ABM development for improved dissemination and training.
Environmental Modelling & Software, 73, 189–200. https://doi.org/10.1016/j.envsoft.2015.07.016

Berger, U., Bell, A., Barton, C. M., Chappin, E., Dreßler, G., Filatova, T., Fronville, T., Lee, A., van Loon, E., Lorscheid, I., Meyer,
M., Müller, B., Piou, C., Radchuk, V., Roxburgh, N., Schüler, L., Troost, C., Wijermans, N., Williams, T. G., … Grimm, V.
(2024). Towards reusable building blocks for agent-based modelling and theory development. Environmental
Modelling & Software, 175, 106003. https://doi.org/10.1016/j.envsoft.2024.106003

Bocedi, G., Palmer, S. C. F., Malchow, A.-K., Zurell, D., Watts, K., & Travis, J. M. J. (2021). RangeShifter 2.0: An extended and
enhanced platform for modelling spatial eco-evolutionary dynamics and species’ responses to environmental changes.
Ecography, 44(10), 1453–1462. https://doi.org/10.1111/ecog.05687

Bohn, F. J., Frank, K., & Huth, A. (2014). Of climate and its resulting tree growth: Simulating the productivity of temperate
forests. Ecological Modelling, 278, 9–17. https://doi.org/10.1016/j.ecolmodel.2014.01.021

Brandmeyer, J. E., & Karimi, H. A. (2000). Coupling methodologies for environmental models. Environmental Modelling &
Software, 15(5), 479–488. https://doi.org/10.1016/S1364-8152(00)00027-X

Brooks, F. (1986). No Silver Bullet – Essence and Accident in Software Engineering. In H.-J. Kugler (Ed.), Proceedings of the
IFIP Tenth World Computing Conference (pp. 1069–1076). Elsevier Science B.V.

Brown, A., & Wilson, G. (Eds.). (2011). The Architecture of Open Source Applications. Creative Commons.
Bulatewicz, T., Yang, X., Peterson, J. M., Staggenborg, S., Welch, S. M., & Steward, D. R. (2010). Accessible integration of

agriculture, groundwater, and economic models using the Open Modeling Interface (OpenMI): Methodology and
initial results. Hydrol. Earth Syst. Sci., 14.

Cabral, J. S., Mendoza-Ponce, A., da Silva, A. P., Oberpriller, J., Mimet, A., Kieslinger, J., Berger, T., Blechschmidt, J., Brönner,
M., Classen, A., Fallert, S., Hartig, F., Hof, C., Hoffmann, M., Knoke, T., Krause, A., Lewerentz, A., Pohle, P., Raeder, U.,
… Zurell, D. (2023). The road to integrate climate change projections with regional land-use–biodiversity models.
People and Nature, n/a(n/a). https://doi.org/10.1002/pan3.10472

Cabral, J. S., Valente, L., & Hartig, F. (2017). Mechanistic simulation models in macroecology and biogeography: State-of-art
and prospects. Ecography, 40(2), 267–280. https://doi.org/10.1111/ecog.02480

Churavy, V., Godoy, W. F., Bauer, C., Ranocha, H., Schlottke-Lakemper, M., Räss, L., Blaschke, J., Giordano, M., Schnetter, E.,
Omlin, S., Vetter, J. S., & Edelman, A. (2022, November 10). Bridging HPC Communities through the Julia Programming
Language. https://doi.org/10.48550/arXiv.2211.02740

Cohen, J., Katz, D. S., Barker, M., Hong, N. C., Haines, R., & Jay, C. (2021). The Four Pillars of Research Software Engineering.
IEEE Software, 38(1), 97–105. IEEE Software. https://doi.org/10.1109/MS.2020.2973362

David, O., Ascough, J. C., Lloyd, W., Green, T. R., Rojas, K. W., Leavesley, G. H., & Ahuja, L. R. (2013). A software engineering
perspective on environmental modeling framework design: The Object Modeling System. Environmental Modelling &
Software, 39, 201–213. https://doi.org/10.1016/j.envsoft.2012.03.006

DeAngelis, D. L., & Grimm, V. (2014). Individual-based models in ecology after four decades. F1000prime Reports, 6, 39.
https://doi.org/10.12703/P6-39

Dijkstra, E. W. (1972). The humble programmer. Communications of the ACM, 15(10), 859–866.
https://doi.org/10.1145/355604.361591

Dislich, C., & Huth, A. (2012). Modelling the impact of shallow landslides on forest structure in tropical montane forests.
Ecological Modelling, 239, 40–53. https://doi.org/10.1016/j.ecolmodel.2012.04.016

Edwards, P. N. (2011). History of climate modeling. WIREs Climate Change, 2(1), 128–139. https://doi.org/10.1002/wcc.95
Enders, A., Martre, P., Raynal, H., Athanasiadis, I., Donatelli, M., Fumagalli, D., Holzworth, D., Stöckle, C., & Hoogenboom, G.

(2018). Agricultural Model Exchange Initiative (AMEI). 61.
https://scholarsarchive.byu.edu/iemssconference/2018/Stream-A/61

Evans, L. C., Sibly, R. M., Thorbek, P., Sims, I., Oliver, T. H., & Walters, R. J. (2019). Quantifying the effectiveness of agri-
environment schemes for a grassland butterfly using individual-based models. Ecological Modelling, 411, 108798.
https://doi.org/10.1016/j.ecolmodel.2019.108798

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. (2016). Overview of the Coupled
Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model
Development, 9(5), 1937–1958. https://doi.org/10.5194/gmd-9-1937-2016

Farahbakhsh, I., Bauch, C. T., & Anand, M. (2022). Modelling coupled human–environment complexity for the future of the
biosphere: Strengths, gaps and promising directions. Philosophical Transactions of the Royal Society B: Biological
Sciences, 377(1857), 20210382. https://doi.org/10.1098/rstb.2021.0382

Farrell, K. J., & Carey, C. C. (2018). Power, pitfalls, and potential for integrating computational literacy into undergraduate

https://doi.org/10.1371/journal.pcbi.1008549
https://doi.org/10.1145/2025113.2025162
https://doi.org/10.1016/j.envsoft.2016.10.013
https://doi.org/10.1016/j.envsoft.2015.07.016
https://doi.org/10.1016/j.envsoft.2024.106003
https://doi.org/10.1111/ecog.05687
https://doi.org/10.1016/j.ecolmodel.2014.01.021
https://doi.org/10.1016/S1364-8152(00)00027-X
https://doi.org/10.1002/pan3.10472
https://doi.org/10.1111/ecog.02480
https://doi.org/10.48550/arXiv.2211.02740
https://doi.org/10.1109/MS.2020.2973362
https://doi.org/10.1016/j.envsoft.2012.03.006
https://doi.org/10.12703/P6-39
https://doi.org/10.1145/355604.361591
https://doi.org/10.1016/j.ecolmodel.2012.04.016
https://doi.org/10.1002/wcc.95
https://scholarsarchive.byu.edu/iemssconference/2018/Stream-A/61
https://doi.org/10.1016/j.ecolmodel.2019.108798
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.1098/rstb.2021.0382

D. Vedder et al. (2024) Socio-Environmental Systems Modelling, 6, 18701, doi:10.18174/sesmo.18701

18

ecology courses. Ecology and Evolution, 8(16), 7744–7751. https://doi.org/10.1002/ece3.4363
Fer, I., Gardella, A. K., Shiklomanov, A. N., Campbell, E. E., Cowdery, E. M., De Kauwe, M. G., Desai, A., Duveneck, M. J., Fisher,

J. B., Haynes, K. D., Hoffman, F. M., Johnston, M. R., Kooper, R., LeBauer, D. S., Mantooth, J., Parton, W. J., Poulter, B.,
Quaife, T., Raiho, A., … Dietze, M. C. (2021). Beyond ecosystem modeling: A roadmap to community
cyberinfrastructure for ecological data-model integration. Global Change Biology, 27(1), 13–26.
https://doi.org/10.1111/gcb.15409

Filazzola, A., & Lortie, C. (2022). A call for clean code to effectively communicate science. Methods in Ecology and Evolution,
n/a(n/a). https://doi.org/10.1111/2041-210X.13961

Fischer, R. (2021). The Long-Term Consequences of Forest Fires on the Carbon Fluxes of a Tropical Forest in Africa. Applied
Sciences, 11(10), 4696. https://doi.org/10.3390/app11104696

Fischer, R., Bohn, F., Dantas De Paula, M., Dislich, C., Groeneveld, J., Gutiérrez, A. G., Kazmierczak, M., Knapp, N., Lehmann,
S., Paulick, S., Pütz, S., Rödig, E., Taubert, F., Köhler, P., & Huth, A. (2016). Lessons learned from applying a forest gap
model to understand ecosystem and carbon dynamics of complex tropical forests. Ecological Modelling, 326, 124–
133. https://doi.org/10.1016/j.ecolmodel.2015.11.018

Fust, P., & Schlecht, E. (2018). Integrating spatio-temporal variation in resource availability and herbivore movements into
rangeland management: RaMDry—An agent-based model on livestock feeding ecology in a dynamic, heterogeneous,
semi-arid environment. Ecological Modelling, 369, 13–41. https://doi.org/10.1016/j.ecolmodel.2017.10.017

Gregersen, J. B., Gijsbers, P. J. A., & Westen, S. J. P. (2007). OpenMI: Open modelling interface. Journal of Hydroinformatics,
9(3), 175–191. https://doi.org/10.2166/hydro.2007.023

Grimm, V., Ayllón, D., & Railsback, S. F. (2017). Next-Generation Individual-Based Models Integrate Biodiversity and
Ecosystems: Yes We Can, and Yes We Must. Ecosystems, 20(2), 229–236. https://doi.org/10.1007/s10021-016-0071-
2

Grimm, V., Johnston, A. S. A., Thulke, H.-H., Forbes, V. E., & Thorbek, P. (2020). Three questions to ask before using model
outputs for decision support. Nature Communications, 11(1, 1), 4959. https://doi.org/10.1038/s41467-020-17785-2

Grimm, V., & Railsback, S. F. (2005). Individual-based Modeling and Ecology. Princeton University Press.
Grimm, V., Railsback, S. F., Vincenot, C. E., Berger, U., Gallagher, C., DeAngelis, D. L., Edmonds, B., Ge, J., Giske, J., Groeneveld,

J., Johnston, A. S. A., Milles, A., Nabe-Nielsen, J., Polhill, J. G., Radchuk, V., Rohwäder, M.-S., Stillman, R. A., Thiele, J.
C., & Ayllón, D. (2020). The ODD Protocol for Describing Agent-Based and Other Simulation Models: A Second Update
to Improve Clarity, Replication, and Structural Realism. Journal of Artificial Societies and Social Simulation, 23(2), 7.
https://doi.org/10.18564/jasss.4259

Guillem, E. E., Murray-Rust, D., Robinson, D. T., Barnes, A., & Rounsevell, M. D. A. (2015). Modelling farmer decision-making
to anticipate tradeoffs between provisioning ecosystem services and biodiversity. Agricultural Systems, 137, 12–23.
https://doi.org/10.1016/j.agsy.2015.03.006

Gutiérrez, A. G., Armesto, J. J., Díaz, M. F., & Huth, A. (2014). Increased Drought Impacts on Temperate Rainforests from
Southern South America: Results of a Process-Based, Dynamic Forest Model. PLoS ONE, 9(7), e103226.
https://doi.org/10.1371/journal.pone.0103226

Hagen, O., Flück, B., Fopp, F., Cabral, J. S., Hartig, F., Pontarp, M., Rangel, T. F., & Pellissier, L. (2021). Gen3sis: A general
engine for eco-evolutionary simulations of the processes that shape Earth’s biodiversity. PLOS Biology, 19(7),
e3001340. https://doi.org/10.1371/journal.pbio.3001340

Harfoot, M. B. J., Newbold, T., Tittensor, D. P., Emmott, S., Hutton, J., Lyutsarev, V., Smith, M. J., Scharlemann, J. P. W., &
Purves, D. W. (2014). Emergent Global Patterns of Ecosystem Structure and Function from a Mechanistic General
Ecosystem Model. PLOS Biology, 12(4), e1001841. https://doi.org/10.1371/journal.pbio.1001841

Harfoot, M. B. J., Tittensor, D. P., Newbold, T., McInerny, G., Smith, M. J., & Scharlemann, J. P. W. (2014). Integrated
assessment models for ecologists: The present and the future. Global Ecology and Biogeography, 23(2), 124–143.
https://doi.org/10.1111/geb.12100

Harpham, Q. K., Hughes, A., & Moore, R. V. (2019). Introductory overview: The OpenMI 2.0 standard for integrating numerical
models. Environmental Modelling & Software, 122, 104549. https://doi.org/10.1016/j.envsoft.2019.104549

Hasselbring, W., Carr, L., Hettrick, S., Packer, H., & Tiropanis, T. (2020). From FAIR research data toward FAIR and open
research software. It - Information Technology, 62(1), 39–47. https://doi.org/10.1515/itit-2019-0040

Hill, C., DeLuca, C., Balaji, Suarez, M., & Da Silva, A. (2004). The architecture of the earth system modeling framework.
Computing in Science & Engineering, 6(1), 18–28. https://doi.org/10.1109/MCISE.2004.1255817

Hoeks, S., Tucker, M. A., Huijbregts, M. A. J., Harfoot, M. B. J., Bithell, M., & Santini, L. (2021). MadingleyR: An R package for
mechanistic ecosystem modelling. Global Ecology and Biogeography, 30(9), 1922–1933.
https://doi.org/10.1111/geb.13354

Holzworth, D. P., Huth, N. I., & deVoil, P. G. (2011). Simple software processes and tests improve the reliability and usefulness
of a model. Environmental Modelling & Software, 26(4), 510–516. https://doi.org/10.1016/j.envsoft.2010.10.014

IPBES. (2016). The Methodological Assessment Report on Scenarios and Models of Biodiversity and Ecosystem Services (p.
348). ecretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services.
https://ipbes.net/sites/default/files/downloads/pdf/2016.methodological_assessment_report_scenarios_models.pd
f

Janssen, M. A., Alessa, L. N., Barton, M., Bergin, S., & Lee, A. (2008). Towards a Community Framework for Agent-Based
Modelling. Journal of Artificial Societies and Social Simulation, 11(26), 1–13. https://www.jasss.org/11/2/6/6.pdf

Janssen, M. A., Pritchard, C., & Lee, A. (2020). On code sharing and model documentation of published individual and agent-

https://doi.org/10.1002/ece3.4363
https://doi.org/10.1111/gcb.15409
https://doi.org/10.1111/2041-210X.13961
https://doi.org/10.3390/app11104696
https://doi.org/10.1016/j.ecolmodel.2015.11.018
https://doi.org/10.1016/j.ecolmodel.2017.10.017
https://doi.org/10.2166/hydro.2007.023
https://doi.org/10.1007/s10021-016-0071-2
https://doi.org/10.1007/s10021-016-0071-2
https://doi.org/10.1038/s41467-020-17785-2
https://doi.org/10.18564/jasss.4259
https://doi.org/10.1016/j.agsy.2015.03.006
https://doi.org/10.1371/journal.pone.0103226
https://doi.org/10.1371/journal.pbio.3001340
https://doi.org/10.1371/journal.pbio.1001841
https://doi.org/10.1111/geb.12100
https://doi.org/10.1016/j.envsoft.2019.104549
https://doi.org/10.1515/itit-2019-0040
https://doi.org/10.1109/MCISE.2004.1255817
https://doi.org/10.1111/geb.13354
https://doi.org/10.1016/j.envsoft.2010.10.014
https://ipbes.net/sites/default/files/downloads/pdf/2016.methodological_assessment_report_scenarios_models.pdf
https://ipbes.net/sites/default/files/downloads/pdf/2016.methodological_assessment_report_scenarios_models.pdf
https://www.jasss.org/11/2/6/6.pdf

D. Vedder et al. (2024) Socio-Environmental Systems Modelling, 6, 18701, doi:10.18174/sesmo.18701

19

based models. Environmental Modelling & Software, 134, 104873. https://doi.org/10.1016/j.envsoft.2020.104873
Janssen, S., Athanasiadis, I. N., Bezlepkina, I., Knapen, R., Li, H., Domínguez, I. P., Rizzoli, A. E., & van Ittersum, M. K. (2011).

Linking models for assessing agricultural land use change. Computers and Electronics in Agriculture, 76(2), 148–160.
https://doi.org/10.1016/j.compag.2010.10.011

Jetz, W., McGeoch, M. A., Guralnick, R., Ferrier, S., Beck, J., Costello, M. J., Fernandez, M., Geller, G. N., Keil, P., Merow, C.,
Meyer, C., Muller-Karger, F. E., Pereira, H. M., Regan, E. C., Schmeller, D. S., & Turak, E. (2019). Essential biodiversity
variables for mapping and monitoring species populations. Nature Ecology & Evolution, 3(4, 4), 539–551.
https://doi.org/10.1038/s41559-019-0826-1

Johanson, A., & Hasselbring, W. (2018). Software Engineering for Computational Science: Past, Present, Future. Computing
in Science & Engineering, 20(2), 90–109. Computing in Science & Engineering.
https://doi.org/10.1109/MCSE.2018.021651343

Kim, H., Rosa, I. M. D., Alkemade, R., Leadley, P., Hurtt, G., Popp, A., van Vuuren, D. P., Anthoni, P., Arneth, A., Baisero, D.,
Caton, E., Chaplin-Kramer, R., Chini, L., De Palma, A., Di Fulvio, F., Di Marco, M., Espinoza, F., Ferrier, S., Fujimori, S., …
Pereira, H. M. (2018). A protocol for an intercomparison of biodiversity and ecosystem services models using
harmonized land-use and climate scenarios. Geoscientific Model Development. https://doi.org/10.5194/gmd-2018-
115

Knapen, R., Janssen, S., Roosenschoon, O., Verweij, P., de Winter, W., Uiterwijk, M., & Wien, J.-E. (2013). Evaluating OpenMI
as a model integration platform across disciplines. Environmental Modelling & Software, 39, 274–282.
https://doi.org/10.1016/j.envsoft.2012.06.011

Köhler, P., & Huth, A. (1998). The effects of tree species grouping in tropical rainforest modelling: Simulations with the
individual-based model Formind. Ecological Modelling, 109(3), 301–321. https://doi.org/10.1016/S0304-
3800(98)00066-0

Lange, M., Müller, S., Fischer, T., König, S., Rojas, J. J. L., Kelbling, M., Thober, S., & Attinger, S. (2023). FINAM (Version 0.4)
[Computer software]. Helmholtz Center for Environmental Research - UFZ. https://finam.pages.ufz.de/

Le, Q. B., Park, S. J., Vlek, P. L. G., & Cremers, A. B. (2008). Land-Use Dynamic Simulator (LUDAS): A multi-agent system model
for simulating spatio-temporal dynamics of coupled human–landscape system. I. Structure and theoretical
specification. Ecological Informatics, 3(2), 135–153. https://doi.org/10.1016/j.ecoinf.2008.04.003

Lee, B. D. (2018). Ten simple rules for documenting scientific software. PLOS Computational Biology, 14(12), e1006561.
https://doi.org/10.1371/journal.pcbi.1006561

Lee, J.-Y., Marotzke, J., Bala, G., Cao, L., Corti, S., Dunne, J. P., Engelbrecht, F., Fischer, E., Fyfe, J. C., Jones, C., Maycock, A.,
Mutemi, J., Ndiaye, O., Panickal, S., & Zhou, T. (2021). Future Global Climate: Scenario-based Projections and Near-
term Information. In V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L.
Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekci, R.
Yu, & B. Zhou (Eds.), Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth
Assessment Report of the Intergovernmental Panel on Climate Change (pp. 553–672). Cambridge University Press.

Lehmann, S., & Huth, A. (2015). Fast calibration of a dynamic vegetation model with minimum observation data. Ecological
Modelling, 301, 98–105. https://doi.org/10.1016/j.ecolmodel.2015.01.013

Leidinger, L., Vedder, D., & Cabral, J. S. (2021). Temporal environmental variation may impose differential selection on both
genomic and ecological traits. Oikos, 130(7), 1100–1115. https://doi.org/10.1111/oik.08172

Lippe, M., Bithell, M., Gotts, N., Natalini, D., Barbrook-Johnson, P., Giupponi, C., Hallier, M., Hofstede, G. J., Le Page, C.,
Matthews, R. B., Schlüter, M., Smith, P., Teglio, A., & Thellmann, K. (2019). Using agent-based modelling to simulate
social-ecological systems across scales. GeoInformatica, 23(2), 269–298. https://doi.org/10.1007/s10707-018-00337-
8

Lorscheid, I., & Meyer, M. (2016). Divide and conquer: Configuring submodels for valid and efficient analyses of complex
simulation models. Ecological Modelling, 326, 152–161. https://doi.org/10.1016/j.ecolmodel.2015.11.013

Maji, A. K., Gorenstein, L., & Lentner, G. (2020). Demystifying Python Package Installation with conda-env-mod. 2020
IEEE/ACM International Workshop on HPC User Support Tools (HUST) and Workshop on Programming and
Performance Visualization Tools (ProTools), 27–37. https://doi.org/10.1109/HUSTProtools51951.2020.00011

Malawska, A., & Topping, C. J. (2018). Applying a biocomplexity approach to modelling farmer decision-making and land use
impacts on wildlife. Journal of Applied Ecology, 55(3), 1445–1455. https://doi.org/10.1111/1365-2664.13024

Malawska, A., Topping, C. J., & Nielsen, H. Ø. (2014). Why do we need to integrate farmer decision making and wildlife models
for policy evaluation? Land Use Policy, 38, 732–740. https://doi.org/10.1016/j.landusepol.2013.10.025

Malchow, A., Bocedi, G., Palmer, S. C. F., Travis, J. M. J., & Zurell, D. (2021). RangeShiftR: An R package for individual‐based
simulation of spatial eco‐evolutionary dynamics and species’ responses to environmental changes. Ecography, 44(10),
1443–1452. https://doi.org/10.1111/ecog.05689

Manabe, S. (2019). Role of greenhouse gas in climate change. Tellus A: Dynamic Meteorology and Oceanography, 71(1),
1620078. https://doi.org/10.1080/16000870.2019.1620078

Martin, R. C. (Ed.). (2009). Clean code: A handbook of agile software craftsmanship. Prentice Hall.
Marwick, B., Boettiger, C., & Mullen, L. (2018). Packaging Data Analytical Work Reproducibly Using R (and Friends). The

American Statistician, 72(1), 80–88. https://doi.org/10.1080/00031305.2017.1375986
McConnell, S. (2004). Code Complete (2nd ed). Microsoft Press.
McIntire, E. J. B., Chubaty, A. M., Cumming, S. G., Andison, D., Barros, C., Boisvenue, C., Haché, S., Luo, Y., Micheletti, T., &

Stewart, F. E. C. (2022). PERFICT: A Re-imagined foundation for predictive ecology. Ecology Letters, 25(6), 1345–1351.

https://doi.org/10.1016/j.envsoft.2020.104873
https://doi.org/10.1016/j.compag.2010.10.011
https://doi.org/10.1038/s41559-019-0826-1
https://doi.org/10.1109/MCSE.2018.021651343
https://doi.org/10.5194/gmd-2018-115
https://doi.org/10.5194/gmd-2018-115
https://doi.org/10.1016/j.envsoft.2012.06.011
https://doi.org/10.1016/S0304-3800(98)00066-0
https://doi.org/10.1016/S0304-3800(98)00066-0
https://finam.pages.ufz.de/
https://doi.org/10.1016/j.ecoinf.2008.04.003
https://doi.org/10.1371/journal.pcbi.1006561
https://doi.org/10.1016/j.ecolmodel.2015.01.013
https://doi.org/10.1111/oik.08172
https://doi.org/10.1007/s10707-018-00337-8
https://doi.org/10.1007/s10707-018-00337-8
https://doi.org/10.1016/j.ecolmodel.2015.11.013
https://doi.org/10.1109/HUSTProtools51951.2020.00011
https://doi.org/10.1111/1365-2664.13024
https://doi.org/10.1016/j.landusepol.2013.10.025
https://doi.org/10.1111/ecog.05689
https://doi.org/10.1080/16000870.2019.1620078
https://doi.org/10.1080/00031305.2017.1375986

D. Vedder et al. (2024) Socio-Environmental Systems Modelling, 6, 18701, doi:10.18174/sesmo.18701

20

https://doi.org/10.1111/ele.13994
Mislan, K. A. S., Heer, J. M., & White, E. P. (2016). Elevating The Status of Code in Ecology. Trends in Ecology & Evolution,

31(1), 4–7. https://doi.org/10.1016/j.tree.2015.11.006
Nowogrodzki, A. (2019). Tips for Open-Source Software Support. Nature, 571(7763, 7763), 133–134.

https://doi.org/10.1038/d41586-019-02046-0
O’Sullivan, D., Evans, T., Manson, S., Metcalf, S., Ligmann-Zielinska, A., & Bone, C. (2016). Strategic directions for agent-based

modeling: Avoiding the YAAWN syndrome. Journal of Land Use Science, 11(2), 177–187.
https://doi.org/10.1080/1747423X.2015.1030463

Pan, H., & Chen, Z. (2021). Crop Growth Modeling and Yield Forecasting. In L. Di & B. Üstündağ (Eds.), Agro-geoinformatics:
Theory and Practice (pp. 205–220). Springer International Publishing. https://doi.org/10.1007/978-3-030-66387-2_11

Perez-Riverol, Y., Gatto, L., Wang, R., Sachsenberg, T., Uszkoreit, J., Leprevost, F. da V., Fufezan, C., Ternent, T., Eglen, S. J.,
Katz, D. S., Pollard, T. J., Konovalov, A., Flight, R. M., Blin, K., & Vizcaíno, J. A. (2016). Ten Simple Rules for Taking
Advantage of Git and GitHub. PLOS Computational Biology, 12(7), e1004947.
https://doi.org/10.1371/journal.pcbi.1004947

Pilowsky, J. A., Colwell, R. K., Rahbek, C., & Fordham, D. A. (2022). Process-explicit models reveal the structure and dynamics
of biodiversity patterns. Science Advances, 8(31), eabj2271. https://doi.org/10.1126/sciadv.abj2271

Piorr, A., Ungaro, F., Ciancaglini, A., Happe, K., Sahrbacher, A., Sattler, C., Uthes, S., & Zander, P. (2009). Integrated
assessment of future CAP policies: Land use changes, spatial patterns and targeting. Environmental Science & Policy,
12(8), 1122–1136. https://doi.org/10.1016/j.envsci.2009.01.001

Pörtner, H.-O., Scholes, R. J., Agard, J., Archer, E., Arneth, A., Bai, X., Barnes, D., Burrows, M., Chan, L., Cheung, W. L.
(William)., Diamond, S., Donatti, C., Duarte, C., Eisenhauer, N., Foden, W., Gasalla, M. A., Handa, C., Hickler, T., Hoegh-
Guldberg, O., … Ngo, H. (2021). Scientific outcome of the IPBES-IPCC co-sponsored workshop on biodiversity and
climate change. IPBES secretariat. https://doi.org/10.5281/zenodo.5101125

Prabhu, P., Jablin, T. B., Raman, A., Zhang, Y., Huang, J., Kim, H., Johnson, N. P., Liu, F., Ghosh, S., Beard, S., Oh, T., Zoufaly,
M., Walker, D., & August, D. I. (2011). A survey of the practice of computational science. State of the Practice Reports,
1–12. https://doi.org/10.1145/2063348.2063374

Pütz, S., Groeneveld, J., Alves, L. F., Metzger, J. P., & Huth, A. (2011). Fragmentation drives tropical forest fragments to early
successional states: A modelling study for Brazilian Atlantic forests. Ecological Modelling, 222(12), 1986–1997.
https://doi.org/10.1016/j.ecolmodel.2011.03.038

Ram, K., Boettiger, C., Chamberlain, S., Ross, N., Salmon, M., & Butland, S. (2019). A Community of Practice Around Peer
Review for Long-Term Research Software Sustainability. Computing in Science Engineering, 21(2), 59–65. Computing
in Science Engineering. https://doi.org/10.1109/MCSE.2018.2882753

Reidsma, P., Janssen, S., Jansen, J., & van Ittersum, M. K. (2018). On the development and use of farm models for policy
impact assessment in the European Union – A review. Agricultural Systems, 159, 111–125.
https://doi.org/10.1016/j.agsy.2017.10.012

Robinson, D. T., Di Vittorio, A., Alexander, P., Arneth, A., Barton, C. M., Brown, D. G., Kettner, A., Lemmen, C., O’Neill, B. C.,
Janssen, M., Pugh, T. A. M., Rabin, S. S., Rounsevell, M., Syvitski, J. P., Ullah, I., & Verburg, P. H. (2018). Modelling
feedbacks between human and natural processes in the land system. Earth System Dynamics, 9(2), 895–914.
https://doi.org/10.5194/esd-9-895-2018

Rollins, N. D., Barton, C. M., Bergin, S., Janssen, M. A., & Lee, A. (2014). A Computational Model Library for publishing model
documentation and code. Environmental Modelling & Software, 61, 59–64.
https://doi.org/10.1016/j.envsoft.2014.06.022

Romero-Mujalli, D., Jeltsch, F., & Tiedemann, R. (2019). Individual-based modeling of eco-evolutionary dynamics: State of
the art and future directions. Regional Environmental Change, 19(1), 1–12. https://doi.org/10.1007/s10113-018-1406-
7

Ropella, G. E., Railsback, S. F., & Jackson, S. K. (2002). Software Engineering Considerations for Individual-Based Models.
Natural Resource Modeling, 15(1), 5–22. https://doi.org/10.1111/j.1939-7445.2002.tb00077.x

Rosenzweig, C., Arnell, N. W., Ebi, K. L., Lotze-Campen, H., Raes, F., Rapley, C., Smith, M. S., Cramer, W., Frieler, K., Reyer, C.
P. O., Schewe, J., Vuuren, D. van, & Warszawski, L. (2017). Assessing inter-sectoral climate change risks: The role of
ISIMIP. Environmental Research Letters, 12(1), 010301. https://doi.org/10.1088/1748-9326/12/1/010301

Rosenzweig, C., Jones, J. W., Hatfield, J. L., Ruane, A. C., Boote, K. J., Thorburn, P., Antle, J. M., Nelson, G. C., Porter, C.,
Janssen, S., Asseng, S., Basso, B., Ewert, F., Wallach, D., Baigorria, G., & Winter, J. M. (2013). The Agricultural Model
Intercomparison and Improvement Project (AgMIP): Protocols and pilot studies. Agricultural and Forest Meteorology,
170, 166–182. https://doi.org/10.1016/j.agrformet.2012.09.011

Samaniego, L., Kumar, R., & Attinger, S. (2010). Multiscale parameter regionalization of a grid-based hydrologic model at the
mesoscale: MULTISCALE PARAMETER REGIONALIZATION. Water Resources Research, 46(5).
https://doi.org/10.1029/2008WR007327

Sanders, R., & Kelly, D. (2008). Dealing with Risk in Scientific Software Development. IEEE Software, 25(4), 21–28.
https://doi.org/10.1109/MS.2008.84

Scheller, R. M., Sturtevant, B. R., Gustafson, E. J., Ward, B. C., & Mladenoff, D. J. (2010). Increasing the reliability of ecological
models using modern software engineering techniques. Frontiers in Ecology and the Environment, 8(5), 253–260.
https://doi.org/10.1890/080141

Schmidt, A., Necpalova, M., Zimmermann, A., Mann, S., Six, J., & Mack, G. (2017). Direct and Indirect Economic Incentives to

https://doi.org/10.1111/ele.13994
https://doi.org/10.1016/j.tree.2015.11.006
https://doi.org/10.1038/d41586-019-02046-0
https://doi.org/10.1080/1747423X.2015.1030463
https://doi.org/10.1007/978-3-030-66387-2_11
https://doi.org/10.1371/journal.pcbi.1004947
https://doi.org/10.1126/sciadv.abj2271
https://doi.org/10.1016/j.envsci.2009.01.001
https://doi.org/10.5281/zenodo.5101125
https://doi.org/10.1145/2063348.2063374
https://doi.org/10.1016/j.ecolmodel.2011.03.038
https://doi.org/10.1109/MCSE.2018.2882753
https://doi.org/10.1016/j.agsy.2017.10.012
https://doi.org/10.5194/esd-9-895-2018
https://doi.org/10.1016/j.envsoft.2014.06.022
https://doi.org/10.1007/s10113-018-1406-7
https://doi.org/10.1007/s10113-018-1406-7
https://doi.org/10.1111/j.1939-7445.2002.tb00077.x
https://doi.org/10.1088/1748-9326/12/1/010301
https://doi.org/10.1016/j.agrformet.2012.09.011
https://doi.org/10.1029/2008WR007327
https://doi.org/10.1109/MS.2008.84
https://doi.org/10.1890/080141

D. Vedder et al. (2024) Socio-Environmental Systems Modelling, 6, 18701, doi:10.18174/sesmo.18701

21

Mitigate Nitrogen Surpluses: A Sensitivity Analysis. Journal of Artificial Societies and Social Simulation, 20(4), 77.
https://doi.org/10.18564/jasss.3477

Schouten, R., Vesk, P. A., & Kearney, M. R. (2020). Integrating dynamic plant growth models and microclimates for species
distribution modelling. Ecological Modelling, 435, 109262. https://doi.org/10.1016/j.ecolmodel.2020.109262

Schreinemachers, P., & Berger, T. (2011). An agent-based simulation model of human–environment interactions in
agricultural systems. Environmental Modelling & Software, 26(7), 845–859.
https://doi.org/10.1016/j.envsoft.2011.02.004

Shrestha, N. K., Leta, O. T., De Fraine, B., Garcia-Armisen, T., Ouattara, N. K., Servais, P., van Griensven, A., & Bauwens, W.
(2013). Modelling Escherichia coli dynamics in the river Zenne (Belgium) using an OpenMI based integrated model.
Journal of Hydroinformatics, 16(2), 354–374. https://doi.org/10.2166/hydro.2013.171

Sibly, R. M., Grimm, V., Martin, B. T., Johnston, A. S. A., Kułakowska, K., Topping, C. J., Calow, P., Nabe-Nielsen, J., Thorbek,
P., & DeAngelis, D. L. (2013). Representing the acquisition and use of energy by individuals in agent-based models of
animal populations. Methods in Ecology and Evolution, 4(2), 151–161. https://doi.org/10.1111/2041-210x.12002

Sieger, C. S., & Hovestadt, T. (2021). The effect of landscape structure on the evolution of two alternative dispersal strategies.
Ecological Processes, 10(1), 73. https://doi.org/10.1186/s13717-021-00343-z

Simon, R. N., & Fortin, D. (2020). Crop raiders in an ecological trap: Optimal foraging individual-based modeling quantifies
the effect of alternate crops. Ecological Applications, 30(5), e02111. https://doi.org/10.1002/eap.2111

Stillman, R. A., Wood, K. A., & Goss-Custard, J. D. (2016). Deriving simple predictions from complex models to support
environmental decision-making. Ecological Modelling, 326, 134–141.
https://doi.org/10.1016/j.ecolmodel.2015.04.014

Sun, Z., Lorscheid, I., Millington, J. D., Lauf, S., Magliocca, N. R., Groeneveld, J., Balbi, S., Nolzen, H., Müller, B., Schulze, J., &
Buchmann, C. M. (2016). Simple or complicated agent-based models? A complicated issue. Environmental Modelling
& Software, 86, 56–67. https://doi.org/10.1016/j.envsoft.2016.09.006

Synes, N. W., Brown, C., Palmer, S. C. F., Bocedi, G., Osborne, P. E., Watts, K., Franklin, J., & Travis, J. M. J. (2019). Coupled
land use and ecological models reveal emergence and feedbacks in socio‐ecological systems. Ecography, 42(4), 814–
825. https://doi.org/10.1111/ecog.04039

Theurich, G., DeLuca, C., Campbell, T., Liu, F., Saint, K., Vertenstein, M., Chen, J., Oehmke, R., Doyle, J., Whitcomb, T.,
Wallcraft, A., Iredell, M., Black, T., Silva, A. M. D., Clune, T., Ferraro, R., Li, P., Kelley, M., Aleinov, I., … Dunlap, R. (2016).
The Earth System Prediction Suite: Toward a Coordinated U.S. Modeling Capability. Bulletin of the American
Meteorological Society, 97(7), 1229–1247. https://doi.org/10.1175/BAMS-D-14-00164.1

Topping, C. J. (2011). Evaluation of wildlife management through organic farming. Ecological Engineering, 37(12), 2009–2017.
https://doi.org/10.1016/j.ecoleng.2011.08.010

Topping, C. J. (2022). ALMaSS - the animal, landscape and man simulation system [Computer software]. Department of
Wildlife Ecology & Biodiversity, Aarhus University. https://gitlab.com/ChrisTopping/ALMaSS_all

Topping, C. J., Alrøe, H. F., Farrell, K. N., & Grimm, V. (2015). Per Aspera ad Astra: Through Complex Population Modeling to
Predictive Theory. The American Naturalist, 186(5), 669–674. https://doi.org/10.1086/683181

Topping, C. J., Hansen, T. S., Jensen, T. S., Jepsen, J. U., Nikolajsen, F., & Odderskær, P. (2003). ALMaSS, an agent-based model
for animals in temperate European landscapes. Ecological Modelling, 167(1), 65–82. https://doi.org/10.1016/S0304-
3800(03)00173-X

Urban, M. C., Bocedi, G., Hendry, A. P., Mihoub, J.-B., Pe’er, G., Singer, A., Bridle, J. R., Crozier, L. G., De Meester, L., Godsoe,
W., Gonzalez, A., Hellmann, J. J., Holt, R. D., Huth, A., Johst, K., Krug, C. B., Leadley, P. W., Palmer, S. C. F., Pantel, J. H.,
… Travis, J. M. J. (2016). Improving the forecast for biodiversity under climate change. Science, 353(6304), aad8466.
https://doi.org/10.1126/science.aad8466

Urban, M. C., Travis, J. M. J., Zurell, D., Thompson, P. L., Synes, N. W., Scarpa, A., Peres-Neto, P. R., Malchow, A.-K., James, P.
M. A., Gravel, D., De Meester, L., Brown, C., Bocedi, G., Albert, C. H., Gonzalez, A., & Hendry, A. P. (2022). Coding for
Life: Designing a Platform for Projecting and Protecting Global Biodiversity. BioScience, 72(1), 91–104.
https://doi.org/10.1093/biosci/biab099

Vable, A. M., Diehl, S. F., & Glymour, M. M. (2021). Code Review as a Simple Trick to Enhance Reproducibility, Accelerate
Learning, and Improve the Quality of Your Team’s Research. American Journal of Epidemiology, 190(10), 2172–2177.
https://doi.org/10.1093/aje/kwab092

van Ittersum, M. K., Ewert, F., Heckelei, T., Wery, J., Alkan Olsson, J., Andersen, E., Bezlepkina, I., Brouwer, F., Donatelli, M.,
Flichman, G., Olsson, L., Rizzoli, A. E., van der Wal, T., Wien, J. E., & Wolf, J. (2008). Integrated assessment of
agricultural systems – A component-based framework for the European Union (SEAMLESS). Agricultural Systems, 96(1-
3), 150–165. https://doi.org/10.1016/j.agsy.2007.07.009

Vedder, D., Ankenbrand, M., & Cabral, J. S. (2021). Dealing with software complexity in individual-based models. Methods in
Ecology and Evolution, 12(12), 2324–2333. https://doi.org/10.1111/2041-210X.13716

Vedder, D., Leidinger, L., & Sarmento Cabral, J. (2021). Propagule pressure and an invasion syndrome determine invasion
success in a plant community model. Ecology and Evolution, 11(23), 17106–17116. https://doi.org/10.1002/ece3.8348

Vedder, D., Lens, L., Martin, C. A., Pellikka, P., Adhikari, H., Heiskanen, J., Engler, J. O., & Sarmento Cabral, J. (2022).
Hybridization may aid evolutionary rescue of an endangered East African passerine. Evolutionary Applications, 15(7),
1177–1188. https://doi.org/10.1111/eva.13440

Vincenot, C. E. (2018). How new concepts become universal scientific approaches: Insights from citation network analysis of
agent-based complex systems science. Proceedings of the Royal Society B: Biological Sciences, 285(1874), 20172360.

https://doi.org/10.18564/jasss.3477
https://doi.org/10.1016/j.ecolmodel.2020.109262
https://doi.org/10.1016/j.envsoft.2011.02.004
https://doi.org/10.2166/hydro.2013.171
https://doi.org/10.1111/2041-210x.12002
https://doi.org/10.1186/s13717-021-00343-z
https://doi.org/10.1002/eap.2111
https://doi.org/10.1016/j.ecolmodel.2015.04.014
https://doi.org/10.1016/j.envsoft.2016.09.006
https://doi.org/10.1111/ecog.04039
https://doi.org/10.1175/BAMS-D-14-00164.1
https://doi.org/10.1016/j.ecoleng.2011.08.010
https://gitlab.com/ChrisTopping/ALMaSS_all
https://doi.org/10.1086/683181
https://doi.org/10.1016/S0304-3800(03)00173-X
https://doi.org/10.1016/S0304-3800(03)00173-X
https://doi.org/10.1126/science.aad8466
https://doi.org/10.1093/biosci/biab099
https://doi.org/10.1093/aje/kwab092
https://doi.org/10.1016/j.agsy.2007.07.009
https://doi.org/10.1111/2041-210X.13716
https://doi.org/10.1002/ece3.8348
https://doi.org/10.1111/eva.13440

D. Vedder et al. (2024) Socio-Environmental Systems Modelling, 6, 18701, doi:10.18174/sesmo.18701

22

https://doi.org/10.1098/rspb.2017.2360
Will, M., Dressler, G., Kreuer, D., Thulke, H.-H., Grêt‐Regamey, A., & Müller, B. (2021). How to make socio-environmental

modelling more useful to support policy and management? People and Nature, 00, 1–13.
https://doi.org/10.1002/pan3.10207

Wilson, G., Aruliah, D. A., Brown, C. T., Chue Hong, N. P., Davis, M., Guy, R. T., Haddock, S. H. D., Huff, K. D., Mitchell, I. M.,
Plumbley, M. D., Waugh, B., White, E. P., & Wilson, P. (2014). Best Practices for Scientific Computing. PLoS Biology,
12(1), 1–7. https://doi.org/10.1371/journal.pbio.1001745

https://doi.org/10.1098/rspb.2017.2360
https://doi.org/10.1002/pan3.10207
https://doi.org/10.1371/journal.pbio.1001745

