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Abstract 
This study addresses two critical challenges in urban air quality exposure simulation and offers solutions. The first 
challenge is to generate nitrogen dioxide (NO2) fields across the city of London from available stations that provide 
Spatially Poor but Rich In Time (SPRINT) data. We first used Inverse Distance Weighting (IDW) to spatially 
interpolate NO2 at each half-a-day step. Each station had a list of hourly NO2 values for each time step, from which 
one NO2 value was selected by a stochastic process to generate the field. We also added weightings of up to a 
factor of 3 to London's NOx emissions to account for emissions from sources other than vehicles. We cross-
validated the modelled data with the station data and found beta parameter of 1.5 to be the most appropriate 
'power' parameter. The second challenge investigated the use of a fractional origin-destination (OD) matrix to see 
how to overcome errors when assigning destinations to a small set of population. We tested that ‘the nested bin 
strategy’ worked well for our 6,078 London resident agents. To enrich the dynamics to represent people’s non-
work mobility patterns, we included visits to recreational areas during weekends and festive periods. This, in turn, 
provides a more comprehensive representation of urban mobility. Solutions to each challenge can provide more 
accurate assessments of pollution exposure, leading to better informed public health interventions.  
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Code & Data availability 
All data and codes are stored in our dedicated GitHub repository: https://github.com/dataandcrowd/ABM-for-
Data-Scarcity.  
 

 

1.  Motivation 

1.1 Challenges in generating air quality fields 

Urban air pollution has been directly linked to increased mortality and a wide range of serious health effects, 
ranging from minor eye irritation to serious conditions such as asthma, as well as pulmonary and cardiovascular 
disorders (Brook et al., 2004; L. Chen et al., 2007; IARC, 2013). An overview of pollution distribution reveals 
significant differences in both time and location, which are influenced by factors such as vehicular traffic, 
building density, and current meteorological conditions (Guarnieri & Balmes, 2014). 
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There are several established methods for measuring exposure to air pollution over time. One common 
approach is to use spatial interpolation to generate a pollution field using station data to provide an estimate of 
ground-level air pollution (Deligiorgi & Philippopoulos, 2011; Li et al., 2012; Naughton et al., 2018). While spatial 
interpolation brings the advantage of producing maps with a mathematically sound computation, it contains 
certain drawbacks. One notable drawback is its tendency to overlook small scale variation in air quality, which 
often results in overly smoothed outcomes. For instance, in London, each borough contains one or two 
background stations and a few roadside stations. Relying on such a limited number of monitoring sites to 
generate a pollution field can lead to large misestimation of exposure, both temporally and spatially (Dias & 
Tchepel, 2018; Hwang & Lee, 2018). 
 
Second, previous studies that used interpolated outcomes often provided a temporally aggregated measure 
(Min et al., 2020; Naughton et al., 2018). While such an aggregate measure provides an annual average and the 
likelihood of exposure and potential health risks, some studies have suggested that minority ethnic groups and 
low socioeconomic group are associated with high air quality (Hajat et al., 2015; Knobel et al., 2023; van den 
Brekel et al., 2024). At a daily scale, Nyhan et al. (2016) explored population exposure to PM2.5 in New York City 
by combining spatial interpolated PM2.5 with population movement using mobile phone data. Although this 
approach provided valuable insights, the temporal scale was restricted to only two weeks due to the constraints 
in the validation process. Finally, from a technical viewpoint, feeding in interpolated images at each time step in 
the simulation would substantially increase the model's memory usage, making it computationally inefficient 
(Shin, 2021). 
 
To overcome these shortcomings, recent studies using agent-based models (ABM) have attempted to measure 
exposure to spatial and temporal air pollution data combined with movements (Novak et al., 2023; Shin & 
Bithell, 2019, 2023). Nevertheless, despite their innovative approaches and findings, there is a lack of in-depth 
examination of the fundamental methodology used to generate the pollution field. 

1.2 Challenges when using OD matrices 

Studies combining ABM and activity models have increased significantly (Axhausen et al., 2016; Guarnieri & 
Balmes, 2014; Lu et al., 2022). One of the most effective methods for estimating population movement involves 
the use of Origin-Destination (OD) matrices (Maiorov & Saprykin, 2020; Saprykin et al., 2021). For example, in 
the UK, the 2021 Census has released the counts of individuals moving between origins and destinations, at a 
census block, sub-district, and regional levels (UK Census, 2023). Their previous census, collected in 2011, "Place 
of Residence by Place of Work, Local Authority" dataset that offers a comprehensive OD matrix detailing the 
movements of the employed population over 16 years old during the week preceding the census (Office for 
National Statistics, 2011). The South Korean Transportation database also provides OD matrices based on 
vehicles types (e.g., cars, trucks, buses) or purposes (e.g., school, work, leisure) (Korea Transport DB, 2020).  
 
With a simple matrix, an ABM can generate a synthetic population of agents and assign origins and destinations 
(Maiorov & Saprykin, 2020). To enhance the flexibility in population sampling for a lightweight meso-scale ABM, 
this matrix could be adjusted based on the fraction of the counts (Shin & Bithell, 2019). This way, the ABM can 
fine-tune the fraction of the population, applying a fractional OD matrix to guide individual agents to their 
destinations.  
 
However, challenges arise when assigning destinations of each individual while keeping the sample size small 
enough to run it on typical software such as NetLogo. In particular, issues arise when the sample size × 
percentage is smaller than 1, leading to some agents not being assigned a destination. For instance, in a city like 
London, with over 6 million residents between the age of 16 and 64, a 0.1% sample size would be some 6,000 
agents. Yet, if the sample size multiplied by the percentage results in a value less than one (e.g., 0.3), some 
agents might not be assigned destinations. Hence, finding an effective solution is crucial to ensure all agents are 
appropriately allocated. 
 
A follow-up challenge occurs due to the stark differences between people’s work routine and out-of-work 
patterns. Since OD matrices are designed to model work-related flows (Wheeler, 2005), they might not 
accurately represent movement during weekends or holiday periods. This discrepancy raises the need for an 
alternative approach that can better account for varying behavioural patterns during weekends and holidays. 
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1.3 Research questions 

Our primary objective of this project is to assess population exposure to nitrogen dioxide (NO2), taking into 
account the varying movements of individuals. However, in order to achieve this, this problem-solving paper 
addresses two key questions:  
 
1) How can we generate long-term NO2 on a city-wide scale based on daily measurements when existing datasets 
are Spatially Poor but Rich In Time (SPRINT)?  
 
2) With a sampled population, how do we assign agents' destinations when the total number of agents in some 
districts is too small? Additionally, what strategies can be employed to simulate population movements that 
correspond to weekdays, weekends and festive periods? 
 
The remainder of the paper is organised as follows: Section 2 describes the solution steps for generating NO2 
data across the city over time through statistical imputation and additional road weighting; Section 3 presents 
solutions for destination allocation for heterogeneous entities that can quantify exposure levels; Section 4 
discusses the impact of both solutions; and Section 5 summarises the findings and outlines future directions. 
 

2. Solution for generating an air pollution field with SPRINT data 

To develop an ABM to generate air pollution (here NO2) across the heterogeneous space, we must establish 
several assumptions (see Figure 1). First, ensuring the availability of data at each time step is crucial (represented 
as rows). Given that each grid selects one of the 11 work hours (07h-17h) and one of the 13 home hours (18h-
06h) throughout the period, stations have to contain data at each time step. However, there may be missing 
data on a specific day, and the simulation will fail unless we manually correct it. To go a step forward, we use 
statistical imputation to fill the gaps and to avoid manually tuning the dataset. This section details the steps to 
1) import NO2 and assess the missing data for each station, 2) impute the missing data for each station, 3) 
generate roadside NO2 using Inverse Distance Weighting (IDW), 4) add NOx weightings to add emission sources 
other than traffic, and 5) cross-validate the model with station-collected data. 
 
 

 

Figure 1: The procedure of generating SPRINT NO2 for the London ABM model. 

 

2.1  Step 1: Import NO2 and identify missing data 

The data are sourced from monitoring stations across the Greater London Area (GLA). In the R package openair, 
developers have integrated a socket connecting APIs for relevant areas. For instance, users can access data from 
the UK DEFRA’s Automatic Urban and Rural Network (AURN). For London-specific data, we utilised King’s College 
London’s recordings, covering the GLA. We collected NO2 data from four types of stations: Urban Background, 
Suburban, Roadside, and Kerbside.  
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2.2  Step 2: Impute missing NO2 data  

We recognise various approaches for managing missing data, such as data being Missing at Random (MAR), 
Missing Completely at Random (MCAR), and Missing Not at Random (MNAR) (Jakobsen et al., 2017). In our case, 
we determined that the data omission was due to technical, rather than intentional, reasons. Therefore, our 
situation fits into either a seasonal MAR or MCAR category. 
 
 

 
Figure 2: Illustration of the missing values throughout the study period across the stations in London. Among the stations 
analysed, Barking and Dagenham Station (B) reveals a significant lack of readings in the initial months, as well as sporadic 
gaps before the 20,000th and after the 30,000th time steps, when compared to Bexley Station that represents a case of 

good quality. 

 
 
Focusing on statistical imputation for time series, especially those exhibiting seasonal trends as illustrated in 
Figure 2B, we opted for a Seasonal Moving Average (SMA) approach. This method imputes NO2 levels, 
considering seasonal variations. Utilising the imputeTS package in R (Moritz & Bartz-Beielstein, 2017), we initially 
set four windows for imputation. However, if all data points within a current window were missing, we permitted 
an exponential extension of the window (see the commands in Figure 3). 
 
 

 
Figure 3: Statistical imputation using the moving average method in the “ImputeTS” R Package. 

 
 
After completing the data imputation process for all four station types, we used NO2 readings from roadside 
stations. This was because, firstly, we found that there were not enough background NO2 readings over London 
from 2019 to early 2020. This could lead to a large uncertainty in the predicted outcome. In addition, and more 
practically, NO2 concentrations generally decrease with distance from roads (Lee et al., 2014; Richmond-Bryant 
et al., 2017),  so the use of roadside NO2 therefore provides a better representation of both on-road and off-
road NO2 concentrations. 



Shin, H. and Silverman, E. (2024) Socio-Environmental Systems Modelling, 6, 18752, doi:10.18174/sesmo.18752 

 5 

2.3 Step 3: Aggregating NO2 by home and work hours 

After statistically imputing the NO2 values for each station, we proceeded to extract a representative value for 
each time step. To match the time step for the origin-destination movement of the agents, we categorised the 
NO2 readings into two periods: “home” and “work”. The “home” values were gathered between 18:00 and 06:59 
next day, assuming that most of the population is at home during those hours. Home hours account for 13 hours. 
The “work” values were collected from 07:00 to 17:59, a total of 11 hours. This approach is supported by the 
UK's Department for Transport (2024), which shows that the bus usage (by workers) peaks between 7am and 
10am, then falls and stabilises until 4pm, then peaks again until 6pm (see Figure 4). As NO2 is strongly related to 
traffic, we have aggregated the readings in this way to reflect typical population movement patterns. 
 

 

Figure 4: Illustration of the time taken to board buses in the UK (copied from Department for Transport (2024)). Morning 
peaks around 7-10am and afternoon peaks around 4-6pm. 

 

2.4 Step 4: Generating NO2 using Inverse Distance Weighting (IDW) 

To generate a half-day NO2 pollution field for GLA from the given roadside stations, we implemented a spatial 
interpolation technique called Inverse Distance Weighted (IDW). IDW estimates the value of a cell as a weighted 
average of nearby sample points (Lovelace et al., 2019; Moraga, 2023; Nyhan et al., 2016). A key aspect of IDW 
is the power parameter, which significantly influences the interpolation results. That is, a higher power gives 
more weight to nearby points, often resulting in a bullseye effect. In contrast, a lower power results in a 
smoother output but with less emphasis on proximity (Moraga, 2023; Tripp Corbin, 2015).  
 
The model assumes that agents located on a grid at any given time are directly affected by the air quality there, 
impacting their exposure. Instead of assigning a uniform pollution value to an entire area by averaging the values 
at each row, each grid randomly selects a value from the daily pollution field recorded at the nearest local 
background station (see Figure 5). For example, each grid would randomly choose one of the NO2 readings 
recorded at each row. We chose random selection because this approach adds an element of probabilistic 
exposure to better reflect the fluctuating and uneven distribution of pollutants in space that agents may 
encounter on any given day (see Figure 6). Furthermore, when comparing the Root Mean Squared Error (RMSE) 
of randomly selected NO2 values with the averaged NO2 per row, we found only a negligible difference (see more 
in Section 2.6 Cross Validation). 
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Given that we cover the entire city of London as our study area, we determined that a resolution of 200 metres 
by 200 metres would be appropriate for generating NO2 over the year 2019 on a half-day basis. 

2.5 Step 5:  Incorporating an emission weighting factor on top of the interpolated NO2 

Vehicles are responsible for over 65% of the NOx at UK roadside locations that leads to NO2 (DEFRA, 2024). 
However, it is important to note that the built environment also contributes a considerable amount of NOx 

emissions. Buildings emit NOx due to heating systems, while construction and demolition sites generate NOx 
through the operation of industrial trucks and bulldozers. Further, aircrafts are another source of NOx emissions. 
We applied a singular weighting factor to the interpolated NO2 levels based on the London Atmospheric 
Emissions Inventory (LAEI) 2019 dataset and classified the measures by quintiles (see Figure 7). By adjusting the 
interpolated NO2 levels with weightings, we aim to better represent NOx emissions from sources other than 
vehicles. In the simulation (also see Table 1), we used weightings of up to a factor of 3, considering emissions 
from sources other than vehicles. For example, the fourth quintile (weight 1.24) comes from the west of the city 
where London Heathrow Airport is located. We propose that this method provides a simplified, yet effective 
way of incorporating traffic-related effects into our NO2 pollution model. 
 
 

 
Figure 5: An illustration of NO2 measurements at various stations across different times of the day (Home hours in even-

numbered rows and Work hours in odd-numbered rows). For each time interval (row ID), a randomly selected value from 
the available measurements is highlighted, offering a simplified yet representative snapshot of the data. 

 
 

 
Figure 6: IDW output using a randomly picked value from a list of NO2. 
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Figure 7: NOx weightings by quintile classification. 

 
 

Table 1: Weighting factors according to NOx quintile provided by the LAEI 2019 measures. 

NOx quintile Weighting 

0 (background) 1.00 

1 1.05 

2 1.12 

3 1.17 

4 1.24 

5 1.30 

 

 
The caveat, indeed, is the coarse spatial resolution that may exaggerate possible emission sources. For example, 
the fifth quintile grids, which are distributed across the city, include junctions and commercial areas in the 
suburban boroughs, whereas the third quintile grids represent buildings in the city centre and areas near the 
airport. 

2.6 Step 6:  Cross-validation 

Once the model building was complete, we employed a leave-one-out cross-validation (LOOCV) method to 
estimate the performance of the interpolated outcome. To check the performance of our proposed IDW method 
that stochastically selects a random NO2 value per time step, we also ran averaged NO2 values per time step (i.e. 
a traditional approach) and compared the two. We also compared the beta parameter (i.e. power over distance) 
to identify the minimum and maximum errors. 
 
LOOCV was conducted for the year of 2019. We validated the modelled results against observed data from 17 
stations with minimal missing data. Each combination was evaluated using the root mean square error (RMSE). 
To account for the effects of stochastic variation, our study ran ten iterations for each beta parameter. 
 
The result showed that the mean RMSE was negligible across the beta parameters, but that the median RMSE 
values decreased as the beta parameter increased (see Table 2). We selected the beta parameter (ß) of 1.5 as it 
resulted in the smallest difference between the mean and median RMSE values. This choice was made because 
a smaller difference between the mean and the median indicates a more symmetric distribution of errors, 
thereby reducing the potential impact of extreme outliers. 
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Table 2: Comparison of RMSE across beta values for randomly chosen NO2 and averaged NO2 concentrations. 

ß Model Mean RMSE Median RMSE Absolute difference 

ß =1 Average 19.6 20.9 1.3 

Random 19.7 21.1 1.4 

ß = 1.5 Average 19.5 18.9 0.6 

Random 19.7 19.1 0.6 

ß = 2 Average 19.4 17.2 2.2 

Random 19.5 17.3 2.2 

ß = 2.5 Average 19.1 15.7 3.4 

Random 19.3 15.8 3.5 

 

3. Resolving the ‘missing destination’ issue in agents using existing origin-
destination matrices 

3.1 Step 1: Obtaining the Origin and Destination dataset 

In this paper, we used the 2011 "Place of Residence by Place of Work, Local Authority" dataset that offers a 
comprehensive OD matrix detailing the movements of the employed population over 16 years old during the 
week preceding the census (Office for National Statistics, 2011).  
 

While the UK’s census is updated every 10 years and the 2021 Census data, including the OD counts, have been 
published, we chose to use the 2011 OD matrix. This decision was made because, during the survey period for 
the 2021 Census, a substantial number of people were working remotely from home, often with their designated 
offices located in different cities or even countries. This abrupt shift in working patterns, looks very different to 
what it is in 2024, where countries and companies have adopted flexible or hybrid working arrangements, or 
have returned to more traditional, office-based work. However, for the purposes of this study, the 2011 data 
provide a more reliable baseline for analysing pre-pandemic commuting patterns and mobility flows. It also 
matches well with the period of the NO2 data we used in our analysis, ensuring consistency between datasets.  
 

The OD matrix shows that most people tend to travel within their own boroughs, with the next most common 
destinations being areas beyond the city boundary, followed by Westminster and Camden (see Figure 8). 

3.2 Step 2: Creating the OD matrix on pseudocode 

Next, we transformed the OD matrix from each of the 32 boroughs into a fractional table. Note this approach 
enables the allocation of origins and destinations for individuals in any population sample.  
 

In this study, we simulate population movement with 6,078 agents, which represents approximately a 0.1% 
sample of London’s population between the age of 16 and 64. Taking Greenwich as an example, 200 out of 6,078 
is from this borough (see the Supplementary Material for the full matrix). According to the OD matrix 22% of its 
residents stay within the borough, while only 0.2% travel to Ealing and Enfield. Given small percentages, no 
agents would be assigned to Ealing or Enfield. This would result in 36 agents being identified as residuals due to 
rounding errors, and therefore stuck in the model and unable to move. 

3.3 Step 3: Demonstrating “nested bin strategy” to overcome the missing agents 

To address this, we developed a solution that is straightforward in theory but requires more effort in coding. 
Our approach, detailed in Figure 9, involves creating a nested matrix. The outer matrix counts agents for each 
London Borough (denoted as Num) and creates corresponding bins (denoted as totalUsed). Each agent is 
assigned an origin name. Agents in a selected borough (Num) are then multiplied by the destination percentage 
in the matrix, and the totalUsed is summed up. The algorithm checks if all agents in the selected borough have 
been assigned to destinations (Lines 15-20). Despite its limitations, this technique reduces inaccuracies in the 
distribution of agents, a critical advantage when dealing with small populations. In the case of Greenwich, 
mentioned in the previous step, the 36 agents without specific destinations would be collectively assigned to an 
"Others" category. 
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Figure 8: A fractional origin-destination matrix converted amongst London boroughs and out of London areas (“others”). 

 
 

 
Figure 9: Algorithm of agents selecting destinations.  
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After assigning destinations to all agents during the setup phase, we were then able to execute the movement 
functions (see Figure 10). An example of the movement functions on a weekday are visualised in Figure 11. 
 
 

 
Figure 10: Pseudocode of agent movement 

 
 

 
Figure 11: Visual outcome of population mobility of London residents during daytime and nighttime.  

 

3.4 Step 4: Adding dynamic moves over weekends and festive periods 

While there is no certain rule way of moving the entities for non-work purposes, we added some dynamics to 
the behavioural patterns that may happen on weekends and festive periods. Here festive periods include Easter 
and Christmas. 
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 We used the following steps to implement these dynamic movements. 

• Agent classification: agents were classified into different groups based on their likelihood of 
moving during weekends and festive periods. These groups included 'weekend shoppers' 
who were more likely to visit the central activity zone and others who would visit 
recreational areas or stay home. 

• Movement Rules: rules were encoded using a probabilistic approach. For 'weekend 
shoppers,' a random selection algorithm determined 10% of the population residing outside 
central London would visit the central activity zone during the setup stage. For the remaining 
population, a stochastic model allocated 75% of agents to recreational areas and 25% to stay 
at home. 

• Spatial Data Integration: spatial data from the GiGL Open Space dataset 
(https://www.gigl.org.uk/open-spaces/) and the Central Activities Zone 
(https://data.london.gov.uk/dataset/central_activities_zone) were integrated into the agent-
based model to guide agent movements (see Figure 12). Recreational areas were randomly 
selected for each agent during each weekend or festive period, ensuring that agents did not 
visit the same place back-to-back. 

• Temporal Dynamics: we ask the agents to recognise weekends, Easter break (16-26th April), 
and Christmas break (22nd-31st December). During these times, the movement rules 
described above were activated. 

• Equal access: since we have assumed a two-point movement between origins and 
destinations, we also state that all agents have equal access to transport and that the 
probability of choosing a particular recreational area is the same for all agents. 

With these detailed instructions for each individual, we can then allocate the non-work movements in parallel 
with the existing OD matrix. 
 

 
Figure 12: Recreation places to visit during the non-working days. 
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4. Impact 

4.1 Spatially and temporally interpolating NO2 using SPRINT data 

This paper's initial section constructed an air pollution landscape using SPRINT (Spatially Poor but Rich In Time) 
data, derived from several monitoring locations within the Greater London Area. Through integrating statistical 
imputation to address gaps in NO2 measurements and employing cellular automata techniques for spatial value 
generation, our results suggest that considering roadside NO2 levels is a substantial advancement.  
 

Unlike the typical IDW interpolation, which is a process that aggregates data and creates a smooth outcome 
according to spatial autocorrelation (Chen & Lin, 2022; Nyhan et al., 2016), our approach introduces a more 
dynamic methodology. Instead of averaging, we randomly chose an NO2 value from the list at every time step. 
This way, it generates a more rigid outcome to reflect the variability of NO2 that can occur on a given day.  
 

As with other studies (Chen & Liu, 2012; Risk & James, 2022), IDW needs to go through a rigorous cross-validation 
to provide the predictions with the lowest error possible. We used a cross-validation and tuned the beta 
parameters to estimate NO2 concentrations at half-day intervals. We found that a beta value of 1.5 had the 
smallest difference between the mean and the median, indicating a well-distributed dataset. By integrating 
cross-validation with NOx emission factors, our method moves beyond the limitations of traditional IDW 
interpolation, which is often prone to local bullseye effects and over-smoothing. This advancement provides a 
more refined model by considering additional emission sources beyond traffic factors. However, the limited 
number of monitoring stations and the use of only one year’s worth of NO2 data may present challenges in 
reducing error margins. Furthermore, it is worth noting that access to NOx emission data was facilitated by the 
London-specific context, which might not be as readily available in other locations. 
 

Lastly, our methodology provides a comprehensive perspective on pollution trends and their impact on 
populations such as long-term population exposure to NO2 at a city scale. This can be positioned as a viable 
alternative to both spatial interpolation and personal sensors to some extent. Nonetheless, the use of a 
mesoscale model (approximately 200m by 200m resolution) with relatively straightforward entity mobility and 
exposure functions may limit the variability in outcomes concerning personal exposure and health implications.  

4.2  OD matrix solution 

In this paper, we explored whether an Origin-Destination (OD) matrix of London boroughs can dynamically 
simulate population movement during the daily commute using a mesoscale agent-based model. Our findings 
indicate that even with a fractional OD matrix, effective population movement simulation is achievable using a 
limited data set. In contrast to previous studies primarily focused on vehicular OD matrices (Baek et al., 2010; 
Schwinger et al., 2022), our approach incorporates population flow using reliable real-world census data. Given 
the increasing availability of mobile phone data and GPS tracking records, our methodology can serve as an 
effective proxy, facilitating the generation of population flow simulations that can be calibrated against 
contemporary datasets (Nyhan et al., 2016). 
 

A significant aspect of using a fractional OD matrix is its flexibility in applying various population samples, such 
as 1%, 3%, or 10%, depending on the study's requirements. In this study, we used the matrix to simulate city-
wide population movement, which required extensive alignment and fractionation tasks. The scalability of this 
methodology is evident when compared to smaller-scale studies, such as those conducted in a 16km2 area (Shin 
& Bithell, 2023), where traffic movement was based on the OD matrix. Furthermore, the ability to scale the 
sample size up or down improves computational efficiency (Shin, 2021). 
 

Importantly, employing the OD matrix for population movement assignment enhances reproducibility and 
consistency in agent-based modelling (ABM) studies (Shin, 2021). This standardised framework allows for the 
comparison and replication of findings across different scenarios and locations, thereby improving the 
replicability and generalisability of ABM research. Our approach has been successfully applied in studies 
involving direct movements between origin points and destination points (Shin & Bithell, 2019), as well as 
combining shortest-path algorithms (Shin & Bithell, 2023).  
 

Nevertheless, we must acknowledge the inherent uncertainties associated with smaller-scale simulations. While 
adding an extra bin for allocating left-over agents from rounding errors can mitigate some errors, challenges 
persist in accurately representing boroughs with minimal samples (i.e. sampling errors). For example, a borough 
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represented by 0.4 agents in a particular sample might not be represented in that sample but would be 
represented by 4 agents in a sample ten times larger. This issue of sampling error becomes particularly pertinent 
when the sample size results in statistically significant differences, or when the presence or absence of even a 
single agent in a specific area significantly impacts study outcomes (Faber & Fonseca, 2014). 
 

To enrich the OD matrix for work purposes that activate during weekdays, we included recreational activities on 
weekends and festive periods including Easter and Christmas. Many studies have employed geospatial tools to 
examine the relationship between the spatial distribution of recreational spaces and the accessibility to them 
(Both et al., 2022; Olsen et al., 2022; Price et al., 2023). In light of the growing popularity of the 15-minute city 
concept, these studies have increasingly focused on walkable distances. Additionally, the impact of COVID19 
lockdowns has allowed consideration of access to greenspaces (i.e. vegetated land such as parks and playing 
fields), as they offer engagement with nature that can benefit both physical and mental health (Bustamante et 
al., 2022; Ha et al., 2022).  
 

Given these factors, adding an intricate preference metric for each individual can be tempting. While adding a 
detailed model can be great to represent the preferred place at an individual level, it is also important to balance 
the focus of the study with maintaining the speed of the model (Badham et al., 2018). As a consequence, we 
made sure that at least three-fourths of the population, regardless of their physical status, visit their nearest 
recreation space to recover from their repetitive weekday activities. Moreover, we differentiated recreational 
venues by age groups. For example, individuals under the age of 30 are more likely to visit theme parks and 
youth places (e.g. basketball hoops), while city farms and community gardens are frequently visited by middle-
aged and elderly people. This addition offers a more comprehensive representation of population movement 
patterns in London, capturing both daily commutes and leisure activities.  
 

In practice, using OD matrices can be combined with a variety of topics, such as air quality and accessibility 
(Huang & Ma, 2022; Shin & Bithell, 2023; Sonnenschein et al., 2022). Traffic simulators such as SUMO and 
MATSim use matrices and routing algorithms to realistically model traffic flows and emission levels that requires 
activity chains and detailed scheduling (Axhausen et al., 2016; Gurram et al., 2019; Maiorov & Saprykin, 2020; 
Saprykin et al., 2021). However, traffic simulation, which might be for a full 24-hour period, is already 
computationally expensive. Therefore, it is crucial to carefully consider the size and scope of the model to 
balance computational efficiency with the desired accuracy. 
 

5. Conclusion 

In this study, we tackled two significant challenges. First, we implemented an Inverse Distance Weighting (IDW) 
interpolation method using the SPRINT (Spatially Poor but Rich In Time) data and successfully mapped the spatial 
distribution of NO2 in the Greater London Area. Second, we addressed the misalignment of agents caused by 
the inherent limitations of fractional Origin-Destination (OD) matrices. By adopting a nested bin strategy, we 
efficiently allocated destinations to all agents, which efficiently allocated destinations and reduced allocation 
errors. Building on the OD matrix, we incorporated visits to recreational areas during weekends and festive 
periods.  
 

As a next step, we will combine NO2 simulation with population movement to estimate the exposure levels of 
London’s population. The exposure measures will be estimated based on the exposure metrics tool (US EPA, 
2024). Once that is measured, we plan to conduct population exposure across four distinct air quality regulation 
periods: the introduction of the Congestion Charge Scheme (2008), the implementation of the Low Emission 
Zone (2015), and the expansion of the Ultra Low Emission Zone (2023). By exploring the distinct periods, ABMs 
can provide insights into how behaviour and air quality regulations can affect population exposure over time. 
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