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Abstract 
Complex systems such as cities, energy grids, or the global climate have many plausible futures. Scenarios, or 
structured narratives of decision-relevant futures, are a common decision support tool for making the complexity 
and uncertainties of complex systems humanly interpretable. However, the effectiveness of scenario-based 
decision support depends in part on the usefulness of the selected scenarios. Here we show an optimization-
based approach for generating scenarios that are specifically designed to be diverse, plausible, and 
comprehensive. We establish the advantages of our method by evaluating it against three previously proposed 
methods: scenario matrices, generic archetypes, and clustering. Our case study is Schelling’s segregation model, 
a tractable yet behaviorally rich simulation of a complex system. Our results show the proposed optimization-
based approach can generate more diverse, plausible, and comprehensive scenarios than existing approaches. 
The resulting scenarios may provide a more insightful and robust basis for policy decisions, especially for complex 
systems with emergent behavior or where substantial uncertainties are present. 
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Code availability 
All code used for performing the described exploration and optimization using the Python programming language 
(version 3.9) and various software packages can be found on GitHub under the URL 
https://github.com/steipatr/Scenario-Search. This repository was created by Patrick Steinmann in 2024 and 
includes data sets (70 KB) and analysis code (1.2 MB). 
 

1.  Introduction 

Scenarios, or structured sets of plausible future narratives driven by external forces (Spaniol and Rowland, 2019), 
are commonly used for decision support in and across the social, technical, and environmental domains. As 
compelling and easy-to-grasp representations of how the future might develop, they have captured decision-
makers’ attention and the public’s imagination in contexts including climate change (Nakićenović et al., 2000), 
pandemics (Skegg et al., 2021), and sea level rise (Wolters et al., 2018). They can be used for a variety of 
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purposes, including presenting contrasting futures, identifying key uncertainties in systems, and evaluating 
policy alternatives (Bell, 2003), and are especially suited to long-term decision-making contexts (Pot et al., 2022). 
 
A number of methods have been proposed for generating sets of scenarios that are useful for decision support. 
These methods generally rely on iterative interactions between scenario analysts, stakeholders, and domain 
experts to qualitatively identify performance indicators, causal relations, and external drivers of change. From 
these elements, scenarios can then be generated. However, it may be that expert-driven approaches fail to 
identify some policy-relevant scenarios in complex and deeply uncertain decision-making contexts, both 
because the range of possible outcomes is not knowable a priori, and because the most relevant scenarios might 
emerge from unexpected combinations of external forces (Lamontagne et al., 2018; Dolan et al., 2021). As 
McPhail et al. (2020) showed, the selection of scenarios for decision support can have a substantial impact on 
the quantitative outcomes of the subsequent decision. Thus, we identify a knowledge gap regarding how to 
generate scenario sets when complexities and uncertainties are present. 
 
In this paper, we address the highlighted research gap by introducing a new method for generating scenario sets 
for complex systems based on simulation-based optimization. We compare our method to three existing 
scenario generation approaches and show that it performs best overall across three distinct criteria. 
Concurrently, we highlight several shortcomings in existing scenario generation methods for the stated scenario 
generation purpose. Finally, we discuss some implications for scenario-based planning in particular and decision 
support in general. 
 

2.  Background  

The Anthropocene is characterized by a wide variety of interdependent socio-technical environmental systems 
such as energy infrastructure, financial markets, and industrial agriculture. These globally networked systems 
are both vulnerable and difficult to control, as disruptions can unexpectedly propagate to other domains 
(Helbing, 2013), cascade across levels of hierarchy (Iwanaga et al., 2022), and self-reinforce (Siegenfeld and Bar-
Yam, 2020). 
 
The challenges in design and governance of such systems are compounded by a lack of consensus on the relevant 
external drivers, internal causal relationships, and outcomes of interest underlying a decision-making context. 
These deep uncertainties (Lempert et al., 2003) amplify the difficulties of successful governance, especially in 
situations where ownership and control are contested between multiple actors (Gotts et al., 2019). The resulting 
gridlock may have critical consequences, as the wickedness of the decision problem affords little time for 
hesitation, and no possibility for a do-over (Rittel and Webber, 1973). 
 
In order to make both the complexity and uncertainty inherent in these systems’ governance comprehensible 
to decision-makers, a variety of decision support methods have emerged. A unifying theme across these 
methods is the usage of scenarios (Bell, 2003; Rizzoli and Young, 1997) - combinations of external drivers and 
resulting system narratives or outcomes. These narratives are internally consistent, plausible in the context of 
the studied system, and commonly appear in sets, allowing comparison between alternative futures. 
 
A well-designed set of scenarios summarizes the system’s complexity and the decision problem’s uncertainties 
by reducing the entirety of the future behavior space to a handful of comprehensible examples. Decision-makers 
can then focus on a few relevant alternatives, rather than worry about every permutation of plausible behavior. 
At the same time, careful selection of the included scenarios can challenge preconceived notions of the system’s 
expected future by purposefully excluding “business as usual” futures (Voros, 2017) in favor of those requiring 
not only timely preparation and adaptation (Haasnoot et al., 2013), but also negotiation of distributive justice 
among current and future stakeholders (Jafino et al., 2021). 
 

3. Theory 

Sets of scenarios illustrate meaningfully different ways the future might plausibly develop. For such a set to be 
useful for a given decision-making context, the scenarios included in the set should be diverse, plausible, and 
comprehensive, as argued in the following section. We note here that, depending on the specific problem and 
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decision context, the exact purpose of the scenario generation process may differ. In the following, we assume 
that the goal of the scenario generation process is to identify a small set of scenarios that summarizes a complex 
system’s many plausible future states well, similar to the work done by Carlsen et al. (2016). In this sense, the 
scenario set forms an on-ramp for engaging with complexity in decision support processes (Wilkinson et al., 
2013). 
 
Diverse scenarios are meaningfully different alternatives to one another (Spaniol and Rowland, 2019), that is, 
they describe clearly distinguishable future trajectories. Meaning stands in relation to the specific decision 
problem the analyst or stakeholder faces, and is derived from the legitimacy (Oreskes et al., 1994) or validity 
(ten Broeke and Tobi, 2021) of the conducted analysis - establishing that the proposed insights are useful to its 
audience. As Dolan et al. (2021) and Lamontagne et al. (2018) have highlighted, the meaningful or decision-
relevant scenarios for complex systems are difficult to identify a priori - that is, without evaluating the behavior 
resulting from a system’s causal relations. Pruyt et al. (2018) highlighted how identifying small sets of diverse 
scenarios can be crucial, especially for rapid, interactive decision support in crisis situations. 
 
At the same time, the presented alternative futures must be plausible, or within the scope of what could 
physically occur within the studied system - with no claim towards the probability of occurring (Wiek et al., 
2013). In this sense, we follow the thinking of Wilson (1998) and Urueña (2019) - a future state is plausible if it 
is reasonable to believe that the state could happen, given certain initial conditions and causal relations of the 
system. Establishing what is or is not plausible is difficult when studying complex systems, as even simple ones 
can exhibit any desired behavior pattern (Cook, 2004), to say nothing of the involved uncertainties (Funtowicz 
and Ravetz, 1993). Rittel and Webber (1973) emphasize that the futures of complex problems are not 
exhaustively describable, which is the limiting factor on our ability to predict their future behavior (Polhill et al., 
2021). This is coupled with humans’ limited capacity for “mental simulation”, or the ability to reason about 
nonlinear interactions in complex systems (Sterman, 1994). Simulation models have become an attractive 
method for these input-output evaluations (de Regt and Parker, 2014), as the models can systematically explore 
the implications of a large number of possible system configurations and assumptions (Bankes, 1993; Winsberg, 
2010). As Wiek et al. (2013) point out, deeming a scenario to be plausible based purely on the theoretical 
evaluation of a model meets only the minimum threshold for plausibility. However, we believe this is more than 
offset by the explicit, testable nature of the simulation model underlying this evaluation, which also establishes 
the internal consistency of the scenario, as it results directly from the internal logic of the model. Consistency 
has been used as a measure of scenario plausibility by Lord et al. (2016), Tietje (2005), and Seeve and Vilkkumaa 
(2022), among others. 
 
Finally, the considered scenarios should give a comprehensive overview of the system’s plausible future 
trajectories. Otherwise, blind spots will be introduced into the decision process, with potentially disastrous 
results. The concept of a “futures cone”, a layered arrangement containing the possible, preferable, predicted 
and/or projected futures extending forward in time, has been discussed by a number of authors including Voros 
(2017) and Maier et al. (2016). When making decisions under deep uncertainty, it may be appropriate to reason 
across the widest and most comprehensive range of this cone, encompassing all plausible outcomes (Derbyshire, 
2022, 2020; Zatarain Salazar et al., 2022). This ensures that the resulting analysis is robust to whichever future 
eventually ends up materializing (Rosenhead et al., 1972; Lempert et al., 2006). 
 
A growing body of research on simulation-based scenario development is exploring how models can be used to 
improve scenario-based planning, broadly along two lines of research. The first line, which might be termed 
behavior search, focuses on how the plausible behavior space of models can be efficiently and comprehensively 
explored (Davis et al., 2007; Chérel et al., 2015; Pruyt and Islam, 2015; Islam and Pruyt, 2016). The second line, 
which is often referred to as scenario discovery, explores how specific model outcomes of interest can be related 
to regions of input space, for either one (Bryant and Lempert, 2010; Kwakkel et al., 2013; Kwakkel, 2019; 
Stonedahl and Wilensky, 2011; Edali and Yücel, 2019; ten Broeke et al., 2021) or multiple outcomes of interest 
(Steinmann et al., 2020; Jafino and Kwakkel, 2021; Trindade et al., 2020; Student et al., 2020). In the present 
work, we build on ideas proposed by Verstegen et al. (2017b) to create a new method which straddles the two 
aforementioned lines of research – exploring the model’s behavior space for extreme outcomes (similar to 
directed search; Halim et al., 2016), and then linking multiple of these extreme outcomes with their generative 
input parameter combinations to form maximally diverse, plausible, and comprehensive input-output scenario 
sets for complex systems. 
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As our proposed method relies heavily on the underlying simulation model to generate and analyze scenarios, 
choosing a suitable model is essential. To make the resulting scenarios trustworthy, the model should represent 
some real-world system to such a degree that all relevant parties consider it a valid representation thereof, and 
useful for the purpose of generating scenarios. To enable the optimization-based search for scenarios, the model 
should have independent input parameters, the ranges of which should be described in the model’s 
documentation (Grimm et al., 2014, 2020). Crucially, these ranges should be such that every possible 
combination of input parameter values generates model behavior that is physically possible, even if it is 
unexpected or undesirable to stakeholders. Ideally, the model (and its associated input parameter ranges) would 
be built from the start with an exploratory modelling mindset (Auping, 2018), although more consolidative 
models (Bankes, 1993) can also be used with caution. We note here that a clear distinction must be made 
between the simulation model and the scenarios it may generate - the simulation model encodes knowledge 
about the studied system, while the scenarios are unique combinations of model inputs and outputs. We base 
this framing on work by Davis et al. (2007) on model-based scenario generation. 
 

4. Methods 

4.1 Framework 

In the following, we describe our proposed method for generating diverse, plausible, and comprehensive 
scenario sets, which we have named scenario search. We frame the challenge of generating such scenario sets 
as an optimization problem. Optimization simply means that we optimize an objective function that represents 
the relevant optimization criteria. In this case, the function is a simulation-based scenario generator, the inputs 
are the external drivers associated with those scenarios, and the criteria are the previously described diversity, 
plausibility, and comprehensiveness. We thus conceptualize a scenario as a combination of model inputs and 
resulting simulation experiment outcomes, as mentioned earlier. 
 
In theory, we wish to simultaneously maximize our three criteria of diversity, plausibility, and 
comprehensiveness. In practice, the resulting optimization procedure would take a very long time to compute. 
Instead, we split the optimization into two steps - first optimizing for comprehensiveness, and then for diversity. 
We assume that the third criterion, plausibility, is given due to the underlying simulation model being validated 
and appropriate for the given decision-making context. As we outlined earlier, simulation models are assumed 
to already encode all plausible futures (and preclude the unreachable ones), even though they are not known 
yet. 
 
 

 
Figure 1: A visual representation of scenario search. In the first step, the maximal and minimal Pareto fronts across the model 
outcomes of interest are found through many-objective optimization. In the second step, all possible subsets of size k (here: 
k = 4) are generated from the points on the Pareto fronts, and the subset with the highest cumulative between-point distance 
is found through single-objective optimization. This subset then forms the final scenario set, which is maximally 
comprehensive, diverse, and plausible. 
 

 
In the first step of scenario search (establishing comprehensiveness, see Figure 1), we define the simulation 
model’s outputs of interest as the objectives and use many-objective optimization (Maier et al., 2019) to find 
the maximal and minimal Pareto fronts across combinations of outputs of interest. This optimization searches 
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across the entire obtainable or feasible input parameter space to find parameter value combinations generating 
outcomes that maximize or minimize some outcomes of interest. We then join these individual fronts together 
to form the Pareto hull, which encompasses all plausible outcomes of the model. The Pareto hull is therefore 
the union of all points of all Pareto fronts. The model runs that constitute the Pareto hull dominate all other 
possible model runs regarding the outputs of interest, either positively or negatively. We note here that the 
term “optimisation”, which we use throughout this work, refers solely to the mathematical procedure, and not 
some desired system performance metric we wish to find. 
 
In the second step (establishing diversity), we search the model outcomes on the Pareto hull for the most diverse 
subset of a desired size. Following previous work by Trutnevyte (2013) and Eker and Kwakkel (2018), we measure 
diversity as the Euclidean distance between two points in the output space, rescaled to [0,1] along all axes. 
Because the Pareto hull is a comparatively small subset of the entire data set, we can more easily calculate and 
compare the distances between the points. With this comparison, we identify the subset of most distant (i.e., 
diverse) model outputs, defined as the subset with the highest sum of intra-set pairwise distances. This subset 
then forms the scenario set, whose constituent outputs (or scenarios) are maximally diverse, plausible, and 
comprehensive. 
 
The size of the final scenario set is an exogenous parameter in our method. This parameter, which we dub k as 
an analogy to a similar parameter in clustering, can be set based on audience and analyst desires for how many 
scenarios should be considered. In the presented work, we use k = 4 scenarios for two reasons. Pragmatically, 
when evaluating our method against other scenario generation methods, this is a convenient number for 
comparison. However, it also seems that four alternatives may be a limit of human working memory (Rouder et 
al., 2008), and therefore a practical upper bound for scenario-based planning with stakeholders. Elsewhere, Lord 
et al. (2016) also advocated using between four and six scenarios to form a set, while Steinmann et al. (2024) 
used six and Kahagalage et al. (2024) used three scenarios, respectively. 

4.2 Case study 

To demonstrate and evaluate our proposed method, we draw upon a heavily studied model from the literature 
on complex adaptive systems, Schelling’s segregation model (Schelling, 1971). This is a cellular automaton, or 
grid-based system in which each grid cell updates its properties based on the properties of the cells in its Moore 
neighborhood. In Schelling’s model, two classes of cells exist. Cells seek to surround themselves with at least a 
certain number of neighboring cells of the same class, governed by the input homophily. If a cell does not have 
at least this many neighbors of its own class, it will relocate to a different grid location, the availability of which 
is controlled by the input density. When repeating this simple procedure for every grid cell over many time steps, 
macro-scale dynamics such as wastelands and groupings of cells (so-called patches) emerge across the grid. This 
combination of model simplicity and behavioral richness (Sun et al., 2016) makes Schelling’s segregation model 
an attractive case study for us. 
 
The model is implemented in Python using the Mesa software package (Kazil et al., 2020; ter Hoeven et al., 
2025). The square grid upon which the individual agents move is toroidal, and its size is 30 by 30 grid squares. 
The two groups of agents are randomly seeded in equal numbers at the start of each model run, with the 
remaining grid squares staying empty (but available as move destinations). The model runs for 100 time steps, 
although it often converges to a steady state earlier, depending on the specific input parameter combinations. 
For the parameter sweep and many-objective optimization, we specify the input space as [0.05,0.95] for density 
and [3,8] for homophily. We calculate two outputs of interest from the resulting spatial grid, happiness and 
number of patches. The former captures which fraction of all occupied grid cells have found at least their desired 
amount of same-class neighbors, and the latter describes how many patches (contiguous regions of same-class 
neighboring cells) have emerged. These are the two objectives that we maximize and minimize to find the Pareto 
hull. We choose these two outputs because they represent system state variables, or dynamic attributes of the 
system, which we deem of interest to decision-makers regarding segregation. For the parameter sweep, we use 
3000 function evaluations. 
 
We perform the many-objective optimization using the ϵ-NSGA-II optimization algorithm (Kollat and Reed, 2006) 
implemented in the Platypus library (Hadka, 2015) for Python and controlled through the Exploratory Modelling 
and Analysis Workbench (Kwakkel, 2017). Based on testing for convergence using the hypervolume and epsilon 
progress metrics in the Platypus library, we use 10 000 function evaluations (population size: 100) for the 
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optimization with 10 replications each to account for the stochasticity in the model. All other parameters are 
left at Platypus default values. 

4.3 Experiment 

To evaluate the effectiveness of scenario search, we compare it with three previously proposed methods for 
generating scenario sets with simulation models: scenario matrices, generic archetypes, and clustering. Matrix-
based scenario generation methods generally start by identifying external drivers of change. For these driving 
factors, high and low levels are determined. Across the factors’ values, these levels form a matrix, hence the 
name. Each matrix cell then becomes an element of the scenario set, together with an accompanying narrative 
of how the world resulting from these driver levels would look. In some more advanced matrix-based methods, 
such as Intuitive Logics (Wright et al., 2013), the number of drivers may be first reduced to only the most 
impactful ones through clustering, influence diagrams, and/or ranking methods. To generate our matrix-based 
scenarios, we follow the Massive Scenario Generation approach proposed by Davis et al. (2007) by sampling the 
corners of the model input space, representing the high(est) and low(est) levels for every axis. These corner 
points are then passed into the simulation model and paired with their resulting outputs. Scenario matrices thus 
reason from the drivers to the narratives, or, in a modelling sense, from the input to the output space. 
 
By contrast, scenario methods based around generic archetypes start by identifying a set of decision-relevant 
future narratives based on preexisting archetypes such as paradise, wastelands, or best-guess (Bezold, 2009; 
Dator, 2009). For each alternative narrative, the external drivers that might create that world can then be 
identified. Thus, the reasoning is from the narratives to the drivers, or from the outputs to the inputs. We apply 
this method by estimating likely low and high values for every model output axis, which together form the k 
scenario outputs. In our case study, we selected {0.2,0.8} for number of patches, and {10,100} for happiness. We 
then find the input combination that generates the output closest to each desired scenario, and pair that input 
with the output to complete the scenario. 
 
Finally, clustering has been explored by a number of researchers (Steinmann et al., 2024; Jafino and Kwakkel, 
2021; Kwakkel et al., 2013; Rozenberg et al., 2014) as a method of deriving scenario sets from large 
(computational) data sets. First, a number of simulation experiments are performed on a simulation model. 
Then, the resulting outputs are clustered, and a representative outcome is identified for each cluster, often using 
centrality or mean calculation. These representative outcomes then form the scenario set. We apply this method 
by conducting a uniform parameter sweep of the model, dividing the resulting outputs into k clusters using k-
means (MacQueen, 1967), and identifying the cluster centroids, which may be thought of as representative of 
the cluster. As with the generic archetypes, we then find the best-matching input-output combinations for each 
cluster centroid. The parameter sweep underlying this clustering contains 3000 Latin Hypercube samples of the 
input space, with 10 replications each to average out the influence of the random initial patch arrangement. 
 
For our evaluation, we draw upon the three scenario criteria introduced previously: diversity, plausibility, and 
comprehensiveness. As in the optimization procedure, we measure diversity as the Euclidean distance between 
two scenario points in the model output space. The output space is rescaled to [0,1] for all axes to give a common 
basis for comparison. In Equation 1, we give the diversity calculation for scenario points S1, S2 defined by 
Cartesian coordinates (x,y) in a two-dimensional Euclidean space. To establish the diversity of an entire scenario 
set, we calculate the pairwise distance between every pair of scenarios in the set. In the presented case study, 
this gives six distances per scenario set of four scenarios, with larger values being more desirable, as they 
indicate higher diversity. 
 

𝐷(𝑆1, 𝑆2) = √(𝑆1,𝑥 , 𝑆2,𝑥)
2 + (𝑆1,𝑦 , 𝑆2,𝑦)

2    (1)  

 
To determine plausibility, we measure the distance between each scenario’s model output and the closest 
model output generated by a parameter sweep of the model’s input space. This is based on the underlying 
notion of plausibility introduced previously - a future state is probable if it can be generated by the model. The 
further away a future state is from what the model can actually generate, the less plausible it is. This metric, 
therefore, punishes scenario generation methods that create impossible or fanciful scenarios according to the 
model. To facilitate the analysis, we construct the metric given in Equation 2 for the plausibility calculation for a 
scenario point S1 and a set of parameter sweep outputs R. This calculation is again performed in the rescaled 
output space. For our case study, this results in four distances per scenario set, one for each scenario in the set. 
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𝑃(𝑆1) =
1

𝑚𝑖𝑛𝐵∈𝑅𝐷(𝑆1,𝐵)+1
     (2)  

 
Finally, we measure comprehensiveness by calculating the proportion of the model’s entire output range 
covered by the polygon spanned by the scenarios. In Equation 3, we give the area calculation for a scenario set 
S with clockwise-ordered points in a two-dimensional Euclidean space. Note that for higher-dimensional 
scenarios (i.e., decision contexts with three or more relevant objectives), the calculation of the (hyper)volumes 
enclosed by the Pareto hull and scenario set may be more complicated due to their irregularity. Decomposition 
into simpler volumes may be useful in this regard. This calculation is only performed once, as it is performed on 
the level of the scenario set, not the individual constituent scenarios. 
  

𝐴(𝑆) =
1

2
∑ 𝑆𝑖,𝑥(𝑆𝑖+1,𝑦 − 𝑆𝑖−1,𝑦)
|𝑆|
𝑖=1     (3)  

 

5. Results 

In the following section, we first describe the scenarios generated with the different methods, and then compare 
the scenario sets with each other using the three criteria of diversity, plausibility and comprehensiveness 
introduced earlier. Finally, we evaluate the overall effectiveness of the scenario generation methods by jointly 
considering the three criteria. 

5.1 Scenario generation methods 

Over our entire model exploration, the total number of patches ranges from 2 to roughly 150, while the 
happiness ranges from 0.0 to 1.0. The maximization of these two objectives results in a broadly S-shaped line 
with both convex and concave sections, whereas the minimization of the objectives results in a discontinuous 
front with an irregular shape (Figure 2). We note that the Pareto hull does not cover all outcomes generated by 
the parameter sweep; this does not have a substantial effect on the following analysis. The Pareto hull covers 
slightly less than half (49.9%) of the entire output space. 
 
In the parameter sweep, six distinctive bands (grouped by the value of the homophily input) emerge, leaving 
large areas between them which are unreachable by the model. These bands are roughly aligned, but also 
intersect in some areas of the output space. Model outcomes are not evenly distributed, with higher densities 
in the corners of the output space. 
 
The scenarios generated with the scenario matrices method appear in the four corners of the input space. In the 
output space, three of the four scenarios have very low happiness values and few patches. The fourth scenario 
has high happiness, and also very few patches. Two of the scenarios are almost identical regarding happiness 
and number of patches, with correspondingly similar spatial maps. The two remaining spatial maps differ mainly 
in the granularity, with predominantly large and small patches, respectively. 
 
The scenarios generated with scenario search are situated in the three corners of the Pareto hull, as well as 
roughly halfway along the maximization front. Their corresponding inputs roughly form a square, which is 
substantially smaller than the entire input space. The spatial representations of these scenarios show four 
distinct patterns, including dense fill with low granularity, dense fill with high granularity, sparse fill with high 
granularity, and sparse fill with regions of high and low granularity. 
 
When considering the results of the generic archetypes method, we note that three of the four scenarios lie in 
regions of the output space that are unreachable by the underlying simulation model. Thus, there are no 
associated inputs or spatial representations of these three scenarios. The fourth scenario’s spatial 
representation is characterized by a medium-density fill with high granularity, while its associated input lies 
roughly near the middle of the input space. 
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Figure 2: Input and output spaces of Schelling’s segregation model. In each space, we show four sets of four scenarios each, 
one set per evaluated scenario generation method. The different methods are double-coded by color and marker shape, with 
the color hue distinguishing the four scenarios within each set. The markers in the in- and output spaces correspond. The 
underlying parameter sweep and Pareto hull are in grey. For each scenario in each set, an exemplary resulting spatial 
representation is shown, with the two agent classes in red and blue, and empty space in grey. Note that some markers are 
nearly overlapping in the output space, and that three markers are missing from the input space, as their corresponding 
outputs represent points which are unreachable for the model. 

 
 
The scenarios generated with clustering are spread throughout the output space. Two of the four scenarios 
show a similar spatial pattern (low density and high granularity). The other two scenarios are distinct, with one 
showing low density and low granularity, and one showing medium-high density and regionally varying 
granularity. 

5.2 Scenario Criteria 

5.2.1 Diversity 

The most diverse scenarios are created by scenario search (Figure 3): this scenario set having the largest intraset 
diversity, mean, and lower quartile values. Five of the intraset distances are roughly equal, with one longer 
outlier. 
 
The scenarios created with a scenario matrix form two distinct and equally sized distance clusters, as three of 
the four scenarios are close together in the output space, and the fourth is far away. The mean and lower quartile 
are the lowest, while the upper quartile is the highest of all four methods. Notably, one distance is close to 0, 
indicating these two scenarios are virtually identical regarding their outputs. Thus, distance in the input space 
does not translate into distance in the output space, highlighting the model’s nonlinearity. 
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Figure 3: Evaluation of all four scenario generation methods against the three scenario set criteria. Where applicable, means 
and quartiles are represented with underlying box plots. The point markers are jittered to avoid overlap. The radar chart shows 
the criteria as polar axes in one figure, allowing overall comparison between the four different scenario generation methods. 
 

 
The generic archetype-based scenarios, being arranged in a square in the output space, have four identical 
shorter and two identical longer distances. Upper and lower quartiles are the closest together of all four 
methods. 
 
The scenarios found with clustering have varying distances, with two flyers beyond the upper quartile, indicating 
some scenario pairs are far more diverse than others. The mean is roughly comparable to scenario matrices and 
generic archetypes methods, but lower than that of scenario search. This is because the representative cluster 
centroids by nature lie inward of the output space boundaries, and are therefore closer together. 
 
Overall, the performance of scenario search, generic archetypes and clustering are all noticeably better than 
scenario matrices, with scenario search performing best. 

5.2.2 Plausibility 

The three model-based scenario generation methods (scenario search, scenario matrices, and clustering) all 
have comparably high plausibility scores. Furthermore, the scenarios are all within the Pareto hull of plausible 
model outcomes (Figure 2), indicating these scenarios could plausibly occur. 
 
The generic archetypes method, which relies on a priori assumptions about the output space size and is 
therefore not strictly model-based, generates at least one impossible scenario – a hypothetical model state 
which is not actually reachable. Specifically, this scenario envisions a world in which both high happiness and 
high granularity (many patches) materialize. There are two more scenarios that, while they lie within the bounds 
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of the Pareto hull and thus appear feasible, lie between the distinctive bands noted earlier, which the model 
also cannot reach. 
 
Under the more narrow definition of plausibility mentioned above (within or near one of the bands in the output 
space), the clustering method also generates one scenario that is less plausible, even though the data underlying 
the clustering is entirely model-generated. 
 
Overall, the three model-based methods (scenario search, scenario matrices, and clustering) perform 
substantially better than generic archetypes, with scenario matrices performing best by a small margin. 

5.2.3 Comprehensiveness 

Scenario search covers the output space most comprehensively. In fact, it even covers more of the output space 
than the Pareto hull, with over 105% coverage. This is because the Pareto hull is slightly concave for high patch 
numbers and low happiness (see Figure 2), which the calculated scenarios polygon does not account for. 
 
The scenarios generated with a scenario matrix cover less than 20% of the Pareto hull, as they all have few 
patches (<40) and therefore miss most of the output space, which goes up to 150 patches. 
 
The generic archetype scenarios span an area equal to almost 80% of the Pareto hull, which is the second-highest 
coverage. However, this is a generous calculation, since one of the scenarios included in this calculation lies 
outside the Pareto hull. Excluding it would reduce the coverage to around 50%. 
 
The clustering-generated scenarios omit the most extreme regions of the output space by necessity, and 
therefore span a polygon covering only roughly 40% of the Pareto hull’s area. Notably, one side of this polygon 
is concave (decreasing its area slightly), as one scenario lies within the triangle spanned by the other three. 
 
Overall, none of the methods, apart from scenario search, cover a substantial part of the entire Pareto hull. This 
is important because it shows that not only are many plausible futures not being considered, but that these not-
considered futures are more extreme than the considered ones. In other words, the blind spots are more 
impactful than the “visible spots”. 

5.3 Comparison 

When evaluating the four scenario generation methods across all three criteria (see radar chart in Figure 3), we 
find that scenario search scores best overall, scoring highest on diversity and comprehensiveness, and a close 
third on plausibility. The other three methods have varying performance across the three criteria, although they 
all perform poorly on at least one criterion. 
 

 
Table 1: Rankings of the four scenario generation methods across the three scenario set criteria, with overall rankings 
computed using both multiplicative and additive scoring. 

 diversity plausibility comprehensiveness 
multiplicative rank 

(score) 
additive rank 

(score) 

scenario search 1 3 1 1 (3) 1 (5) 

scenario matrices 4 1 4 3 (16) 3 (9) 

generic archetypes 3 4 2 4 (24) 3 (9) 

clustering 2 2 3 2 (12) 2 (7) 

 
 
By ranking the four scenario generation methods on each scenario set metric, and then combining these 
rankings into a global ranking, we can identify the best-performing method overall. The results are presented in 
Table 1. Using two different ranking methods, scenario search performs best overall, despite being punished for 
ranking a close third on plausibility. Clustering ranks second across both ranking methods, while the two model-
free methods (scenario matrices and generic archetypes) perform worst. 
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6. Discussion 

6.1 Scenario generation methods 

Scenarios are widely used to support decision-making, but generating decision-relevant scenarios for complex 
and deeply uncertain systems is difficult. We therefore proposed a method that could computationally generate 
maximally diverse, plausible, and comprehensive scenario sets for such systems. We then evaluated this method 
against three existing scenario generation methods and found that it performed best overall based on the three 
aforementioned criteria. In this section, we review our results and discuss their implications. 
 
Overall, we find that, for our case study, scenario search generates the best scenario set, based on the three 
established criteria. Our proposed method scores best on diversity and comprehensiveness, and also performs 
very well on plausibility. Scenario matrices ranks third, with its most significant shortcomings being that the 
resulting scenarios are too similar, and that the range of plausible outcomes is poorly captured. The generic 
archetype-based scenarios rank last overall, failing to perform well on any criterion. Finally, clustering ranks 
second overall, performing reasonably well on two criteria, but failing to capture the most extreme plausible 
outcomes. The overall effectiveness of the two truly model-based methods (scenario search and clustering) 
indicates that simulation-based scenario generation may be a useful method for decision support, especially 
where complexity and deep uncertainty make mental simulation of the problem difficult. 
 
Our analysis shows that at least for Schelling’s segregation model, distance (which we interpret as diversity) in 
the input space does not translate into distance in the output space, and vice versa. The most distant input sets 
did not generate the most extreme outputs, and only one of the most extreme outputs lies against an edge of 
the input space. Supported by Lamontagne et al. (2018) and Dolan et al. (2021), we believe this generalizes to 
many (if not all) complex systems. By extension, existing scenario generation methods (e.g., scenario matrices 
or generic archetypes) may not be applicable to complex systems. 
 
As Derbyshire (2022) argues, futures in which extreme risks materialize deserve more attention in decision-
making than they currently receive. Including such extreme scenarios in scenario-based decision-making may be 
an effective method of doing so. However, as shown in Figure 2, existing scenario methods exclude the most 
extreme plausible scenarios, potentially blinding decision-makers to precisely those futures which require more 
attention. The underlying reason for this is different for every method. Matrix-based approaches cannot know 
a priori which input combinations will create extreme or otherwise decision-relevant futures, based on the 
system’s inherent nonlinearities. Scenarios based on generic archetypes similarly presume a priori knowledge 
of the range of plausible system behaviors. Finally, clustering identifies representative scenarios by selecting the 
most centrally located model outputs for each cluster, and will therefore never select an edge case as a 
representative scenario. This further supports the notion that these methods may be insufficient for decision 
support where plausibility, rather than probability, is a focal point. 
 
The goal of policy analysis is to assist decision-makers in choosing preferred courses of action, based on 
understanding the trade-offs between the consequences of alternative solutions (Walker, 2000). In this context, 
the Pareto hull, an intermediate result of our analysis, can be helpful to quantify these trade-offs (Verstegen et 
al., 2017a). Furthermore, it is desirable to base such an analysis on future scenarios that could actually 
materialize. However, at least one, and potentially two, of the studied scenario generation methods produced 
scenarios that could never actually occur in the studied system. This may not only make the resulting decisions 
less robust and effective, but also erode trust in (computational) policy analysis as an analytical toolkit for 
effective decision support. 

6.2 Equifinality 

A key consideration in the analysis of any model’s input-output mapping is equifinality, or the generation of 
identical model outputs by distinct inputs (Von Bertalanffy and Sutherland, 1974). In our analysis, we observed 
that the scenario matrices method exhibited strong equifinality, in that three of the four input parameter 
combinations generated almost identical outputs despite representing different corners of the input space. This 
highlights not only that the studied system is nonlinear and complex, but that this specific approach to 
generating scenario sets fails to account for this complexity. 
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Our proposed method also does not explicitly account for the possibility of equifinality. Because we search for 
scenarios that are far apart in the output space, it is not possible to identify equifinal scenarios, or scenarios that 
are similar but generated by different external drivers. However, these may be of interest to stakeholders and 
decision makers. Therefore, it might be appealing to use concurrent distance measurement in the input and 
output space, as proposed by Jafino and Kwakkel (2021), to include equifinality considerations in scenario 
search. 

6.3 Model-based vs. model-free scenario generation 

In our presented analysis, we found that scenario generation using an underlying simulation model produces 
scenario sets that are generally more diverse, plausible, and comprehensive than model-free methods. We 
believe this is because the simulation model is a formal, explicit representation of the knowledge, assumptions, 
and uncertainties about the studied system, the interactions and implications of which can be evaluated. This is 
beneficial in regard to all three stated desirable properties for scenario sets. However, there are also advantages 
to model-free approaches, which may be insufficiently captured by our criteria. By including more degrees of 
freedom, the range of future system states thought to be plausible may be larger, which we also saw evidence 
of in our work – one of the scenarios generated with the scenario matrices method lay far outside the scope of 
what could be considered plausible based on the simulation model. Whether this is desirable or not may depend 
on the specific decision context and how plausibility is understood. It might also be beneficial to combine 
multiple different scenario generation methods to build a “super set” of scenarios, which may be even more 
diverse and comprehensive than any of the individual methods. 

6.4 Limitations 

A number of limitations apply to our research. We applied scenario search and the other three scenario 
generation methods to just one case study, the Schelling model. We therefore cannot make any statements 
about the generalizability of our method. Future applications of scenario search across a wider range of complex 
system models and/or scenario generation processes may (in)validate our ideas. Conceptually, scenario search 
requires that a simulation model be used, which not only costs time and money to create, but may give a false 
sense of security about our understanding of the system’s dynamics (Thompson and Smith, 2019). Secondly, the 
optimization requires an explicit definition of policy objectives. However, this is especially difficult under 
conditions of deep uncertainty (Lempert et al., 2003). Thirdly, the simulation model must contain the policy-
relevant decision variables as inputs to actually generate useful insights. Finally, running the many-objective 
optimization is time-consuming even for simple models (Helgeson et al., 2021). In some decision-making 
contexts, this time may not be available, or rapidly evolving circumstances may invalidate simulation-based 
insights as quickly as they can be generated. 
 
There are also methodological criticisms that can be levied against our analysis. By using Euclidean distance 
calculation for our optimization, we implicitly weight the two outputs of interest equally. This may not be 
appropriate in all situations, or there may be constraints limiting one or more outputs. On top of that, and in 
line with the first limitation, our plausibility metric is based on the assumption that the simulation model is a 
reasonable representation of the real-world system it mimics, which may not be the case. Scenarios considered 
implausible by our approach may therefore still be reachable in reality. Finally, an approximation of the Pareto 
hull could likely be found by drawing a convex hull around the results of a simple parameter sweep, eliminating 
the vast majority of function evaluations needed for the optimization. However, it is likely that this would not 
capture the most extreme and diverse plausible scenarios. 
 

7. Conclusions 

Scenario-based decision-making relies on sets of scenarios that are diverse, plausible, and comprehensive. In 
this paper, we presented a novel approach for generating such scenario sets that outperforms existing 
approaches based on a multi-criteria analysis. Our method, which we named scenario search, achieves this by 
applying a two-step optimization procedure to a simulation model of the studied system. Along the way, we 
showed that existing approaches may have significant flaws when applied to complex systems, including 
generating indistinguishable or nonsensical scenarios. 
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Based on the demonstrated effectiveness of our proposed method and the shortcomings of existing methods, 
we advocate for an increased usage of simulation models when generating scenarios for decision support, 
especially where complex systems are concerned. At the same time, we urge that in those decision support 
contexts where matrix- or archetype-based scenarios are currently being used, these scenarios be critically 
reviewed regarding their diversity, plausibility, and comprehensiveness. 
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