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Abstract 
Current biodiversity models often struggle to represent the complexity of global crises, as the affected ecosystems 
are shaped by many different ecological, physical, and social processes. To understand these dynamics better, we 
will need to build larger and more complex ecological models, and couple ecological models to models produced 
by other disciplines, such as climate science, economics, or sociology. However, constructing such integrated 
models is a significant technical undertaking, which has received little attention by ecological modellers so far. 
We review literature from computer science and several other environmental modelling disciplines to identify 
common challenges and possible strategies when creating large integrated models. We show that there is a 
software-architectural trade-off between modularity and integration, where the former is required to keep the 
technical complexity of a model manageable, and the latter is desirable to represent the scientific complexity of 
a studied system. We then present and compare five different software engineering techniques for navigating 
this trade-off. Which technique is most suitable for a given model depends on the model’s aims and the available 
development resources. The larger a model becomes, the more important it is to use more advanced techniques, 
such as integrating models from different domains using a model coupling framework. Our review shows that 
ecological modellers can learn from other modelling disciplines, but also need to invest in increased software 
engineering expertise, if they want to build models that can represent the numerous processes affecting 
ecosystems and biodiversity loss. 
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1.  Introduction 

Mechanistic models (also known as process-based models) have established themselves as an important pillar 
of ecological research (Pilowsky et al., 2022). They help us better understand ecological processes and patterns 
(DeAngelis & Grimm, 2014), and are increasingly widely used to study the causes and effects of biodiversity loss 
(IPBES, 2016). In this, they show great potential for making ecology a more predictive science (McIntire et al., 
2022; Stillman et al., 2016), as well as for supporting decision making (Grimm, Johnston, et al., 2020; Will et al., 
2021). 
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Mechanistic models are already used to model the full spectrum of biological scales, from individual-level genetic 
(Romero-Mujalli et al., 2019) and physiological processes (Sibly et al., 2013) all the way up to macroevolutionary 
processes that shape global patterns (Cabral et al., 2017). However, most ecological models only consider a very 
small number of processes (Urban et al., 2016), partly because of the complexity of ecosystems and the 
multitude of processes that need to be modelled. This is problematic, as gaining a full understanding of the 
natural world will require models that integrate multiple processes and organisational levels, including their 
interactions across scales (Grimm et al., 2017; Urban et al., 2022). 
 

In addition to integrating the various strands of ecological research, mechanistic models can be used to link 
ecology to other scientific disciplines. This is vital in the context of complex issues such as Global Change, where 
we need to understand how ecosystems and biodiversity affect and are affected by both physical domains such 
as climate (Urban et al., 2016) and socio-economic domains such as agriculture (Malawska et al., 2014). 
Ultimately, if we want to gain a deep, holistic understanding of the natural world we live in, we will not just need 
more comprehensive ecological models, but also integrated models that create a link between ecology and the 
physical and social sciences (Cabral et al., 2023). 
 

Building such larger and more integrated models entails high scientific complexity, and there is a lively discussion 
among ecological modellers about whether and when this is necessary and how to deal with this (e.g. Sun et al., 
2016; Lorscheid & Meyer, 2016; Topping et al., 2015). However, there is comparatively little discussion about 
the technical aspects of constructing large models. Models are software systems that also have a high technical 
complexity; thus, creating large integrated models will mean building large complicated software (Sanders & 
Kelly, 2008; Johanson & Hasselbring, 2018; Vedder, Ankenbrand et al., 2021). 
 
Of course, there are multiple dimensions in which model software can be improved, including increased realism 
and computational efficiency. However, with the growing importance of interdisciplinary, and especially social-
ecological, research, the aim of combining models from multiple domains has taken on new urgency (Cabral et 
al., 2023; Urban et al., 2022). While we should continue to think about how to build better monodisciplinary 
models (“go deep”), we should at the same time strive to build more multidisciplinary models (“go wide”). 
 

Therefore, with this review, we address the question of how such model integration can be practically achieved. 
We juxtapose relevant principles from the computer science literature on software engineering with examples 
from current practice in ecological modelling. To help link the two, we also draw on the wider literature on 
scientific computing, and include examples from other modelling fields such as climate modelling. We identify 
the challenges in creating large integrated models, and discuss the advantages and disadvantages of different 
techniques that can be used to build them. We end by drawing together concrete and practical advice for 
creating large integrated models. 
 

2.  The trade-off between modularity and integration 

Large, interdisciplinary models are challenging to build both scientifically and technically (Vedder, Ankenbrand 
et al., 2021). The larger model software becomes, the more its creation must be treated as software engineering 
and not merely as software development (Johanson & Hasselbring, 2018; see Box 1 for terminology). Engineering 
large software systems is hard, and computer scientists have been thinking for decades about how to deal with 
their inherent and unavoidable complexity (see e.g. the seminal papers by Brooks 1986; Dijkstra 1972). 
 

A fundamental solution to address this complexity is the concept of modularity, and the related concepts of 
encapsulation and abstraction (e.g. Abelson et al., 1996; McConnell, 2004). Complex software systems are easier 
to develop and understand when they are split into semi-independent subsystems. Two complementary aspects 
of modularity are “low coupling” and “information hiding” (Beck & Diehl, 2011). Low coupling means that each 
subsystem should be as self-contained as possible, with few links to the rest of the program. This makes it easier 
to develop, test, and analyse each subsystem in isolation. Information hiding means that each subsystem should 
have a defined and restricted interface through which the rest of the program can access its functionality without 
having to know the implementation details. This makes it possible to treat each subsystem as a “black box”, 
reducing the complexity of the complete system and making it much easier to think about and design. 
Additionally, it means that subsystems are easier to replace if and when that is necessary. Thus, the concept of 
modularity is directly applicable to the development of mechanistic models in ecology, and is indeed used in a 
similar manner to deal with scientific complexity (Lorscheid & Meyer, 2016). 
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Box 1: Glossary of software terms. 

Clean code 
Computer code that is easy to read, understand, and modify (see Martin, 2009, for an in-depth discussion). 
 
Code base 
The complete set of source code files for a software application, often taken to include the associated input files and 
documentation. 
 
Complexity ceiling 
The maximum attainable complexity of a code base. As the size and technical complexity of a code base increases, the 
difficulty and cost of adding new features and fixing bugs increases further and further, partly due to accumulating technical 
debt. Eventually, further development becomes unfeasible and the software must be rewritten or left as-is. Good software 
engineering and clean code can raise the complexity ceiling (cf. Martin, 2009). 
 
Model coupling 
The joining of two or more models, so that the output of one is used as input for another. May be accomplished using data 
files, software packages, network connections, or coupling frameworks (see sections 3.3 to 3.5, and the overview in Belete 
et al., 2017). 
 
Modularity 
When referring to the internal structure of a code base: the property of being subdivided into semi-independent modules, 
or the degree of subdivision. Structuring software into self-contained modules makes it easier to understand and modify, 
as most changes will only affect a small subset of the entire code. (See Abelson et al. 1996, and McConnell 2004, for detailed 
discussions.) 
 
Software architecture 
The internal structure of a code base, including its organisation into packages, files, classes, and/or functions. Designing 
this is an important part of software engineering. 
 
Software engineering 
The science and practice of developing software applications. The term emphasises the planning, design, and quality 
control procedures required for implementing large software projects (cf. McConnell, 2004). This is in contrast to the terms 
“programming” or “software development”, which often focus more on the actual act of writing code. 
 
Technical debt 
Unnecessary technical complexity in a code base that makes it difficult to understand and work with. This may be caused 
by a software architecture that is either too simple or too complicated, a disregard of the principles of clean code, or 
incomplete documentation. Although writing such suboptimal code may be faster at first, the resulting (unnecessarily high) 
technical complexity makes future development harder and slower unless the software quality is improved (i.e. the debt is 
“paid back”). 
 

 
 
However, the technical aim of keeping subsystems independent can come into conflict with the scientific desire 
to represent the numerous interlinkages between domains in the real world (Lippe et al., 2019; Topping et al. 
2015). Many ecological models include interactions between processes at different scales (e.g. climate change 
and animal breeding behaviour), or between different entities at the same scale (e.g. predator and prey species). 
This requires the model source code to be sufficiently integrated to allow these interactions to be represented. 
On a technical level, the degree of integration of a software can be measured as the number of linkages between 
its components (e.g. the number of functions or variables in one component that are referenced outside of this 
component). The greater the number of linkages, the higher the integration and the lower the modularity (Beck 
& Diehl, 2011). 
 
Therefore, there is a scientific desire for greater integration to increase realism and a technical desire for greater 
modularity to increase code tractability, leading to a trade-off between these two model software properties. 
Modellers must be aware of this trade-off, and carefully weigh the scientific benefits of increased integration 
against its associated technical complexity costs. We therefore recommend the principle of writing model code 
that is “as modular as possible, as integrated as necessary”. 
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3.  Techniques for creating integrated models 

Below, we examine practical approaches for reconciling the scientific need for model integration with the 
technical imperative of software modularity. For this discussion, we use the terms “model” and “component” in 
a very specific sense. By “model” we mean a stand-alone executable software that is designed to represent one 
or more aspects of the physical world. By “component” we mean a subsystem of such a model, that handles one 
aspect of the model’s purpose and interacts with the model’s other components. Such a component may be a 
software module, package, or library, or even another model. Consequently, a stand-alone model may also be 
used as a component when it is coupled together with other components to create an integrated model. The 
definitions of model and component in this context are therefore functional and not mutually exclusive: a model 
is executable, a component interoperable. 
 
Multiple techniques can be used to create large integrated models, each with their own benefits and drawbacks 
(Brandmeyer & Karimi, 2000). Fundamentally, the important questions are how to implement and link 
components. As complex software usually involves work by multiple developers or even teams of developers, 
the tasks of creating (and extending or adapting) components and models will often be done by different people 
and sometimes by different groups. It is therefore important to consider both the perspectives of component 
developers and model developers. 
 
In this section we will present five techniques, which represent increasingly advanced types of software 
architectures that allow progressively greater levels of complexity to be handled. These are: monolithic models, 
components as modules, components as packages, ad-hoc model coupling, and framework model coupling (Fig. 
1a). The techniques are characterised by differing degrees of interdependence between the model and its 
components (Fig. 1b). Our selection of techniques is not meant to be comprehensive, but rather aims (1) to show 
the breadth of available options, (2) give examples of how they have been used in ecological modelling, and (3) 
discuss important differences between them. We do not propose that any of these techniques are always better 
or worse than the others; instead, we examine how well they suit specific research questions or organisational 
contexts. In this analysis, we focus on the seven aspects listed in Table 1 and summarised in Fig. 2. 
 
 

 
Figure 1: Different technical approaches to creating integrated models (A). The graph (B) illustrates conceptually how 
independent components are of models and vice versa in each technique, i.e. how closely a specific component is tied to a 
specific model. 
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Table 1: Different software engineering techniques have different advantages and drawbacks, making them suitable for different modelling purposes and contexts. For a graphical summary of this table, 
see Figure 2. 

 Monolithic models Components are modules Components are packages Ad-hoc model coupling Framework model coupling 

Degree of 
integration 

Maximal integration: every 
part of the code can access 
every other part. 

Depending on the choice of 
modularisation technique 
(different files, classes, etc.), 
every part of the code can 
often still access every other 
part where necessary. It is up to 
the developers to self-impose 
limits on the number of 
interconnections to ensure a 
suitable level of modularity and 
integration. 

Packages are designed to offer a 
public interface, a set of functions 
and/or classes that can be called 
by users of the package, while 
making their internal workings 
inaccessible to users. This makes 
for strong modularity, and 
consequently low integration. 

While each component model is 
originally self-contained, the 
individualised coupling process 
allows developers to connect 
components quite closely to each 
other, thus achieving an 
intermediate degree of integration. 

Adapting models to be used as 
components in framework 
coupling requires giving them a 
standardised API (similar to 
packages). Therefore, the 
interaction possibilities with 
each component are clearly 
defined and restricted, giving a 
very modular architecture with 
a low to medium degree of 
integration. 

Contributors Typically built by individuals 
or small teams, who have a 
complete overview of the 
source code. 

Typically built by small teams. 
Different team members will 
usually work on different 
sections, although all team 
members will have access to 
the complete source code. 

Most packages are developed by 
independent developers or 
teams. Developers of different 
packages may at times 
collaborate explicitly, e.g. by 
adjusting a package to provide 
functionality required for a 
specific application. 

Generally used to bring together 
the work by a small number of 
developer teams. 

Establishing a coupling 
framework requires a high 
amount of coordination among 
many different teams of 
modellers. Once this hurdle has 
been taken, framework model 
coupling enables collaboration 
across a wide range of teams 
and disciplines. 

Can combine 
languages 

Generally built in a single 
programming language. 

Generally built in a single 
programming language. 

Many programming languages 
can be combined with packages 
built in other languages, although 
this may be tricky to set up. 

Models written in different 
languages can be readily coupled 
using techniques such as in- and 
output file exchanges or network 
connections. 

Models can use any language 
supported by the targeted 
coupling framework. 
Alternatively, models can 
provide a wrapper to a 
supported language. 

Components are 
model-
independent 

As monolithic models only 
have a single component, 
this component is the 
model and the two are not 
independent of each other 
in any way. 

Components in modular models 
are written specifically for the 
model they are a part of, and 
are therefore typically 
dependent on other parts of 
this particular model. 

Packages are usually built to 
provide general functionality 
independent of a specific use 
case, and hence independent of 
the model they are included in. 
How dependent a model is on a 
given package depends on the 
availability of other packages 
offering equivalent functionality. 

Because each component is itself a 
model, components are technically 
independent of each other. 
However, the coupling process may 
involve adapting the constituent 
models to be able to interact with 
each other, so there is a greater 
degree of mutual dependence than 
with framework coupling. 

In framework coupling, each 
component is a separate model 
that can also be used on its own, 
or in combination with other 
models in a different integrated 
model. Thus, there is maximum 
independence of the 
components from the model. 

(Table continued on next page) 
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Table 1 (continued) 

 Monolithic models Components are modules Components are packages Ad-hoc model coupling Framework model coupling 

Difficulty of 
creating 
components 

Creating a monolithic 
model is comparatively 
easy, as the software 
architecture is usually 
simple, the overhead 
associated with packages or 
coupling frameworks is 
avoided, and developers 
have complete control over 
their code. 

Each component is intended to 
be small and self-contained, 
making the creation of 
components easy. 

Every programming language has 
its own guidelines on how to 
create packages. Designing a 
good package API takes some 
thought, as it must consider both 
the current and future needs of 
package users as well as those of 
the developers. 

The difficulty of creating each 
component model depends strongly 
on its own complexity. Planning for 
model coupling already during the 
design phase of a model allows the 
component model to be kept 
minimal and at a lower level of 
complexity, thus reducing the 
difficulty of implementation. 

As each component is itself a 
model, the difficulty of creating 
it depends on its own type and 
complexity. 

Difficulty of 
coupling 
components 

As monolithic models only 
have a single component, 
this question is not 
applicable. 

Because the developers have 
full control over all parts of the 
source code, aligning 
components with each other is 
straightforward. 

Loading packages into a software 
is very simple. The biggest 
challenge is that model 
developers may have to adapt 
their model to the requirements 
of the utilised packages. 

Coupling models can be tricky, as 
input and output data have to be 
carefully aligned. Modellers need to 
ensure scientific compatibility (e.g. 
of scales), as well as setting up the 
technical communication between 
components. 

Adjusting a component model 
to be compatible with a 
framework requires some 
work, but once this has been 
done, the technical aspects of 
coupling models within the 
framework are designed to be 
quick and easy. 

Difficulty of 
extending model 

Extending a monolithic 
model becomes 
progressively harder, as the 
lack of a clear internal 
structure leads to a rapidly 
mounting technical 
complexity that eventually 
precludes further 
development (“complexity 
ceiling”, see Glossary in Box 
1). 

Greater modularity makes 
adding new functionality much 
easier than with monolithic 
models. But as there is still a 
relatively high degree of 
integration, these models are 
likely to hit their complexity 
ceiling earlier than models with 
a stronger separation of 
components. 

Due to the high modularity of a 
package-based design, adding 
new functionality later on is not 
more difficult than the original 
model creation. 

Because the components are 
specifically aligned to each other, 
extending an ad-hoc coupled model 
further involves a lot of detail work 
to integrate new components with 
the existing structure. This may 
rapidly become unfeasible. 

Extending an integrated model 
is technically very simple, as 
long as any new components 
are compatible with the 
coupling framework. 
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Figure 2: Different software engineering techniques have different advantages and drawbacks, making them suitable for 
different modelling purposes and contexts. This figure offers a qualitative comparison of a number of relevant points as a 
summary. For more detailed descriptions, see Table 1. 
 

3.1  Monolithic models 

The simplest way to implement a mechanistic model is as a monolithic, purpose-built software that encompasses 
exactly those entities and processes relevant to the study question (Grimm & Railsback, 2005). Focusing on a 
specific question allows the developers to reduce complexity by excluding anything that is not directly necessary. 
At the same time, every part of the model can easily interact with every other part, allowing full integration. 
Hence, there is a low engineering overhead to the initial model construction. It is likely that the great majority 
of ecological models fall into this category, as modellers typically create new models for their specific needs and 
rarely share code (Bell et al., 2015; Berger et al., 2024). 
 
The problem with this design is that, because every part of the code can influence every other part, the 
complexity of the code can end up increasing exponentially as new features are added. Eventually, the project 
may experience a “complexity ceiling” effect, where the code base has become so complicated that the 
developers struggle to expand it further without breaking existing functionality (Martin, 2009). This is why 
computer science developed modular programming techniques such as object-oriented programming, as these 
subdivide and thereby greatly reduce the complexity of code bases (cf. Brooks, 1986). Experience thus shows 
that the total complexity that can be represented with monolithic designs is much lower than with a modular 
design, and continuously adapting such models to new questions becomes harder and harder (Johanson & 
Hasselbring, 2018). 
 
One example of an ecological model that was built with this technique is the GeMM model, which was designed 
to study eco-evolutionary dynamics of plant communities on islands (Leidinger et al., 2021). The original model 
design was well-suited to a number of questions relating to this study system (e.g. mechanisms of species 
invasions; Vedder, Leidinger et al., 2021). However, adapting the model to study terrestrial bird populations 
proved challenging and required the adaptation of large portions of code, making the whole code harder to 
understand (Vedder et al., 2022). Other examples of open-source models using the monolithic approach are the 
dispersal model of Sieger and Hovestadt (2021), the grazing models by Fust and Schlecht (2018) and Simon and 
Fortin (2020), or the butterfly model by Evans et al. (2019). 
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3.2  Components are modules 

Modellers that anticipate having to deal with large numbers of entities and processes may adopt a more modular 
approach (Bell et al., 2015). This is also important if the model is expected to grow beyond the scope of the 
original study. The simplest way of increasing modularity is by internally subdividing the code base and clearly 
specifying how the different modules interact with each other. This will generally include splitting up the code 
into multiple files and folders, and can be aided by programming language features such as Python or Julia 
modules or C/C++ header files, as well as by classes and interfaces in object-oriented programming languages 
such as Java. 
 
This subdivision requires a little forethought, and developers must be careful to keep the interaction between 
modules as limited as possible (McConnell, 2004). Still, such an architecture is not hard to set up, and offers 
large flexibility for integration where that is necessary. Thus, this technique is well-suited to models that include 
multiple domains with multiple interactions. It probably works best for small to medium-sized models and 
developer teams, as the still comparatively high degree of integration likely will pose a significant complexity 
burden for very large models that are worked on by many different people or multiple teams. 
 
One example of a model that applies this technique to good effect is ALMaSS, which simulates animal species in 
agricultural landscapes (Topping et al., 2003). It includes modules for multiple animal and crop species, a number 
that has been steadily growing over the last years (e.g. six animal species in Topping (2011); seventeen in the 
2022 code base (Topping, 2022)). As another example, the macro-evolutionary model gen3sis uses a modular 
approach to allow the user to switch between different implementations of the simulated ecological and 
evolutionary processes (Hagen et al., 2021). 
 
Modellers that anticipate having to deal with large numbers of entities and processes may adopt a more modular 
approach (Bell et al., 2015). This is also important if the model is expected to grow beyond the scope of the 
original study. The simplest way of increasing modularity is by internally subdividing the code base and clearly 
specifying how the different modules interact with each other. This will generally include splitting up the code 
into multiple files and folders, and can be aided by programming language features such as Python or Julia 
modules or C/C++ header files, as well as by classes and interfaces in object-oriented programming languages 
such as Java. 

3.3  Components are packages 

All major programming languages support packages, also known as libraries. This is software that is designed to 
be included in other programs in order to perform a specific task, such as statistical analysis or visualisation. 
Packages are generally not built to be used as stand-alone executables. They are nonetheless independent of 
the programs they are embedded in, and are usable by any program with similar requirements. Thus, whereas 
modules (in the sense discussed above) are components that are created for and used solely within a specific 
model, packages are components that are meant to be used by many models. This is achieved by defining an 
API (application programmer interface) to specify the functions and classes that the given package provides, 
which input data it requires, and what output it produces. Because packages are largely self-contained, they 
provide a greater degree of modularity than modules. This becomes important as models grow in size, 
particularly if the model components are created by multiple developer teams. 
 
By adhering to the specifications for creating packages in their chosen programming language, component 
developers can make their code interoperable and easily accessible to other model developers. Many 
programming languages offer package repositories to enable rapid dissemination of software, such as CRAN for 
R (cf. Ram et al., 2019), pip for Python (cf. Maji et al., 2020), and Pkg.jl for Julia (cf. Churavy et al., 2022). Using 
preexisting packages as model components allows model developers to greatly reduce the amount of work they 
have to do themselves, while automatically making the code more modular and thus more understandable. In 
some cases (particularly with compiled packages known as dynamically-linked libraries), it can also be possible 
to include code written in a different programming language in a model, thus allowing developers to benefit 
from a wider circle of previous work. On the downside, a package may not offer all the features the model 
developers would like, may require the model code to be adjusted to fit the package requirements, or may 
induce coding overhead for packaging and maintenance. 
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Although many ecologists are familiar with the concept of packages for data analysis (cf. Marwick et al., 2018), 
using packages as model components is not as widely spread. One example is the plant growth model by 
Schouten et al. (2020), who split up their model code into three independent packages that can also be used for 
other models. It is also an option to transform complete ecological models into packages, thus making them 
components that can be used by others. For example, this was done for the Madingley (Harfoot, Newbold et al., 
2014; Hoeks et al., 2021) and RangeShifter models (Bocedi et al., 2021; Malchow et al., 2021) in order to make 
them interoperable with R. 

3.4  Ad-hoc model coupling 

Sometimes, developers want to link two or more full models together to explore inter-domain effects and 
feedbacks. This is known as model coupling, and can be achieved by multiple technical means (Robinson et al., 
2018; Belete et al., 2017). The simplest way is to adapt one or more of the models so that they can use each 
others’ output files as input, and then run them sequentially if no feedbacks exist, or update them step-by-step 
in turn if feedbacks do exist. Instead of using files (which is simple, but likely to be very slow), the data exchange 
can also be implemented using a network connection, or by loading the components as packages (see above). 
In any case, the result is an integrated model whose components are themselves stand-alone models, but that 
have been adapted to specifically interact with each other. As this adaptation must be done for each set of 
models on a case-by-case basis, we refer to this form of coupling as “ad-hoc model coupling”, to differentiate it 
from the more generic “framework model coupling” (see below). 
 
Ad-hoc model coupling is well-suited for collaborations among a small number of development teams. Because 
the undertaken adaptation is specific to the target models, a relatively high degree of integration can be 
achieved. It is also often possible to couple models written in different programming languages. However, having 
to adapt two or more existing models to each other is finicky work that becomes rapidly more complex the more 
models are involved. Therefore, although this technique can be useful for coupling two or three models, it is not 
feasible for building large collections of interoperable models. 
 
Ad-hoc model coupling was used, for example, by Synes et al. (2019) to combine the ecological movement model 
RangeShifter with the socio-economic land-use model CRAFTY. This allowed the authors to study the feedbacks 
between land use, crop yield, and pollinator abundance. Robinson et al. (2018) describe several other examples 
of ad-hoc model coupling, including a three-model coupling of the dynamic global vegetation model LPJ-GUESS 
with the climate model IMOGEN and the food system model PLUMv2. These were used to study interlinkages 
between agricultural intensification and expansion and climate change. 

3.5  Framework model coupling 

The climate and earth science modelling communities were the first to realise the need for easy interoperability 
of diverse models, and pioneered the technique of framework model coupling (Box 2). A coupling framework 
defines a standard interface that all compatible models have to conform to, thus removing the need for case-
by-case model adaptations. It also provides a central software to coordinate the execution of the coupled models 
(the controller), as well as utility functions to help with unit conversions, spatial and temporal scale alignment, 
and other practicalities of model coupling (Belete et al., 2017). This means that although model developers have 
to do some work to adapt their model to a given coupling framework, the model is then (at least in theory) 
compatible with any other model adapted to the same framework (Fig. 3). Achieving this kind of standardisation 
requires a very high level of coordination among researchers, but has proven highly valuable not just in climate 
and earth system modelling, but also in other modelling fields like agriculture (Box 2). 
 
Multiple coupling frameworks are available, often originating in different modelling disciplines and differing in 
their specificity and ease of use (Knapen et al., 2013). The most general framework at the moment is probably 
OpenMI (Gregersen et al., 2007; Harpham et al., 2019), which was first developed by hydrological modellers but 
is now also used to link models in other fields, such as agriculture (Janssen et al., 2011), economics (Bulatewicz 
et al., 2010), or pathogen ecology (Shrestha et al., 2013). So far, however, coupling models using frameworks is 
still very rare in ecology, despite the technique’s proven potential for achieving large-scale model integration as 
called for by Urban et al. (2022) and others. 
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Figure 3: Conceptual depiction of a model coupling framework. Individual models are available from an open-access 
repository, and declare their required input and output variables using the standardised interface defined by the coupling 
framework. Modellers select relevant models from the repository (or build their own), and link them using a controller 
software provided by the coupling framework, which manages scheduling and data exchange. 

 
 
 
Box 2: Case study I: integrated models in climate/earth-system models. 

Climate models have been pushing the boundaries of what is computationally and scientifically possible since the 1950s 
(Edwards, 2011). Initially, these models were restricted to atmospheric processes, but soon began to be linked to other 
earth-system models, such as for the oceans or the cryosphere. In 2003, the Earth System Modelling Framework (ESMF) 
was introduced in order to encourage and facilitate this growing cooperation between institutes and disciplines (Hill et al., 
2004). The ESMF consortium created a framework that could be used to integrate existing models into a single application. 
It worked by defining a “superstructure” (a basic software interface that component models could connect to) and 
providing an “infrastructure” (a collection of utility functions to help components communicate with each other). On the 
basis of this, the Earth System Prediction Suite (ESPS) was later set up to provide a curated collection of models that 
conform to the relevant standards and can therefore be expected to be readily interoperable (Theurich et al., 2016). 
 
Importantly, the parallel development of multiple, competing modelling approaches fostered positive competitiveness and 
robustness in climate science, by exploring the range of possible future climate scenarios according to different models 
(Lee et al., 2021). This community approach to modelling has been formalised in the Coupled Model Intercomparison 
Project (CMIP; (Eyring et al., 2016)). The consistency with which greenhouse gas emissions were shown to drive climate 
change has given these modelling results a very high level of confidence with respect to the anthropogenic contribution to 
climate change. Thus, as simple as the question may be (e.g. “What is the effect of anthropogenic greenhouse gases?”), 
delivering a robust reply was very much achieved by integrating models, including complex interactions, and testing 
multiple models (Manabe, 2019). Moreover, only through such integration could tipping points be studied and further 
explored (Armstrong McKay et al., 2022). 
 
This MIP approach (comparing the output of multiple models using standardised input data), pioneered by climate 
modelling, has since been extended to other modelling discipline. Examples include the Inter-Sectoral Impact Model 
Intercomparison Project (ISI-MIP; Rosenzweig et al., 2017), which also considers ecosystems, or the Biodiversity and 
Ecosystem Services Scenario-based Intercomparison of Models (BES-SIM; Kim et al., 2018). 
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Box 3: Case study II: integrated models in agricultural sciences. 

Agriculture is another research field that has a long history of modelling. Several traditions of agricultural modelling may 
be identified. First, crop-growth models are used to predict yields under varying management regimes and environmental 
conditions (Pan & Chen, 2021). Secondly, farm models are used to assess (primarily economic) policy impacts both on 
individual farms and on the regional agricultural sector (Reidsma et al., 2018). Agricultural processes or systems are also 
included in models from fields such as human geography, environmental sciences, and ecology (e.g. Le et al., 2008; Schmidt 
et al., 2017; Topping et al., 2003). 
 
Although coming from different disciplinary backgrounds, different model types are increasingly being combined in order 
to address questions that require multiple perspectives. For example, Piorr et al. (2009) coupled economic and 
environmental models to assess the likely effects of the European Common Agricultural Policy on production and 
ecosystem health, while Malawska and Topping (2018) did so to investigate the effects of market shifts on farmland species. 
More comprehensively, Schreinemachers and Berger (2011) created an integrated model with components for farm 
economics and technology, crop growth, water flow, and soil erosion and nutrients. 
 
The merging of modelling disciplines is being encouraged by large-scale projects such as the EU’s SEAMLESS, which aims 
to integrate socio-economic and environmental models across scales for policy assessments (Janssen et al., 2011; van 
Ittersum et al., 2008), or the Agricultural Model Intercomparison and Improvement Project (AgMIP), which seeks to bring 
together crop-growth, farm, and climate models (Rosenzweig et al., 2013). To help this exchange among modellers, the US 
Department of Agriculture pushed development of the Object Modelling System (OMS), a lightweight environmental 
modelling framework similar to the ESMF (David et al., 2013), while the Agricultural Model Exchange Initiative (AMEI) aims 
to establish a modelling community similar to the ESPS (Enders et al., 2018). Although the use of scientific models in 
agricultural policy-making is still limited, these efforts are establishing a base of knowledge that is increasingly being drawn 
on for policy impact assessments by governments and international organisations and agreements, for instance in the 
European Union (Reidsma et al., 2018). 
 

 

4.  Practical recommendations 

Moving on from the overview of techniques, in this section we offer recommendations on how to use these 
techniques in practice. We are guided by three questions: (1) Which technique is best suited for my purposes? 
(2) How can I build components that are readily interoperable with components and models developed by 
others? (3) How can I build models that integrate existing components? We summarise our recommendations 
in Table 2, and provide more details in the subsections below. 
 

Table 2: Practical recommendations for creating large, integrated models, or components for such models.  

Aim Recommendations 

Choosing a technique • identify how complex the model should be 

 • identify whether suitable components are already 
available 

 • examine what software expertise is / is not 
available in the team of collaborators 

 • envision how the model should or could be used in 
future 

Building interoperable components • follow good coding practice 

 • provide detailed documentation 

 • make source code public 

 • provide software as a package 

 • provide bindings to coupling frameworks 

Building integrated models • choose modular software architectures 

 • build on existing software where possible 

 • collaborate with other modellers 

 • learn from other modelling disciplines 

 • utilise coupling frameworks 
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4.1  Choosing a technique 

The first question to ask when selecting a technique at the beginning of a new modelling project is: How large 
and complex should the model become? The greater the desired complexity, the more important it is to use a 
more advanced technique (Fig. 1a; Johanson & Hasselbring, 2018). On the other hand, a more advanced 
technique may be unnecessarily complicated to use for a simple model. If a model is only intended to be used 
for a single, well-defined study, a monolithic model is likely to be the simplest and most efficient option (Section 
3.1). If it should be used for multiple studies, and potentially further extended in future, a modular architecture 
is highly advisable. If all parts of the model can or should be written by the team itself, this would mean using 
“components as modules” (Section 3.2); if existing libraries or packages can be used it becomes “components 
as packages” (Section 3.3). For larger models that integrate across domains, coupling with existing models can 
be helpful or even essential, either with ad-hoc coupling (Section 3.4) or with framework coupling (Section 3.5). 
 
For any medium- or larger-sized model, the second question is therefore to find out whether there are suitable 
components or models already available that can be utilised (either as packages, or for model coupling). These 
can be searched for using e.g. Google Scholar, Github, or CoMSES (Rollins et al., 2014). To assess whether a 
component or model is suitable, the following questions can help: Does it include the processes and state 
variables that are relevant to my research question? Do I have the required input data available? Is the software 
open source, and is it well-documented? Does it have an active user community, and/or are the developers easy 
to contact? When deciding whether or not to use externally developed software components, one must weigh 
the cost of working with software that may not be a perfect match for the project requirements against the cost 
of having to develop the desired functionality internally (“buy vs. build”; cf. Brooks, 1986). 
 
The third consideration is the available expertise and experience in software development among the team 
members. While monolithic models (Section 3.1) can be constructed by anyone who knows how to program, 
the other techniques require a little more knowledge of software engineering principles and tools. In particular 
framework model coupling (Section 3.5) has quite a steep learning curve. If the study question requires one of 
the more advanced techniques, researchers may decide to invest the time to learn the necessary skills 
themselves, collaborate with other researchers who have the expertise, or employ professional developers 
(Cohen et al., 2021). 
 
 

Box 4: Case study III: life history of a large ecological model. 

FORMIND (Köhler & Huth, 1998; Bohn et al., 2014; Fischer et al., 2016) is a process-based forest model incorporating 
regeneration, competition, growth, and mortality of trees. As individuals are modelled explicitly, the model allows a 
detailed analysis of forest structure and productivity under varying environmental conditions. FORMIND has a modular 
design, allowing the base model to be adjusted to a wide range of research questions, including the effects of forests 
fragmentation (Pütz et al., 2011), landslides (Dislich & Huth, 2012), water competition and droughts (Gutiérrez et al., 2014), 
and wild fires (Fischer, 2021). 
 
The components are coupled via the “components are modules” strategy. Nonetheless, model and components remain 
strongly linked, to facilitate the exchange of data and the integration of components into the model’s main routines. This 
architecture made it easy to add new components to the model without major changes to the historic core. However, with 
a growing number of modules, the code base became progressively more complex, making it increasingly difficult to update 
the model without breaking functionality. 
 
In recent years, FORMIND has been combined with external software via ad-hoc coupling methods, e.g. to fit the model to 
field data (Lehmann & Huth, 2015). Building on the model’s text file interface for data exchange reduced the need for code 
changes but also limited flexibility and created a significant computational overhead. Hence, a Python package wrapping 
the original C++ code is under development, allowing users to read and manipulate parameters and state variables at 
runtime (“components are packages”; first application in Fischer et al., 2024). 
 
Currently, FORMIND is also being coupled with an external soil moisture model (Samaniego et al., 2010) to study forest-
soil interactions. As the two models run at different temporal and spatial scales and efficient data exchange is required for 
the intended large-scale simulations, the Python-based framework FINAM (Lange et al., 2023) is used to couple the models 
(“framework model coupling”). Implementing the FINAM interface for FORMIND did not require changes to the existing 
model and only minimal additional code. As the FINAM interface is model-agnostic, the interface can also facilitate the 
integration of FORMIND into comprehensive landscape-scale models of the environment (cf. Cabral et al., 2023; Urban et 
al., 2022). 
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Finally, it is good to have at least a vague idea of how the model to be built could or should be used in future. 
The longer it is to be used and the more people are to use it, the more important it is to use one or several of 
the more advanced techniques for model construction and coupling (cf. the experiences with the FORMIND 
model, Box 4). Although these techniques come with a greater up-front cost in designing the software 
architecture and setting up the code base, they make it significantly easier to extend the model in future and to 
use it together with software written by other researchers (Fig. 2). 

4.2  Building interoperable components 

An important insight is that the road to large complex models starts with the development of small interoperable 
ones. Therefore, if as a modelling community we want to work towards developing larger models, individual 
modellers need to become better at building components and models that can easily be linked up with others 
(Bell et al., 2015; Berger et al., 2024). 
 
To build components that can be readily integrated into large models, the aim should be to create high-quality 
scientific software products that are as easy as possible for other researchers to (re-)use (Sanders & Kelly, 2008; 
McIntire et al., 2022). This requires rigorous application of the FAIR criteria: Findable, Accessible, Interoperable, 
and Reusable (Barton et al., 2022; Hasselbring et al., 2020). Essentially, this boils down to learning and following 
best practices for software development in computational science in general (Balaban et al., 2021; Wilson et al., 
2014) and ecological modelling in particular (Ropella et al., 2002; Scheller et al., 2010; Vedder, Ankenbrand et 
al., 2021). 
 
Important principles here are writing clean code (Filazzola & Lortie, 2022), using version control for open-source 
development (Perez-Riverol et al., 2016), using automated testing and code reviews for verification (Holzworth 
et al., 2011; Vable et al., 2021), and providing good technical and scientific documentation (Lee, 2018; Grimm et 
al., 2020). Communities such as rOpenSci can help modellers write better software by providing detailed 
technical reviews (Ram et al., 2019). Creating high-quality software is important to make the code accessible 
and usable by others. It also makes code easier to extend by avoiding “technical debt”, i.e. unnecessary technical 
complexity that slows down future development (see Glossary, Box 1). 
 
It is crucial that ecological modellers make all their source code openly available and document it sufficiently, 
not only for the sake of scientific reproducibility but also to enable others to build on the components they 
created (Janssen et al., 2020). This can be done on general-purpose platforms like Github (for collaborative 
development) or Zenodo (for code archiving). More narrowly modelling-oriented platforms can provide 
additional benefits, by acting as central repositories that make finding useful models and components quick and 
easy (Bell et al,. 2015). One such platform is CoMSES, a library of agent-based and individual-based models that 
is seeing widespread use in the social sciences but is still little known among ecologists (Janssen et al., 2008; 
Rollins et al., 2014). 
 
Modellers should also form the habit of making their software available as installable packages in their preferred 
programming language, ideally in a standard package repository (e.g. PyPI for Python or CRAN for R). This lowers 
the bar for installing components considerably, making it easier for other researchers to build on existing work. 
 
To improve dissemination of new research software, several journals now allow developers to publish 
descriptions of applications and packages as a separate article type (e.g. Methods in Ecology and Evolution, 
Journal of Open Source Software). This has the additional benefit of providing scientific incentive (i.e. 
publications) for releasing code, which is particularly valuable for early-career researchers. 
 
As ecological models become larger and more complex, the importance of coupling frameworks will increase. 
This is particularly true as ecologists seek to couple their models to models from fields that already use such 
frameworks, including the physical and social sciences. Therefore, ecologists should learn about existing 
frameworks and acquaint themselves with their use (Belete et al., 2017; Knapen et al., 2013). Seen from the 
perspective of a component developer, making a component compatible with an established coupling 
framework would be a major step toward interdisciplinary model interoperability. 
 
Finally, model interoperability would be greatly aided by the adoption of a unified set of Essential Biodiversity 
Variables as standardised input/output variables for models (Jetz et al., 2019). This would enable harmonisation 
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of model results and ease model coupling, as well as make it easier to interface models with empirical data 
sources (Fer et al., 2021; Urban et al., 2022). A coordinated move in this direction would be especially effective 
if accompanied by a standardisation of metadata, such as for the recently proposed Reusable Building Blocks 
(Berger et al., 2024). 

4.3  Building integrated models 

As ecologists think about creating large, complex models integrating many different entities, processes, and 
domains (e.g. Urban et al., 2016; Urban et al., 2022), they need to think very carefully about the technical 
challenges this entails. Building large software well is a significant undertaking, especially as software complexity 
does not scale linearly with software size (McConnell, 2004). Research teams need to consider the resources 
that are available for development, including time, money, manpower, and know-how. Based on this, they must 
decide what level of scientific complexity can be feasibly modelled, and which integration technique is most 
suitable to their purpose and context (Sections 3 and 4.1). 
 
When attempting to build large models, researchers must realise the importance of carefully planning the code’s 
design and architecture. For this, it is useful to have team members who have trained in software engineering 
(Cohen et al., 2021). Studying well-known open-source programs is also an excellent way to learn more about 
good software architecture and current practices in software development (e.g. Brown & Wilson, 2011). 
 
The experience of other modelling fields shows that eventually, model complexity grows to such a degree that 
coupling frameworks are often the most effective way to further growth (Box 2 and 3). Ecological modelling does 
not seem to have reached this point yet, but considering the increasing amount of integration of ecological 
models with climate, hydrological, economic, sociological and other models, it can be expected that the field will 
reach this stage soon. This is a promising development, but one that brings its own set of challenges. Model 
coupling not only involves adaptation of existing software, but also requires models to be made scientifically 
compatible with regards to spatial and temporal scales and input and output data (Brandmeyer & Karimi, 2000; 
Belete et al., 2017). Coupling frameworks can greatly help with this process, but add their own complexity 
overhead. Complicating matters is the range of available coupling frameworks, each established in different 
disciplines and available for different programming languages. 
 
It should be noted that it is not an aim that all ecological models should be large and integrated, or that all 
modellers need to work with framework model coupling. Smaller models have their place (Sun et al., 2016), and 
all techniques can be useful (Section 4.1). However, as argued above, in addition to the small and medium-sized 
models we already have, we will need larger and integrated models to study the interdisciplinary questions now 
facing science. 
 
In view of all this, it seems an important challenge for the next years of ecological modelling to become better 
at building these integrated models. This will include training modellers in software development, as well as 
establishing conventions and standards for model publication and coupling. While other fields have been 
successfully using coupled models for decades, such coupling is rarely done in ecological modelling. This is an 
area where the recently-formed Open Modelling Foundation could be a vital catalyst for future methodological 
developments (Barton et al., 2022). 
 

5.  Discussion 

5.1  The need for large integrated models 

Computational models have become essential instruments for scientific research and policy advice. They play a 
central role in the work of both the IPCC (e.g. Eyring et al., 2016) and IPBES (e.g. IPBES, 2016), helping us better 
understand the global crises of climate change and biodiversity loss, and the interlinkages between them 
(Pörtner et al., 2021). However, the use and acceptance of models is much better established in climate change 
policy than in biodiversity policy (Urban et al., 2022). This is partly due to insufficient and misaligned 
communication between modellers and decision-makers (IPBES, 2016; Will et al., 2021), but also because 
ecological and economic modelling fields are only slowly starting to  be combined (Vincenot, 2018). 
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In the face of an ongoing ecological crisis, ecologists seek not only to understand Global Change processes but 
also to provide relevant and timely advice to policy makers and stakeholders. To do so, we will need increasingly 
advanced models that can provide insight into the multi-scale, multi-domain systems that we study. This 
requires expanding our models beyond their current focus on a small number of ecological processes, and 
embrace the complexity of real-world systems with their multi-scale pressures (Topping et al., 2015; Urban et 
al., 2022). This can only be effectively done by developing a practice of interdisciplinary modelling. 
 
This is relevant in two directions. First, ecological modellers need to link their models to models of other physical 
systems. There is a strong tradition of mechanistic modelling in several disciplines in the environmental sciences, 
most notably in climate science, but also in areas like hydrology, ecotoxicology, and earth system science more 
generally. Ecologists can profit from and contribute to existing model coupling initiatives, such as OpenMI 
(Harpham et al., 2019), various Integrated Assessment Models (Harfoot, Tittensor, et al., 2014), or ISI-MIP 
(Rosenzweig et al., 2017). 
 
Secondly, ecological modellers should become more involved in the burgeoning field of socio-ecological systems 
research. There have been significant recent advances in coupling ecological and socio-economic models (e.g. 
Guillem et al., 2015; Synes et al., 2019). Still, there are many challenges in incorporating mutual feedbacks 
between human and natural systems (Farahbakhsh et al., 2022), and in representing the multiple scales relevant 
to many socio-ecological systems (Lippe et al., 2019). Altogether, scaling up our understanding of socio-
ecological systems, including telecoupled systems, cannot be achieved without much more complex models than 
currently exist. 
 
Ultimately, addressing sustainability challenges requires models that combine all three domains: the ecological, 
the physical, and the human. For instance, when studying land use change, it is desirable to combine models 
from multiple fields, including human geography, ecology, and climate science, in order to understand how 
processes in each of the three domains influence processes in the other two (Cabral et al., 2023). 

5.2  A way forward 

To meet the scientific and technical challenges of creating large integrated models, ecological modellers should 
invest into software engineering training, as well as into intra- and interdisciplinary standardisation processes. 
 
In this paper we have introduced a set of software engineering techniques for building models of different sizes 
and complexities. Which technique is best suited to a given research context depends on the aim of the model, 
the available development resources, and the likely future users of the model. The larger a model becomes, the 
more important it is to carefully plan its software architecture and to follow good software engineering practices 
(Johanson & Hasselbring, 2018). As a model grows over time, it is also likely that new techniques will become 
relevant, as exemplified by the forest model FORMIND (Box 4). 
 
Like many other computational scientists, ecological modellers face the problem that few have had good training 
in software engineering (Nowogrodzki, 2019). Although this is understandable given the contents of most 
ecology curricula in universities (Farrell & Carey, 2018), it frequently results in code that ignores the most basic 
principles of software quality and validation (Prabhu et al., 2011). This issue not only undermines the credibility 
of our scientific models, but also impedes researchers’ ability to utilize and expand upon existing software. 
(Sanders & Kelly, 2008). It is therefore imperative that we invest into better software training for modellers, and 
collaborate with professional software developers to produce reliable and usable model code (Cohen et al., 
2021). 
 
We recognise that this currently faces a number of institutional barriers. Some relate to finances: smaller 
research groups often lack the funds to hire professional developers, and getting funding to develop and 
maintain research software can be difficult (Nowogrodzki, 2019). Furthermore, research institutes often cannot 
offer the job security or salaries that are competitive with those of software developers in industry. Other 
barriers relate to culture: because research software is often not valued in itself, but only for the scientific output 
it produces, little importance is attached to tasks that make the software itself better, such as improving code 
quality and ensuring appropriate documentation (Johanson & Hasselbring, 2018). Especially early-career 
researchers in modelling may be pressured to “produce results” as fast as possible, leaving them little time to 
gain the technical skills needed to produce more complex software. This in turn contributes to the “yet another 
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model” syndrome, i.e. the observed profusion of simple models at the expense of more advanced ones 
(O’Sullivan et al., 2016). We therefore propose that to create more complex models, ecological modellers should 
invest in becoming better software developers. This will require a cultural shift to value code as a scientific 
output in its own right (Mislan et al., 2016). 
 
Beyond simply improving the quality of model software, ecological modellers also need to think more about 
standardisation of data and metadata, both within ecology and with other disciplines. Within ecology, increased 
use of online model repositories such as CoMSES would aid the discoverability of models and model components 
(Rollins et al., 2014; Bell et al., 2015). Further development and use of standardised Essential Biodiversity 
Variables could help to align the input and output variables of different models, and of models with empirical 
data sources, thus allowing easier coupling (Urban et al., 2022). Programs such as BES-SIM can help harmonise 
the results of ecological models, and contribute to a more unified and strategic development of the field (Kim 
et al., 2018). To collaborate with disciplines outside ecology, ecological modellers need to learn more about 
existing standards, frameworks, and collaboration networks. Here, the Open Modelling Foundation is a valuable 
initiative to bring together modellers from numerous domains to promote collaboration and standardisation 
(Barton et al., 2022). Not least, we can use such connections to learn about how other modelling disciplines have 
solved the challenges our field currently faces, as many of these disciplines are methodologically much further 
advanced than ecological modelling. 
 

6.  Conclusion 

To advance ecological modelling, we will need to create larger and more integrated mechanistic models. This is 
particularly urgent in light of the growing demand for interdisciplinary modelling to face the dual crises of climate 
change and biodiversity loss. We must learn not only to build comprehensive models of biodiversity and 
ecosystems, but also to couple these with climate, land use, economic, and other models. 
 
In this review, we highlight the inherent trade-off between integration and modularity, and explain the 
associated tension between scientific requirements and technical constraints. We showcase five different 
integration techniques and how they are currently being used, as well as discussing their relative strengths and 
weaknesses. As practical recommendations, we emphasise that ecological modellers need more training in 
software engineering, must adopt FAIR research practices, and should begin to think about how best to apply 
existing coupling techniques to ecological models. 
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