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Abstract 
The term “Digital Twins of the Earth” has rocketed into scientific use and policymaker discourse by promising a 
virtual replica of our planet. While the potential of a digital representation of reality is captivating for 
environmental monitoring, decision-making, and scientific inquiry, the term lacks a clear and shared definition 
and may be misleading. It conceals that all digital representations are models and, as such, will always be detached 
from reality. Detailed simulation models are excellent digital laboratories that allow us to interrogate our theories 
about the world in ways otherwise not possible, given the limited scales at which we can run real-world 
experiments, yet a perfect representation of reality is impossible as it would be exactly as complex. As we embark 
on the journey of building such detailed models, one question we must ask is, "How can we ensure that they can 
be explored with scientific rigor?" Here, we discuss possible ways to utilize a model's internal variability to 
understand its dominant controls to increase our understanding of both the models we build and the world that 
they represent.  
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Code availability 
The code used to calculate the example in Figure 4 can be found at https://github.com/rreinecke/SONAR and 
could be used as a baseline for future method development. 
 

 

1. Digital Twins are here, but do not forget the delta 

The term Digital Twin of the Earth is increasingly used in the environmental and Earth sciences (Bauer et al., 
2021; Pedersen et al., 2022; Hazeleger et al., 2024). However, it refers to different research tools ranging from 
a very complex model (Bauer et al., 2021; Hazeleger et al., 2024) to a model that assimilates live satellite data 
(Li et al., 2023), or to a high-resolution 3-D model of a country (BKG, 2022) or all of these terms at once (Blair, 
2021; Ossing et al., 2023)  — a clear definition for the environmental science is currently lacking (Barricelli et al., 
2019). Here, we assume that Digital Twins of the Earth refer to model representation of the Earth systems that 
aim to be as complete as possible in their process representation. They are advertised as the new scientific 
frontier and key to enabling a transition into a green and sustainable future (European Commission, 2019; 
Voosen, 2020) by allowing interactive “causal inquiries” for decision support (Hazeleger et al., 2024). The 

mailto:reinecke@uni-mainz.de
http://creativecommons.org/licenses/by-nc/4.0/
http://www.sesmo.org/


R. Reinecke et al. (2024) Socio-Environmental Systems Modelling, 6, 18786, doi:10.18174/sesmo.18786  

 
 

 2 

perceived potential for advancements in scientific understanding and for operational forecasting is vast and 
includes both geophysical processes and the effects of human activities (Voosen, 2020; Bauer et al., 2021; Slingo 
et al., 2022; Hazeleger et al., 2024). Their growing importance is reflected in massive investments. The EU 
Commission alone puts forward 1 trillion € for the green transition of the EU, which includes the creation of 
Digital Twins of the Earth (Bauer et al., 2021). Estimates for maintaining related targeted modeling chains are in 
the order of 250 million US$ per year (Slingo et al., 2022). 
 
Digital Twins originated in manufacturing engineering (Grieves, 2014) and are used in various research 
communities beyond the Earth sciences (Barricelli et al., 2019; Raj, 2021). The original idea is to create a one-to-
one representation of a physical object so that its properties (e.g., structure properties) can be tested in a way 
that is cheaper than building and testing a physical replica (Grieves, 2014; Raj, 2021). Transferring this 
terminology to the environmental domain implies that we know as much about the underlying processes of 
earth systems as we know about the artifacts we have engineered ourselves. This might be misleading: for 
example, while we can reasonably specify the structural properties of a wind turbine, we cannot describe soil 
properties over larger scales without considerable uncertainties (Vereecken et al., 2022). Also, the further we 
“zoom in” (i.e., increase the spatial and/or temporal resolution of the analysis), the more feedback might emerge 
as relevant (Saltelli et al., 2024). Using the term Digital Twin is thus problematic as it suggests that we can create 
a digital representation that allows us to stress-test the structural properties of the Earth system with any 
desired degree of accuracy and precision. 
 
Every model is a simplification of reality, and its creation requires simplifying assumptions that will unavoidably 
lead to uncertainties (Figure 1). So, no matter what we call a digital representation of the Earth system, it will 
remain a model, and every step along the model building process will take it further away from reality (Beven, 
2012). We refer to this as the distance delta in Figure 1, which depends on how well we know the system. Digital 
Twins of the Earth are also often coupled models of multiple sub-systems, and this coupling will add additional 
uncertainty as we make assumptions on how they should be coupled (Puy et al., 2022). A key element in using 
Digital Twins of the Earth is, therefore, to scrutinize the consistency of the model behavior with our expectations 
and to remember the distance between the model and reality – the delta – when using the model.  
 
  

 
Figure 1: A digital representation of earth systems is always disconnected from reality by a distance delta. Each step in the 
modeling process– building a perceptual model, building a mathematical model, and building a computational model (Beven, 
2012) – moves the “Digital Twin” further away from reality.  
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2. We can enable a rigorous exploration of complex models of the Earth 

So, do we have the strategies to understand how earth systems models function and how well they reflect our 
understanding of reality as they continue to grow in complexity (Eyring et al., 2016)? How can we rigorously 
question the model’s capabilities and improve our process knowledge (Saltelli et al., 2020), especially when 
simulating transient systems under climate and other environmental changes (Wagener et al., 2022), which 
significantly limits the value of comparing models to historical data (Gleeson et al., 2021)? 
 
One way to begin addressing these questions might be through sensitivity analysis, i.e., a systematic analysis of 
how variations in the model input factors translate into variability in the model outputs (Wagener & Pianosi, 
2019; Razavi et al., 2021; Saltelli et al., 2021). This would enable us to understand the controls of simulated 
processes and attribute output uncertainty to its multiple input sources. 
 
However, a rigorous sensitivity analysis may require thousands to millions of model runs, which would 
necessitate prohibitively ample computational resources (Puy et al., 2024). Maybe surprisingly, lack of 
computational resources does not seem to be the main limiting factor to the current application of sensitivity 
analysis by environmental modelers. As shown in Figure 2, the number of factors varied in published sensitivity 
analyses and did not increase as much as the available computational resources. Some hypothesize that there 
is still a lack of knowledge in modeling communities regarding how to apply these methods (Ferretti et al., 2016); 
if so, this needs to be addressed as we move towards using increasingly complex models. In any case, it is helpful 
to consider what other strategies for model evaluation are also available. 
 

 
Figure 2: The complexity of computational experiments for model exploration has not increased in line with available 
computational power. The left y-axis shows the number of factors (e.g., model parameters) in 160 global sensitivity analysis 
studies published from 2006 to 2020 in the environmental modeling domain. Grey dots indicate previous reviews from Song 
et al. (2015) and Vanrolleghem et al. (2015) (both focus on hydrologic modeling only). Blue dots indicate an additional 100 
studies collected here (see Supplementary Material A for methodology). The grey line is a linear regression where the grey 
area shows the 95th confidence interval (excluding three outliers, see Supplementary Material A). The red line shows the 
availability of computing power (right y-axis) as log scale in giga FLOPS (Floating Point Operations Per Second).  

 
Digital Twins of the Earth produce incredible amounts of data. Each of their grid cells – of which there can be 
millions – establishes an input-output relationship as a consequence of the chosen model’s equations and 
parameter values. We postulate that we can utilize these data for model evaluation and possibly even for gaining 
a new understanding of the process. One opportunity is to explore so-called functional relationships, which can 
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be defined as the co-variation of variables across space and/or time that underpins our theoretical knowledge 
of the Earth’s functioning (Gnann et al., 2023). Past studies that have used this approach include, for example, 
Mu et al. (2021), who examined how groundwater might help to buffer vegetation function during multi-year 
droughts (here shown as the relationship between groundwater availability as water table depth and the ability 
of the canopy to cool itself through evapotranspiration expressed as the temperature difference between the 
canopy and the air temperature; Figure 3a); Reinecke et al. (2024) who showed the global relationship between 
water table depth and slope in global groundwater models (Figure 3b); MacDonald et al. (2021) who used ground 
observations to identify the functional relationship between groundwater recharge and precipitation across 
water limited domains; and Gnann et al. (2023) who investigated to what extent that functional relationship was 
replicated by global hydrological models (Figure 3d). 
 

 

 

Figure 3: Functional relationships that can be found in data (a-c) and models (d). (a) shows transpiration offset trough air 
temperature difference (canopy temperature – air temperature) vs. water table depth (WTD) as a density scatter plot during 
heatwaves in Australia (adapted from Mu et al. (2021)), (b) observed water table depth vs. terrain slope globally (adapted 
from Reinecke et al. (2024)), (c) groundwater recharge vs precipitation over Africa (adapted from MacDonald et al. (2021)), 
and (d) groundwater recharge vs. precipitation globally as simulated by the PCR-GLOWB model (adapted from Gnann et al. 
(2023)).  

 
One area for innovation is that we do not have a good way to automatically find such functional relationships in 
complex datasets such as the ones shown in Figure 3, where relationships will likely exist for potentially unknown 
subsets of the total data. In Figure 4, we show how the result of such an algorithm could potentially look like. 
Such an algorithm would need to organize data in a hierarchical manner automatically. Earth system processes 
are driven by different factors across space and time scales (Pattee, 1972), vary along gradients (Lesk et al., 
2021), and exhibit thresholds (Zehe & Sivapalan, 2009). Thus, an automated method should also be able to 
identify and represent relationships hierarchically to represent the diversity in subdomains of the data. 
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Different from conventional tree algorithms, such as CART (Breiman et al., 2017), where the splitting criterion 
at each level is typically based on increasing classification accuracy in the subsequent nodes, the split would 
need to quantify an increase in the strength of a functional relationship. For example, Gnann et al. (2023) used 
the Spearman rank correlation as a first approach - but other metrics to quantify more complex relationships 
would be possible. An example to sketch out the idea is given in Figure 4. Here, we analyze the simulation 
outputs (30-year averages on a spatial resolution of 0.5°) of one of the global hydrological models also 
investigated in Gnann et al. (2023) (for details, see Supplementary Material B). We tested the code on multiple 
models and chose a tree that illustrates the idea best (the application to other models yields different trees). 
The code utilized in this example searches for drivers of groundwater recharge. The tree's root shows the highest 
identified driver for recharge across the global domain (each scatter point is one 0.5° grid cell of the model), 
which is precipitation. We find a non-linear relationship between recharge and aridity index in warm regions 
(grid cells where the mean daily temperature is greater than 26°C), which is stronger than the overall relationship 
between precipitation and recharge. For colder regions, the recharge-aridity relationship is less strong. Whether 
the found relationships are correct or meaningful is then up to the scientist. Further implementation of such an 
algorithm would need to show how robust it is in detecting such relationships and how choices in the algorithm 
impact its outcome. 
 

 
Figure 4: A possible output of a not-yet-existing algorithmic solution to automatically identify functional relationships in large 
datasets. The relationship is summarized with a black line in the two leaves of the tree. Variable n denotes the number of 
data points falling into each leaf. Details on the underpinning methodology are in Supplementary Material B. Different 
choices in how to split the data and how much data is used for a split will likely influence the robustness of the approach. 
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3. We need to invest in understanding the delta 

Digital Twins of the Earth are here to stay. The concept of a digital representation of reality is appealing and 
already well-established in engineering. Facing increasingly dramatic consequences of global change in the Earth 
system, it is also necessary to build better modeling systems for early warning of natural disasters, informing 
data collection and decision-making, and gaining new scientific knowledge. However, the real value of Digital 
Twins of the Earth depends on how far they are removed from reality and, importantly, on how much we can 
understand and quantify the difference between the model's behavior and that of the real system. Investing 
resources to evaluate models will be pivotal in ensuring they serve society best. Finding new ways to explore 
the incredible amounts of data they produce will be important, e.g., finding and analyzing large-scale functional 
relationships. 
 

We must also ensure that we use the term Digital Twin carefully and communicate clearly that a model remains 
a model, and do not convey the wrong message that we do not have to worry about the model’s distance from 
reality. The “reductionist view of nature as a machine” encoded in Digital Twins may erode democratic principles 
as they may end up being used as political instruments for justification and control (Saltelli et al., 2024). This 
issue reminds one of the cautionary tale of the map maker in which a ruler in a magical land desires a perfect 
map (see Figure 5 and Box 1). Such a map is as impossible as a perfect digital representation of reality. Scientists 
and decision-makers alike should not fall for this fallacy. Decisions and assessments will always be uncertain. 
With increasing model resolutions and better visualization of outputs, it will get harder and harder not to 
confuse model outputs with reality. Past studies have already called for clear rules when communicating model 
outputs for decision-making (Grimm et al., 2020) and uncertainty (Fischhoff & Davis, 2014). Any investment in 
Digital Twins of the Earth must include investments in methods to ensure their appropriate use – even if the 
latter is less flashy.  
 

 
Figure 5: Illustration of the map maker’s tale (Carroll, 1893; Borges, 1981; Gaiman, 2006). Our desire for an apparatus that 
enables us to fully replicate our world reminds us of the mapmaker tale. A perfect map is a perfectly impossible map – or a 
perfectly impossible model. CC BY-SA 4.0. 
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Box 1: The map maker's tale is a cautionary story of Digital Twins. Scientists and decision-makers alike should heed this tale as 
a warning to pursue the Digital Twin of Earth blindly. 

The map maker’s tale 
Retold in various versions (Carroll, 1893; Borges, 1981; Gaiman, 2006), it tells the story of a mighty emperor and his desire 
to possess a detailed map of his kingdom. So, detailed, it is a 1:1 representation of everything, “revealing the secrets in the 
deepest seas as well as things beneath the roots of trees” (Gaiman, 2006). Such an immensely powerful and accurate map 
would be useless, as it would be as complex to understand as the world it represents – a perfect twin.  
 
Digital Twins as impossible maps 
Our desire for an apparatus that enables us to replicate our world fully reminds us of the mapmaker tale. A perfect map is 
a perfectly impossible map – or perfectly impossible model. Like a map, a model’s value lies in smartly simplifying our 
complex reality. Hence, it is always somewhat removed from reality by its pure definition.  
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