

Correspondence:
Contact R. Argent at Robert.Argent@bom.gov.au

Cite this article as:
Schubert, A., & Argent, R.M.
Promoting scientific software quality through transition to continuous integration and continuous
delivery
Socio-Environmental Systems Modelling, vol. 6, 18779, 2024, doi:10.18174/sesmo.18779

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International
License.

Socio-Environmental Systems Modelling
An Open-Access Scholarly Journal
http://www.sesmo.org

Promoting scientific software quality through transition to
continuous integration and continuous delivery

Anja Schubert1 and Robert M. Argent1,
1 Bureau of Meteorology, Victoria, Australia

Abstract
Software quality has been an issue for decades in many areas of scientific modelling for environment applications.
Much of the software that has been developed is well-suited to supporting research investigation and application
in one-off curated application environments, such as delivering solutions through community-based participatory
approaches. However, when releasing the software into constrained production environments, with everyday
operational challenges such as missing data, unintended user inputs, variable data quality, and values outside the
bounds of those previously tested, lacks in software quality can become apparent. The lacks can result in lost time
and effort to get the model running again, loss of trust in the model by users and, potentially, cessation in model
use, and early and unexpected end-of-life. There have been many efforts through the years to encourage
improved software quality, through approaches such as test-driven development, paired programming, more
rigorous documentation, and better and broader user acceptance testing. The basis of many of these approaches
is the art and science of software testing, through the whole development chain from unit testing, regression
testing, integration testing, functional testing and to user testing. Continuous Integration/ Continuous
Development (CI/CD)/ Continuous Deployment uses an automated or semi-automated process pipeline that
promotes or progresses software through various stages of 'readiness' in different system realms, from
development to testing to production. Faithful application of CI/CD promotes good quality software by requiring
the software to pass a series of pre-determined tests before it is accepted into the next realm. Models must meet
quality levels and pass automated tests to be able to be promoted. Additionally, governance gateways are used
to check non-automated workflow components, such as manual testing. This paper explores the challenges and
lessons learned in adoption and application of secure CI/CD in an operational environmental modelling enterprise,
and suggests a minimum viable good practice approach for application to scientific environmental modelling.

Keywords
software quality; software testing; continuous integration; continuous development

1. Introduction and operational software context

The Australian Bureau of Meteorology (Bureau) is the operational agency delivering trusted, reliable and
responsive weather, water, climate, ocean and space weather services for Australia – all day, every day. The
Bureau also develops and supports scientific software for operational purposes, and is part of global
partnerships that share science knowledge and software code through formal and informal channels. The
combination of research and operational contexts, along with significant amounts of development via

mailto:Robert.Argent@bom.gov.au
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://www.sesmo.org/

 A. Schubert & R.M. Argent (2024) Socio-Environmental Systems Modelling, 6, 18779, doi:10.18174/sesmo.18779

2

internationally shared code repositories, creates a complicated situation when seeking assurance on software
quality.

The operational environment requires software code that is robust to the variations that occur in 24/7
operations, such as missing or incomplete input files, dynamic input boundary conditions from companion
models, variable timing of delivery of model output within chains of running models, and unplanned failures and
failovers of computational platforms. A typical daily cycle of model runs may involve:

• assimilation of many millions of observations from multiple sources, both within Australia and
overseas,

• computational running of a fleet of more than forty interdependent models representing high
level dynamics of physical atmospheric, terrestrial and oceanic domains;

• additional 'on demand' modelling for severe events, such as tropical cyclones, and
• a wide range of downstream user systems, both within and outside of the organisation.

Therefore, the requirement for models and data systems to be robust, resilient, efficient and of high quality is
essential, and the role of software testing in this is paramount.

The research reported here was undertaken in the context of an uplift of modelling code to operate on a new
supercomputer. It relates to the opportunities for checking and improving software quality through a formal
code 'test and build' framework when migrating from a secure manual code change system to a system built
around secure continuous integration, continuous delivery and continuous deployment technologies.

Many of the models developed and used in this operational environment have the features of scientific software
(Heaton & Carver, 2015; Kanewala & Bieman, 2014), which can include variable code construction and code
quality, different levels and systems of version control, inconsistent test coverage and test quality, different
amounts and standards of documentation of the software and its quality, and lack of robustness and portability
across different computing platforms and environments. These features are often mitigated in the global
operational environmental modelling community, where professional practices of shared repositories, code
review and approval, specified testing requirements and formal release and deployment mechanisms are in
place.

Moving from the research to the operational realm within a given organisation can involve changes in the
workplace setting. Generally, there is greater freedom to explore, investigate and share in the research
computing realms, and gradually less freedom and greater security controls as code passes from research to
development, to test and, finally, to production environments.

This paper explores the practicalities of testing and improving code quality in a research-to-operations
environment, in the context of uplift of an entire code ecosystem in migrating to a new computing platform and
technology stack. We explore our experiences through three case studies and describe the impacts of different
levels and natures of test coverage on the transition of models to production status in the new environment.
Reflecting on the problem situation, we suggest a minimum viable good practice approach for application to
scientific environmental modelling.

2. Literature review

The concepts and practices of formal code testing have been part of professional software engineering for
decades. Practices include model-based testing (e.g. Dalal et al., 1999), model-driven architecture based testing
(e.g. Uzun & Tekinerdogan, 2018), test-driven development (Beck, 2002), requirements engineering through
conceptual models (Gupta et al., 2022), metamorphic testing (Kanewala & Chen, 2019), and, at a meta-level
abstracted from the actual code, requirements testing (dos Santos et al., 2020). In recent times these practices
have become of more interest in the realms of research development of scientific software (e.g. Iwanaga et al.,
2018). The scientific and operational context of the Bureau of Meteorology sits across both these camps. Various
systematic literature reviews over the past decade provide good grounding for this work and Jakeman et al.
(2024) provide a broader context for the role of software quality in environmental modelling practice.

 A. Schubert & R.M. Argent (2024) Socio-Environmental Systems Modelling, 6, 18779, doi:10.18174/sesmo.18779

3

Kanewala & Bieman (2014) offer an early comprehensive survey of the state of testing of scientific software.
They identified two primary groups of challenges – cultural, due to the nature of scientists and scientific
endeavour, and technical, due to the nature of the software. One of the technical challenges that is a factor for
researchers is clear identification of an 'oracle' in testing – in complex environmental modelling there is often
not a single 'correct' answer, but rather a set of outputs over time that accurately represent the behaviour of
the system under consideration, within tolerances. Kanewala & Bieman (2014) offer approaches to overcoming
oracle problems, including reference data sets, professional judgement, simplified data sets and using
experimental or model outputs, rather than observations. One factor not mentioned is the cooperative use of
shared code repositories across multiple organisations, and modification that might therefore be required to
the nature of testing, to give assurance on software quality for all users.

A systematic literature review focused on good software practice used in science domains (Heaton & Carver,
2015) found that although considered important, testing, verification and validation were neither widely nor
consistently adopted. Primary drivers for this were considered to include the complexity of the applications and
the different range of approaches that might be required to be adopted to reach a significant level of coverage
and assurance.

The investigation of scientific software quality was carried further (Nanthaamornphong & Carver, 2017) with a
survey on the use of Test Driven Development (TDD). In TDD (Beck, 2002), developers focus first on specifying
and writing tests to ensure software meets the specific requirements of users, then write code to pass the tests.
TDD is probably easiest to implement when starting a new system, rather than being retrofitted to code that
has been modified and refactored many times by many different scientists over generations of versions. At a
high level, they found that good TDD, properly implemented, improved overall software quality with fewer
defects. However, the timing and nature of effort required was a possible challenge for some situations. This
survey provided good context for the problem situation represented here due to the different nature and
coverage of the tests used. Of interest in the context of shared code repositories is the role of refactoring
identified by Nanthaamornphong & Carver (2017) as critical to the TDD process. The scope for refactoring may
be considerably constrained for us due to the partnership approach to code and the need to possibly bring a
group of disparate developers together to understand and accept the refactoring. This may be particularly
challenging if developers have not worked on the code for a number of years and have forgotten the details,
although still hold a strong sense of ownership of the code and are sensitive to changes.

In parallel with the growth of interest in improving software quality by testing amongst developers of scientific
software systems has come development of tooling and practices for software management that assist or
require improved software quality and testing practice. An overall direction has been towards more automated
testing, to a level where even game developers are advancing automated playtesting (Pereira et al., 2022).
Automation comes to the fore with the use of the so-called continuous practices. Shahin et al. (2017) presented
a systematic review of the state of practice with these, covering Continuous Integration (CI), Continuous Delivery
(CD) and Continuous Deployment (CDo). The importance of these continuous practices was increasingly
recognised in commercial industry and they are core to the study presented in this paper. Although Shahin et
al. (2017) gave no apparent explicit consideration to development of scientific software and the challenges
therein, they did recognise that "adopting continuous practices is not a trivial task since organisational
processes, practices, and tool (sic) may not be ready to support the highly complex and challenging nature of
these practices". For our purposes we focus on CI/CD wherein code is integrated into the main trunk/repository
frequently, and tested and built and made ready for deployment, including passing pre-existing regression and
integration tests and quality checks. In scientific software and complex operational environments the next step,
being automated deployment, requires a level of automated testing, quality checking, release approval,
deployment approval and actual deployment that is beyond the scope of the work presented here. Overall,
Shahin et al. (2017) found that there were many approaches, practices and toolsets in play, and that a variety of
critical factors (whether in standard industry settings or research and scientific settings) determine success in
adoption of CI/CD, such as testing effort and testing time, team culture, good design principles, the application
domain, and infrastructure that is appropriate to the problem situation.

An approach with potential merit to tackle the challenges of effective and broad testing of scientific software is
the metamorphic testing approach (Kanewala & Chen, 2019). Although the examples presented were simplistic,
the basic testing approach, to use metamorphic or change relationships to express a test in the form of expected
changes to outputs arising from known changes to input (within defined tolerances) has promise. This approach

 A. Schubert & R.M. Argent (2024) Socio-Environmental Systems Modelling, 6, 18779, doi:10.18174/sesmo.18779

4

can lend itself moderately well to unit testing, to give an approach that is somewhat flexible, but still
quantitative, to the nature of the unit and the inputs. In this way, metamorphic testing was suggested by
Kanewala & Chen (2019) as a way to identify a broader range of known good outputs (KGOs) that would deliver
a pass for a test than may have otherwise been the case.

Increased adoption and broader use of formalised testing was found (Arvanitou et al., 2021) to have occurred
in the scientific software arena, albeit with only limited focus on the need for models to run operationally. Some
of the practices identified as contributing to overall increases in software quality included code reuse, use of
third-party libraries, and the application of ‘‘good’’ programming techniques. For testing, Arvanitou et al. 2021
found that the practices mentioned previously, such as test-driven development and use of regression testing,
had increased in importance in the practices of developers.

A logical expectation of the increasing rigour around testing and software quality for scientific software would
be to start to see individual case studies, particularly of models that were well-known in specific domains. One
recent example of this (Peng et al., 2021) explores the testing environment for the widely used Storm Water
Management Model (SWMM). The authors explored many of the considerations that occurred in our research,
especially the challenge of identifying an oracle or 'true and correct' model output, against which model results
arising from changes could be compared. They also emphasised the importance of having sufficient test
coverage and distinguishing the purposes and meaning of the results of both unit and regression tests.

A systematic review of literature on TDD (Staegemann et al., 2023) produced a relevant and timely set of
guidelines for applying TDD. In the context of our problem situation, four of these were identified as being of
high relevance, particularly in a problem situation where testing is increased after initial code development, or
during code uplift:

• #4. The process of creating the tests also helps in accurately determining the application’s
requirements. Consequently, tests are not just tests but also become part of the system’s
specification.

• #11: The development of tests should be directed at parts that might actually break.
• #12: Test automation allows for frequent regression testing with limited effort and should

therefore be used a lot. However, manual testing still remains an important complement.
• #14: Issues identified during regression testing have to be fixed immediately.

The literature shows that there are many challenges to effective and robust testing in scientific software
engineering, and that these challenges can be addressed in full or in part by combinations of cultural and
technical practices. The following sections present our experience of these in moving software from a less
constrained to a more constrained quality environment, where the nature of the infrastructure demanded high
levels of effective testing to meet the everyday requirements of running software within an operational
environment.

3. The operating environment

The operating environment within which our code is passed from development (DEV) to production (PROD)
status is not overly complex. It is more formal and controlled than in many research environments, where, for
example all development can be done in one environment before the code is packaged and deployed to a user.
Coding entering the environment at the 'Development' end of the chain can generally come from one of three
sources:

• External sources of standard tools and libraries, such as those used to perform a wide variety of
standardised procedures, including time zone and time difference management, spatial data
standardisation and grid manipulation, and extract-transform-load actions.

• Science code repositories, including those of formal research partners, with controlled code
sources and defined and managed practices for extracting code from defined branches or the
main code trunk, and also for submitting new science and adding bug fixes.

• Our own research environments, through code sources within the research realm, including both
high performance computing such as Australia's National Computational Infrastructure (NCI) and
local individual code bases.

 A. Schubert & R.M. Argent (2024) Socio-Environmental Systems Modelling, 6, 18779, doi:10.18174/sesmo.18779

5

All code is version controlled by a singular gitlab instance, with code packaged via a centralised package manager
regardless of the original source. Internal and external packages are available via the same mechanism.

Figure 1 shows our research to operations environment consisting of four realms:

• Development (DEV), where the research-level code is transitioned into the start of the formal
pipeline. Activities in this realm include unit and regression test development, expansion or
confirmation (depending on the test coverage prior to entry to the realm), feature or
enhancement development, some level of refactoring (depending on source and code quality),
any optimisations and adjustments to get the code to run under control of the scheduler in the
high performance computing (HPC) environment, and any hindcasts or case studies needed to
assure that the model is producing the expected results. To exit the DEV realm, documentary
evidence is required of test coverage and software quality assurance as well as configuration in
the CI/CD pipeline.

• Service (SERVICE), the first realm accessed exclusively via the CI/CD pipeline. This exists to test
the deployment of the software. The exit requirement for this realm is deployment without error
and at least one successful cycle of the application.

• Test (TEST) where the majority of testing is done, particularly with downstream systems and
users. This includes User Acceptance Testing (UAT) and extended system trials, to provide
assurance that code runs stably, operates appropriately within the environment, such as with
CPU usage, cleanup and memory use and management, and delivers the expected output to the
expected location within the prescribed timeframe. The exit requirements for models to leave
the TEST realm include documented evidence of completed testing, including UAT, with an
acceptable backlog of defects or, at best, no defects, as well as complete 'Go Live
Documentation' (GoLD) covering approvals, service levels, and support and response actions.

• Production (PROD), where the models run on a defined schedule and deliver quality assured
output to users as an input to decision making. PROD systems have significant monitoring to
ensure operations are performing to defined service levels, as well as to identify and resolve or
escalate issues.

Note that, in line with good practice, code only passes one way through the system, with any code changes
arising from issues, incidents or bugs, being tested and fixed in the DEV realm, before progressing back to PROD
through SERVICE and TEST.

Figure 1: Realms of the Operating Environment

3.1 Testing definitions

Secure and architecturally approved design is used at the highest level to assure the quality of the software,
while UAT is used to validate that the model outputs meet requirements and are fit for the needs of users. In
addition to these overarching controls, four types of scientific testing are used in the DEV and TEST realms –

 A. Schubert & R.M. Argent (2024) Socio-Environmental Systems Modelling, 6, 18779, doi:10.18174/sesmo.18779

6

noting that unit testing and other basic software engineering quality functions are generally performed during
initial code development, so largely occur upstream of the DEV realm.

Aligning with many features of standard software quality practices (Dubois, 2012; Kanewala & Bieman, 2014;
Staegemann et al., 2023) we have four specific testing foci. These are regression, hindcast, integration, and
ecosystem tests.

• Regression testing assures that non-scientific code changes do not affect function. These are
generally performed by checking that code outputs match (within defined tolerances) exemplars
or oracles (such as Known Good Outputs, KGOs) when the model is loaded with known good
inputs (KGIs). When migrating code to a new supercomputer the output of the current
operational system is considered the best KGO.

• Hindcast and case study testing extends regression tests for models with higher complexity
cycling through multiple time-series input periods. These can include situations when model
cycling (say, tens to hundreds of cycles) can introduce instabilities or cascading errors that only
become apparent after sufficient cycles. Extended cycling is also used where the KGOs are
verified statistically over hundreds to hundreds of thousands, or millions, of output data points.

• Integrated testing runs in real time, where the model is moved from pre-canned KGIs to real-
time inputs for operational systems. In environmental applications this can include assimilation of
millions of environmental observations for each run. This situational change introduces
performance dependencies for reading and writing data and includes tests for performance
issues such as with compute load and memory management.

• Ecosystem testing covers the full set of models and data management systems that need to work
together. One of the challenges of complicated operational environments where there are
multiple interacting dependencies between models and external data sources, such as satellite
feeds and external models, is to ensure that not only do single models perform as required, but
that the whole model ecosystem delivers outputs to users and downstream systems in timely and
correct ways.

3.2 Continuous practices

Standard software engineering approaches, including continuous practices, are used through the above
environments, and include code version control, repository management, CI/CD and code delivery.

• Code version control is used as standard practice – all code on the HPC system described above is
under version control. This also includes code for any common libraries or tooling that is
developed, managed and maintained within the environment.

• All binary resources that are generated within the environment are centrally managed by a
formal repository manager system for both development and production uses.

• CI/CD tooling supports continuous development and continuous delivery of code. This occurs
through sequences of tasks (a 'job' that is, generally, run in a container) that are packaged to
form a pipeline for execution.

• Finally, a delivery service runs as part of the continuous delivery. This service delivers code as it is
automatically built, and can continuously scan, test, package and deploy the code to the target
realm. This capability assists developers to regularly assess the quality and stability of a code
repository under change, and contributes to code quality through a repeatable, auditable and,
especially, non-manual process.

The combination of automation, technologies and testing requirements provides an environment that requires
good code quality and contributes to an overall working approach that values testing and supports good
practice.

4. Investigation

Three case studies of model migration to the new computing environment are provided, each representing a
different level of software complexity and partnership development and each of which, therefore, represents a
different problem situation for code migration. Each case will describe the functions and native test coverage of
the model or model suite as it enters the DEV environment, as well as the testing undertaken to assure a level
of software quality that allowed the model suite to progress through the realms from DEV to PROD.

 A. Schubert & R.M. Argent (2024) Socio-Environmental Systems Modelling, 6, 18779, doi:10.18174/sesmo.18779

7

To benchmark the code pre-, and post-migration, a software maturity assessment was performed at the
beginning and end of the uplift. The maturity assessment calculates a Software Maturity Index (SMI) based on
six aspects:

1. Robust for operations.
2. Easy to validate.
3. Performance expectations met.
4. Easy to understand.
5. Easy to maintain and extend.
6. Has scientific integrity.

These aspects represent the fundamentals for good operational code that can be readily supported by different
people through the life cycle of the model. They represent a balance between the quality and performance of
the code and the needs for ongoing or occasional maintenance and enhancement. The aspects are weighted
equally for simplicity.

Each aspect (1-6) is assessed against a list of expectations (Table 1). Assessment of software quality is not
objective, although the assessment for levels 2, 3 and 4 is based upon a list of requirements for each level, for
each model.

Table 1: Software maturity levels and expectations.

Rating level Expectation

-1 No expectations are met. Software does not meet the basic standards of the organisation for an
operational system.

 1 System must meet the basic standards of the organisation for an operational system. Examples include:

• Code under version control in an enterprise system;

• Code is compiled and built automatically, to an extent that is repeatable;

• A user guide or similar documentation is available;

• Verification results are documented and are reproducible; and

• A business owner, subject-matter expert and maintenance owner are identified, by name or
role.

 2 System should meet the requirements of Rating 1 and the model-specific criteria for a rating of 2.
Examples include:

• Performance standards are clearly documented;

• Verification procedures are clearly documented;

• Verification data are available for at least one case;

• Developer documentation is available; and

• Software maturity plan is complete.

 3 System should meet the requirements of Rating 2 and the model-specific criteria for a rating of 3.
Examples include:

• Business logic is clearly separated from procedural code;

• Issues can be diagnosed quickly and easily, with metadata available for each model task;

• Code is modular; and

• As much code as practicable is in a higher-level language (Python by default).

 4 The system should not need further improvements to its software quality. There may be some beneficial
work to be done, but those benefits represent 'nice to have' aspects of the system which will not
substantially change the current or future costs of running, maintaining or developing the system.

The SMI is calculated as the average rating across all aspects. The highest score for the software maturity index
is 4, and the lowest is -1. If a system scores less than 1 it is deemed not suitable for a production environment.
It is possible for a system to have a score greater than 1, and still be assessed as not suitable for production,
such as if it scored -1 on the scientific integrity aspect. For us, the SMI is primarily used as a tool to identify
applications that need replacement or uplift, with the individual aspects demonstrating where work is needed

 A. Schubert & R.M. Argent (2024) Socio-Environmental Systems Modelling, 6, 18779, doi:10.18174/sesmo.18779

8

the most. We have additional requirements beyond the SMI for areas such as scientific quality, operational
robustness and performance. These are governed by peer reviews and "Gateway" considerations, mentioned in
Section 5.

In addition to assessing SMI, key developers involved in the migration of the three test cases were interviewed
on the following:

• The impact that any existing tests had on the migration activity;
• Level of alignment of existing tests with the CI/CD pipeline in the new production environment;
• The effect that increased test coverage, or lack thereof, had on developer wellbeing;
• Any changes the developer would have made in the migration activities or the software

application with regards to testing; and
• Any other general insights the developer had on migration.

4.1 Aggregate Sea Level Model

The Aggregate Sea Level model is a data aggregator that brings together data from a range of sources to produce
estimates of tide levels at over 100 locations around Australia (Taylor & Brassington, 2017). These levels are
more accurate than astronomical tide levels as they account for observed sea levels, forecast atmospheric
pressure and other dynamics. Aggregate Sea Level, first delivered to operations in 2016, is amongst the lesser
complicated modelling suites used in our forecast value chain. Output quality of the operational model is assured
by statistical comparison of model output against observations.

In simplified form, the workflow to aggregate various data to produce the sea level forecasts (Figure 2) consists
of:

• Data ingest and standardisation/regridding;
• Simple data transformations;
• Bias correction; and
• Linear superposition.

Figure 2: Aggregate Sea Level simplified process flow. White boxes represent data, black represent processes, and grey are
ancillary or intermediate datasets. SYNTH indicates tidal synthesis, SLA is sea level anomaly adjustment, LIB is a local inverse
barometer approximation, and BIAS is a non-causal filter bias correction scheme.

The suite has approximately 10,000 lines of code, with 132 repository files, around 300 code commits, and with
five contributing authors. The codebase is approximately 92% python. Despite its simplicity, the modelling suite
ranked a very low SMI of 0.7 in the initial assessment on entering the development environment. Lack of any
automated test coverage, outdated scripting languages and unsupported tooling were the main contributors.

 A. Schubert & R.M. Argent (2024) Socio-Environmental Systems Modelling, 6, 18779, doi:10.18174/sesmo.18779

9

Aggregate Sea Level required significant uplift to be able to be accepted for running on the new computing
system. In addition to increased documentation, uplift included:

• Increased test coverage, with automated testing in place for many use cases, along with test
summary generation;

• A new workflow scheduler, being Cylc 8, with all functionality transferred from the legacy
scheduler;

• A major upgrade of the Python version, from Python 2 to Python 3, including code refactoring;
• Uplift to utilising the new package manager;
• A new mechanism for data access, including increased standardisation of data interfaces and de-

coupling of some common data handling tasks from the model;
• Adjustment for major differences in the computing environment (such as compilers); and
• A complete tooling overhaul, enabling the model to work within a CI/CD environment.

These changes improved four of the six areas of the SMI: easier to validate, easier to understand, easier to
maintain and extend, and improved scientific integrity, and lifted the SMI well above the minimum acceptable
value of 1.

The developer migrating the application had no prior knowledge of the current application. In interview they
commented on the concerns they felt over where to start with improving test coverage and uplifting code, the
difficulties caused by lacks in documentation, the time taken to achieve an acceptable level of testing, and the
overall challenges of uplifting code from a low base of test coverage.

4.2 The Dispersion Ensemble Prediction System

The Dispersion Ensemble Prediction System (DEPS) provides 'on-demand' probabilistic model guidance for
dispersion of volcanic ash, used for warnings and other products delivered by the Australia-based Volcanic Ash
Advisory Centre (Lucas et al., 2018).

The DEPS enables running of the HYSPLIT dispersion model (Stein et al., 2015) coupled to the Bureau’s global
ensemble numerical weather prediction (NWP) model (named ACCESS-GE) and other internationally-sourced
deterministic NWP models. The initial development of the software system was done between mid-2015 and
mid-2017.

Since 2019 DEPS has undergone a range of scientific and technological uplifts, to align with better software
practices and new computing environments. The suite has approximately 9,000 lines of code, with 717
repository files, over 2000 code commits, and with twenty-six contributing authors. The codebase is 78% python.

Improvements that were in place in a 'version 2' (DEPS2) release prior to this migration include:

• Uplift in testing, including automation;
• Refactoring to improve code quality, including some linting and security features;
• Enhanced features to implement best practice volcanic ash forecast methodologies; and
• Improved use of satellite data for detection and tracking of volcanic ash.

The on-demand workflow (Figure 3) is summarised as:

1. A user inputs model run parameters into a web interface, which prepares a control input file.
(Step: Ingest input file);

2. The control input file is delivered to the modelling environment to kick-off the model;
3. The DEPS is executed, with the following steps:

a. Input data is standardised and ingested (Step: Get observations);
b. A large number of HYSPLIT models are configured and run (Steps from Analysis setup);

c. Output skill is analysed and assessed using a Brier score (Brier, 1950) (Step: Calculate

skill score 1..N);
d. Model results are converted to probabilities. (Steps from Filter);
e. Outputs images and data are produced (Step: Plot).

4. Data is delivered to a user interface and downstream systems.

 A. Schubert & R.M. Argent (2024) Socio-Environmental Systems Modelling, 6, 18779, doi:10.18174/sesmo.18779

10

Figure 3: DEPS2 simplified process flow. White boxes represent data and black represent processes

DEPS2 combines external packages, such as HYSPLIT, as well as internally produced code. In addition to
automated tests, DEPS2 includes mechanisms for manual inspection of data. The DEPS Output Viewer user
interface provides a 'quick look' at the results, to ascertain whether the run has been successful or if further
refinement of input parameters is required.

The DEPS2 SMI prior to migration was 2.8, with good testing and good structure, although minor improvements
had been flagged for future development. To migrate to the new computing environment the system required
a major version update of the Cylc workflow scheduler (to Cylc 8), updates to adopt the new package manager
and new data retrieval system, and integration with new CI/CD pipeline. This work was completed in less than
four months.

Developers involved with the migration reported that the extensive test coverage on entering the development
realm gave them confidence in proper functioning of DEPS2 throughout the migration activity. Errors in
configuration, or bugs introduced as part of the rework for the migration, were quickly highlighted by running
the unit test suite, and canned data for regression tests gave early confidence of scientific validity of the outputs
after upgrading the tooling for the scheduler. Some regression tests failed, due to a slight difference in outputs,
and the comparisons had to pass back to scientific experts for evaluation. The outputs were found to be within
an acceptable tolerance of the KGOs.

Future work would build this tolerance into the regression tests to improve software quality and remove the
requirement for expert re-evaluation of the tests.

In contrast to other software ported by the same developers which had no or limited tests, the porting of this
software was deemed straight forward.

On reflection, developers suggested future migration would benefit by adopting the following:

• Uplift to any new CI/CD or other tooling in the current environment and platform;
• Separate science development from technology development;

 A. Schubert & R.M. Argent (2024) Socio-Environmental Systems Modelling, 6, 18779, doi:10.18174/sesmo.18779

11

• Ensure tests implemented are appropriate, and remove any tests not deemed useful for
validation purposes;

• Clearly lay out any required remediation work with priorities and deadlines;
• Ensure end-to-end testing of appropriate detail is in place before migration.

4.3 Integrated Model Post-Processing and Verification (IMPROVER)

Statistical post-processing (a form of Machine Learning) increases the accuracy of forecasts of meteorological
variables output by multiple models by, for example, accounting for biases, spatial and temporal neighbourhood
processing, and automatically adjusting the weighting of inputs from different models. The Integrated Model
post-Processing and Verification system (IMPROVER) (Roberts et al., 2023) takes ensemble and deterministic
gridded NWP models outputs and produces blended probabilistic fields for use in the forecast delivery pipeline.
IMPROVER also provides an extensible framework for future post-processing needs. IMPROVER has over
140,000 lines of code, with just under 1000 repository files, just over 2600 code commits, and with forty-six
contributing authors. The codebase is 100% python.

IMPROVER processing steps include:

• Variable adjustments, such as bias correction using analyses and observations
• Conversion of fields to probabilities or percentiles using thresholding
• Neighbourhood processing
• Temporal interpolation
• Reliability calibration
• Combining outputs from individual models to produce blended fields.

A simplified flow-diagram of the IMPROVER internal tasks is shown in Figure 4, including inputs from the
Mesoscale Surface Analysis System (MSAS) (Glowacki et al., 2012), which performs the spatial analysis used for
calibration of non-rainfall fields.

Figure 4: Simplified IMPROVER workflow. White rectangles represent data, black are processes applied to individual models
and grey are intermediate datasets. Rounded rectangles are global ancillary data and the white oval represents the final model
blending step which combines all individual model outputs

The United Kingdom Meteorological Office (UKMO) started development of IMPROVER in mid-2016, and the
Bureau joined the collaboration in late 2019. A strong framework of software quality, rigour and process existed
from the inception of the work particularly for code-quality, with Bureau staff contributing notably to an uplift
of test quality early on. The system was released internally in the current supercomputing environment in 2022.
The initial production release had an SMI of 3.5, meaning that there was nothing needed to improve software

 A. Schubert & R.M. Argent (2024) Socio-Environmental Systems Modelling, 6, 18779, doi:10.18174/sesmo.18779

12

quality, although, as ever, some extra features were identified as 'nice to have'. The most recent release, in late
2023, had an SMI of 3.8, due to an increase in scientific quality.

The high software maturity arose from both technical and process aspects, within an overall test-driven
development approach and with a strict peer review format and clear expectations agreed and understood by
developers. The software, written in a modern high-level language, has extensive automated tests, with 100 %
regression test coverage and 98% unit test coverage, as well as security scanning and linting. A mature Software
Quality Assurance Plan outlines manual tests, and system failures are used to inform updates or additions of
automated tests. There is a clear separation of concerns within the software, where a decoupler standardises
inputs and process-specific code is separate from the main python library. The software maintains compliance
with the current target technology stack, and workflow scheduler configurations are built with possible future
state productions approaches in mind.

The software was designed to be highly portable and has been successfully deployed to vastly different
environments, including HPC mid-range systems and supercomputers, Linux desktops and MacBook. Changes
for deployment to our new supercomputing environment are confined to configuration changes to reflect the
structure of storage and scaling of data to the platform's processing capability, along with minor scheduler task
updates, alignment to a new data retrieval mechanism, and integration with the new CI/CD pipeline.

Developers report that on deployment the install could be readily tested via the various levels of tests.
Regression tests use a scientifically verified tolerance on outputs, so do not need modification for new platforms.

Despite the high maturity of the IMPROVER software, the testing of notable science changes cannot be
automated. The nature of the product demands months of hindcasts, extensive verification of mass statistics
(over spatial and temporal scales) and specific weather event case studies, and manual inspection by forecasters
as part of their forecasting process.

Migration of this application is underway and, despite its complexity, the total migration time is estimated to be
on the order of one to two months, with effort mostly focussed on optimising performance on the new
hardware.

5. A minimum viable good practice approach

The case studies discussed above give an indication of the range of software maturity of applications migrated.
A significant proportion of these, particularly older models, had little or no automated testing pre-migration and
were running on an old technology stack that was significantly different from the ideal or preferred state.
Feedback from developers contained common themes:

1. Software with extensive automated tests, in particular unit and regression tests, reduces
unknowns during migration.

2. Mature software with good test coverage and/or aligned with target state tooling was easier
and faster to migrate.

3. Existing test quality was highly variable, including tests for specific environments or that did
not cover core functions, thus not providing useful tests of the software. Effort required to
maintain or transfer these low-quality tests to a new environment likely outweigh any
benefit from the testing.

4. Where testing was lacking, regression tests developed in the current operating environment
were the most time effective to develop and provided sufficient assurance that scientific
validity was maintained.

5. Very good value was gained by developers placing unit tests around complex algorithms or
modules known to fail before migration work began.

6. In the absence of adequate existing test coverage developers felt concerned about
introducing code changes and were cautious or hesitant in refactoring code due to risks of
creating bugs. When a necessary change caused a regression test failure, considerable
manual testing and debugging was required, and the complete set of migration tasks took
longer than expected.

 A. Schubert & R.M. Argent (2024) Socio-Environmental Systems Modelling, 6, 18779, doi:10.18174/sesmo.18779

13

Generally, the following were identified as highly desirable for future code development:

1. Where possible (i.e. for code within developer control), add unit tests early in development
and focus on tests that validate expected scientific results.

2. Where these don't already exist, regression or module level tests for external code (i.e.
outside of local control) should be implemented prior to migration.

3. When implementing a significant change to a function that does not have unit tests, write
the tests first.

4. No code-merge is allowed to reduce test coverage.
5. Automate tests early in the CI/CD pipeline, if possible, to both reduce manual effort and to

prevent poor or troublesome code from being merged.
6. Update software dependencies regularly to the latest versions available.

Our migration efforts also highlighted the importance of good testing versus 'any testing'. Test coverage is often
used as a tool for determining code-test quality. However, poor quality tests (e.g. not isolated, environment
dependent, or not actually testing code functionality) become a maintenance burden instead of providing
assurance of proper software performance. It is critical that as part of any CI/CD implementation a mechanism
for evaluating the 'goodness' of test coverage is adopted and applied. Good testing comes from experience.
Experience of formal testing across our code migration team ranged from none or little, to decades. Prior to our
CI/CD implementation, test coverage for systems without automated unit or regression tests was achieved by
manual testing. It has been a steep learning curve for many of our scientists working on code-development to
move into the world of unit testing. However, as individuals have experienced the benefits of good test practice,
the enthusiasm for it has grown.

Summarising the lessons learned from the migration, and reflecting on the guidance from Staegemann et al.
(2023), we identify a minimum-viable approach to CI/CD:

1. For all new internal code development, adopt guidelines on code structure and style and
implement these. We recommend the guides at google.github.io > styleguide.

2. Set testing requirements and expectations early, create a Software Quality Assurance Plan
before development or migration, and adhere to this plan.

3. Be clear on what constitutes a good test (e.g. code functionality is tested; test operation is
independent of the environment). Provide a library of examples and ensure senior software
developers with extensive test-development experience are part of the code-change peer-
review process.

4. If absent, implement regression tests covering 100% of outputs using KGIs and KGOs before
migration or large changes.

5. For software without existing test coverage or for external packages, add unit tests or
module level tests to key areas such as critical algorithms and known weak-points. Test
coverage should be a minimum of 30% for an SMI score of 1 in that aspect and target a unit
test coverage of greater than 80%. Organisational practice varies on acceptable levels of test
coverage. These limits (30% and 80%) arose from consideration of experience and risk within
our organisation.

6. Automate testing (regression, linting, static security scanning at a minimum; unit testing if
available) as part of the CI/CD pipeline as early as feasible.

7. Where automated testing is not deemed sufficient to give confidence in proper function,
supplement with manual tests and required test reports until software can be assured as
part of integration into the CI/CD pipeline.

8. For large scale changes such as scientific algorithm modification, undertake retrospective
forecasts (hindcasts) or long-term testing for assurance.

9. Ensure consistent and clear code-review processes are in place, including peer-review by
sufficiently experienced developers on every code-merge.

Table 2 provides a summary of test type, approach, realm (from Figure 1) and realm progression outcome within
a CI/CD environment.

 A. Schubert & R.M. Argent (2024) Socio-Environmental Systems Modelling, 6, 18779, doi:10.18174/sesmo.18779

14

Table 2: CI/CD test configuration for MVP for an individual application.

Type of Test CI/CD or manual Realm/s If not met:

Hindcasts/Skill assessment Manual
Performed at key development
points

DEV Do not enter CI/CD pipeline

Unit tests
(> 30% coverage)

CI/CD All Additional manual testing + test
report before realm progression via
CI/CD pipeline

Security, static linting CI/CD All Software not progressed to the next
realm

Regression tests
(target 100 % coverage)

Manual at first, then CI/CD All Software not progressed to the next
realm

Workflow setup and
installation

CI/CD All Software not progressed to the next
realm

Dependencies and Libraries CI/CD All Software not progressed to the next
realm

Disk usage in regularly cycling
workflow

Manual at first, then CI/CD DEV
SERVICE

Software not progressed to the next
realm

User Acceptance Test Data from CI/CD deployed
software

SERVICE
TEST

Do not progress to PROD

In an ideal situation model 'skill' (or accuracy) evaluation would be automated and part of the CI/CD pipeline.
However, many scientific software applications need extended periods of scientific validation, with both
automated and manual interrogation. Similarly, despite data being delivered automatically from the TEST realm,
testing by users in downstream and external systems is largely manual.

To allow for these manual processes we propose two 'gateways' to software progression through the realms:

1. From DEV to SERVICE: This gateway ensures that requirements for scientific skill have been
met where a significant change to the software has been made. Evaluation is made via a
standardised test report that summarises the scientific skill, the computing resources used
and the timeliness of delivery of outputs. Peer review of this report is done by a panel of
knowledgeable staff across scientific subject matter experts, research-to-operations leads
and ICT operations and support areas.

Once Gate1 is first cleared, any small, incremental changes not affecting the scientific
aspects of the outputs should be progressed automatically via CI/CD and the internal code-
review process.

2. From TEST to PROD: This gateway ensures downstream users have signed off system updates
as well as serving as a manual review process for low-maturity software. Evaluation is again
made via a standardised report that summarises the changes made, any effects on
downstream systems and business user readiness for the change. Peer review of this report
is conducted by a panel of knowledgeable staff across research-to-operations, ICT operations
and support areas and business owners.

Figure 5 summarises the flow for the proposed minimum viable process, taking account of both high and low
maturity applications. The process flow reinforces continued improvement of software maturity with code-
reviews and gateways ensuring that added or refactored code is appropriately tested. For applications with low-
maturity or high-complexity, additional manual assessments are mandated prior to progression via CI/CD
controlled realms. The benefits of this include quality assurance for the model going to production via Gate 2 as
well as protection of other models in production.

 A. Schubert & R.M. Argent (2024) Socio-Environmental Systems Modelling, 6, 18779, doi:10.18174/sesmo.18779

15

Figure 5: Overall minimum viable process flow. This process encourages continued improvement of software maturity and
uses added manual processes to assess significant change or low-maturity applications

6. Conclusion

Planning and implementation of good software testing has been increasingly applied in scientific software
development over recent years, with consequential improvements in software quality. This paper explores the
nature of scientific software quality in a constrained production environment, where software must be
sufficiently mature to cope with everyday operational challenges such as missing data, unintended user inputs,
variable data quality, and values outside the bounds of those previously tested. The specific problem situation
presented here arose in the migration of software from an existing computing environment into a new one,
where adoption of formal CI/CD methodology and tooling required testing sufficient for the software to pass to
production through a formal research-to-operations pathway, across multiple computing realms. The problem

 A. Schubert & R.M. Argent (2024) Socio-Environmental Systems Modelling, 6, 18779, doi:10.18174/sesmo.18779

16

situation was further complicated by the community nature of scientific software development, with significant
code sharing across international boundaries and many models being formed from a mix of externally and
internally developed code, each with differing opportunities and methods for developers to contribute to
increased code quality.

Investigation of three case studies of software migration, along with the reflections of developers working on
this migration and consideration of the broader applicability of our findings to other situations, delivered a
minimum viable good practice approach for application to scientific environmental modelling. By establishing a
clear set of expectations and processes that increase software maturity with every code increment and
deployment, the overall quality of applications running in production are improved and various matters of
developer wellbeing are also addressed.

Acknowledgements

The authors gratefully acknowledge the interview responses and reflections of the developers who contributed
to this review, including Dr Gemma Lloyd, Dr Nicholas Leerdam, Sean Loh, Dr Daehyok Shin, Daniel Karney, Dr
Christopher Down, Dr Timothy Hume, Dr Andy Thomas and Dr Tom Gale. We also thank internal reviewers for
the contributions to the quality of this paper.

References

Arvanitou, E. M., Ampatzoglou, A., Chatzigeorgiou, A., & Carver, J. C. (2021). Software engineering practices for scientific
software development: A systematic mapping study. Journal of Systems and Software, 172.
https://doi.org/10.1016/j.jss.2020.110848

Beck, K. (2002). Test Driven Development. By Example (Addison-Wesley Signature). Addison-Wesley Longman, Amsterdam.
Brier, G. W. (1950). Verification of forecasts expressed in terms of probability. Monthly Weather Review, Vol. 78, No. 1, pp.

1–3.
Dalal, S. R., Jain, A., Karunanithi, N., Leaton, J. M., Lott, C. M., Patton, G. C., & Horowitz, B. M. (1999). Model-based testing in

practice. Proceedings of the 21st International Conference on Software Engineering, 285–294.
dos Santos, J., Martins, L. E. G., de Santiago Júnior, V. A., Povoa, L. V., & dos Santos, L. B. R. (2020). Software requirements

testing approaches: a systematic literature review. Requirements Engineering, 25(3).
https://doi.org/10.1007/s00766-019-00325-w

Dubois, P. F. (2012). Testing Scientific Programs. Computing in Science and Engg., 14(4), 69–73.
https://doi.org/10.1109/MCSE.2012.84

Glowacki, T. J., Xiao, Y., & Steinle, P. (2012). Mesoscale Surface Analysis System for the Australian Domain: Design Issues,
Development Status, and System Validation. Weather and Forecasting, 27(1), 141–157.
https://doi.org/https://doi.org/10.1175/WAF-D-10-05063.1

Gupta, A., Poels, G., & Bera, P. (2022). Using Conceptual Models in Agile Software Development: A Possible Solution to
Requirements Engineering Challenges in Agile Projects. IEEE Access, 10.
https://doi.org/10.1109/ACCESS.2022.3221428

Heaton, D., & Carver, J. C. (2015). Claims about the use of software engineering practices in science: A systematic literature
review. Information and Software Technology, 67, 207–219.
https://doi.org/https://doi.org/10.1016/j.infsof.2015.07.011

Iwanaga, T., Rahman, J., Partington, D., Croke, B., & Jakeman, A. J. (2018). Software Development Best Practices for
Integrated Model Development. Proceedings International Conference on Environmental Modelling and Software,
Fort Collins, Colorado https://doi.org/10.13140/RG.2.2.27034.34247

Jakeman, A. J., Elsawah, S., Wang, H.-H., Hamilton, S. H., Melsen, L., & Grimm, V. (2024). Towards normalizing good practice
across the whole modeling cycle: its instrumentation and future research topics. Socio-Environmental Systems
Modelling, 6, 18755.

Kanewala, U., & Bieman, J. M. (2014). Testing scientific software: A systematic literature review. In Information and Software
Technology (Vol. 56, Issue 10). https://doi.org/10.1016/j.infsof.2014.05.006

Kanewala, U., & Chen, T. Y. (2019). Metamorphic Testing: A Simple Yet Effective Approach for Testing Scientific Software.
Computing in Science & Engineering, 21(1), 66–72. https://doi.org/10.1109/MCSE.2018.2875368

Lucas, C., Potts, R. J., Zidikheri, M. J., Dare, R. A., Manickam, M., Wain, A., & Bear-Crozier, A. (2018). Improvements in the
Detection and Prediction of Volcanic Ash for Aviation at the Australian Bureau of Meteorology. 98th American
Meteorological Society Annual Meeting, 6pp.

Nanthaamornphong, A., & Carver, J. C. (2017). Test-Driven Development in scientific software: a survey. Software Quality
Journal, 25(2). https://doi.org/10.1007/s11219-015-9292-4

 A. Schubert & R.M. Argent (2024) Socio-Environmental Systems Modelling, 6, 18779, doi:10.18174/sesmo.18779

17

Peng, Z., Lin, X., Simon, M., & Niu, N. (2021). Unit and regression tests of scientific software: A study on SWMM. Journal of
Computational Science, 53. https://doi.org/10.1016/j.jocs.2021.101347

Pereira, N. S., Lima, P., Guerra, E., & Meirelles, P. (2022). Towards Automated Playtesting in Game Development. Proceedings
of SBGames 2021. https://doi.org/10.5753/sbgames_estendido.2021.19666

Roberts, N., Ayliffe, B., Evans, G., Moseley, S., Rust, F., Sandford, C., Trzeciak, T., Abernethy, P., Beard, L., Crosswaite, N.,
Fitzpatrick, B., Flowerdew, J., Gale, T., Holly, L., Hopkinson, A., Hurst, K., Jackson, S., Jones, C., Mylne, K., … Worsfold,
M. (2023). IMPROVER: The New Probabilistic Postprocessing System at the Met Office. Bulletin of the American
Meteorological Society, 104, E680–E697. https://doi.org/10.1175/BAMS-D-21-0273.1

Shahin, M., Babar, M. A., & Zhu, L. (2017). Continuous Integration, Delivery and Deployment: A Systematic Review on
Approaches, Tools, Challenges and Practices. In IEEE Access (Vol. 5). https://doi.org/10.1109/ACCESS.2017.2685629

Staegemann, D., Volk, M., Pohl, M., Haertel, C., Hintsch, J., & Turowski, K. (2023). Identifying Guidelines for Test-Driven
Development in Software Engineering—A Literature Review. Lecture Notes in Networks and Systems, 465.
https://doi.org/10.1007/978-981-19-2397-5_30

Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D., & Ngan, F. (2015). NOAA’s HYSPLIT Atmospheric
Transport and Dispersion Modeling System. Bulletin of the American Meteorological Society, 96(12), 2059–2077.
https://doi.org/https://doi.org/10.1175/BAMS-D-14-00110.1

Taylor, A., & Brassington, G. B. (2017). Sea Level Forecasts Aggregated from Established Operational Systems. In Journal of
Marine Science and Engineering (Vol. 5, Issue 3). https://doi.org/10.3390/jmse5030033

Uzun, B., & Tekinerdogan, B. (2018). Model-driven architecture based testing: A systematic literature review. Information
and Software Technology, 102. https://doi.org/10.1016/j.infsof.2018.05.004

