Towards a global behavioural model of anthropogenic fire: The spatiotemporal distribution of land-fire systems
Article Full Text (PDF)
Model

Supplementary Files

Supplementary Material A (PDF)

Keywords

fire
DGVM
behavioural model
HANPP

How to Cite

Perkins, O., Matej, S., Erb, K., & Millington, J. (2022). Towards a global behavioural model of anthropogenic fire: The spatiotemporal distribution of land-fire systems. Socio-Environmental Systems Modelling, 4, 18130. https://doi.org/10.18174/sesmo.18130

Abstract

Landscape fire regimes are created through socio-ecological processes, yet in current global models the representation of anthropogenic impacts on fire regimes is restricted to simplistic functions derived from coarse measures such as GDP and population density. As a result, fire-enabled dynamic global vegetation models (DGVMs) have limited ability to reproduce observed patterns of fire, and limited prognostic value. At the heart of this challenge is a failure to represent human agency and decision-making related to fire. This paper outlines progress towards a global behavioural model that captures the categorical differences in human fire use and management that arise from diverse land use objectives under varying socio-ecological contexts. We present a modelled global spatiotemporal distribution of what we term ‘land-fire systems’ (LFSs), a classification that combines land use systems and anthropogenic fire regimes. Our model simulates competition between LFSs with a novel bootstrapped classification tree approach that performs favourably against reference multinomial regressions. We evaluate model outputs with the human appropriation of net primary production (HANPP) framework and find good overall agreement. We discuss limitations to our methods, as well as remaining challenges to the integration of behavioural modelling in DGVMs and associated model-intercomparison protocols.

Article Full Text (PDF)
Model

References

Adams, M. A., Shadmanroodposhti, M., & Neumann, M. (2020). Causes and consequences of Eastern Australia’s 2019–20 season of mega-fires: A broader perspective. Global Change Biology, 26(7), 3756–3758. https://doi.org/10.1111/gcb.15125

Andela, N., Morton, D. C., Giglio, L., Chen, Y., van der Werf, G. R., Kasibhatla, P. S., DeFries, R. S., Collatz, G. J., Hantson, S., Kloster, S., Bachelet, D., Forrest, M., Lasslop, G., Li, F., Mangeon, S., Melton, J. R., Yue, C., & Randerson, J. T. (2017). A human-driven decline in global burned area. Science, 356(6345), 1356. https://doi.org/10.1126/science.aal4108

Araki, S. (2007). Ten Years of Population Change and the Chitemene Slash-and-Burn System around the Mpika Area, Northern Zambia. African Study Monographs. Supplementary Issue, 34. http://hdl.handle.net/2433/68482

Archibald, S. (2016). Managing the human component of fire regimes: lessons from Africa. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1696), 20150346. https://doi.org/10.1098/rstb.2015.0346

Archibald, S., Staver, A. C., & Levin, S. A. (2012). Evolution of human-driven fire regimes in Africa. Proceedings of the National Academy of Sciences, 109(3), 847. https://doi.org/10.1073/pnas.1118648109

Arneth, A., Brown, C., & Rounsevell, M. D. A. (2014). Global models of human decision-making for land-based mitigation and adaptation assessment. Nature Climate Change, 4(7), 550–557. https://doi.org/10.1038/nclimate2250

Barnett, K., Parks, S. A., Miller, C., & Naughton, H. T. (2016). Beyond Fuel Treatment Effectiveness: Characterizing Interactions between Fire and Treatments in the US. Forests, 7(10). https://doi.org/10.3390/f7100237

Bendel, C., Toledo, D., Hovick, T., & McGranahan, D. (2020). Using Behavioral Change Models to Understand Private Landowner Perceptions of Prescribed Fire in North Dakota. Rangeland Ecology & Management, 73(1), 194–200. https://doi.org/10.1016/j.rama.2019.08.014

Best, M., Pryor, M., Clark, D., Rooney, G., Essery, R., Menard, C., Edwards, J., Hendry, M., Porson, A., Gedney, N., Mercado, L., Sitch, S., Blyth, E., Boucher, O., Cox, P., Grimmond, C., & Harding, R. (2011). The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes. Geoscientific Model Devevelopment, 4, 677-699. www.geosci-model-dev.net/4/677/2011/

Bird, R., Codding, B., Kauhanen, P., & Bird, D. (2011). Aboriginal hunting buffers climate-driven fire-variability in Australia’s spinifex grasslands. Proceedings of the National Academy of Sciences 109 (26), 10287-10292.

Bowman, D. M. J. S., Perry, G. L. W., Higgins, S. I., Johnson, C. N., Fuhlendorf, S. D., & Murphy, B. P. (2016). Pyrodiversity is the coupling of biodiversity and fire regimes in food webs. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1696), 20150169. https://doi.org/10.1098/rstb.2015.0169

Breiman, L. (2001). Random Forests. Machine Learning, 45, 5-32.

Brown, C., Alexander, P., Arneth, A., Holman, I., & Rounsevell, M. (2019). Achievement of Paris climate goals unlikely due to time lags in the land system. Nature Climate Change, 9, 203-208. https://doi.org/10.1038/s41558-019-0400-5

Burton, C., Betts, R., Cardoso, M., Feldpausch, T. R., Harper, A., Jones, C. D., Kelley, D. I., Robertson, E., & Wiltshire, A. (2019). Representation of fire, land-use change and vegetation dynamics in the Joint UK Land Environment Simulator vn4.9 (JULES). Geoscientific Model Development, 12(1), 179–193. https://doi.org/10.5194/gmd-12-179-2019

Cammelli, F., Garrett, R. D., Barlow, J., & Parry, L. (2020). Fire risk perpetuates poverty and fire use among Amazonian smallholders. Global Environmental Change, 63, 102096. https://doi.org/10.1016/j.gloenvcha.2020.102096

Carmenta, R., Zabala, A., Daeli, W., & Phelps, J. (2017). Perceptions across scales of governance and the Indonesian peatland fires. Global Environmental Change, 46, 50-59. https://doi.org/10.1016/j.gloenvcha.2017.08.001

Carmenta, R., Coudel, E., & Steward, A. M. (2019). Forbidden fire: Does criminalising fire hinder conservation efforts in swidden landscapes of the Brazilian Amazon? The Geographical Journal, 185(1), 23–37. https://doi.org/10.1111/geoj.12255

Cato Institute (2020). Human Freedom Index. https://www.cato.org/human-freedom-index/2020

Center for International Earth Science Information Network (CIESIN). (2017). Gridded Population of the World, Version 4 (GPWv4): Population Density. http://dx.doi.org/10.7927/H4NP22DQ.

Clark, D., Mercado, L., Sitch, S, Jones, C., Gedney, N., Best, M., Pryor, M., Rooney, G., Essery, R., Blyth, E., Boucher, O., Harding, R., Huntingford, C., & Cox, P. (2011). The Joint UK Land Environment Simulator (JULES), model description – Part 2: Carbon fluxes and vegetation dynamics. Geoscientific Model Devevelopment, 4, 701–722. www.geosci-model-dev.net/4/701/2011/

Cochrane, M. (2009). Fire, land use, land cover dynamics, and climate change in the Brazilian Amazon. In Mark A Cochrane (Ed.), Tropical Fire Ecology: Climate Change, Land Use, and Ecosystem Dynamics (pp. 389-462). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-77381-8_1

Coughlan, M., & Petty, A. (2012). Fire as a dimension of historical ecology: a response to Bowman et al., 2011. Journal of Biogeography, 40 (5), 1010-1012. https://doi.org/10.1111/j.1365-2699.2012.02767.x

Dara, A., Baumann, M., Hölzel, N., Hostert, P., Kamp, J., Müller, D., Ullrich, B., & Kuemmerle, T. (2019). Post-Soviet Land-Use Change Affected Fire Regimes on the Eurasian Steppes. Ecosystems, 23(5), 943–956. https://doi.org/10.1007/s10021-019-00447-w

de Torres Curth, M., Biscayart, C., Ghermandi, L., & Pfister, G. (2012). Wildland–Urban Interface Fires and Socioeconomic Conditions: A Case Study of a Northwestern Patagonia City. Environmental Management, 49(4), 876–891. https://doi.org/10.1007/s00267-012-9825-6

Dennis, R., Hoffmann, G., Applegate, G., von Gemmingen, G., & Kartawinata, K. (2001). Large-scale fire: creator and destroyer of secondary forests in western Indonesia. Journal of Tropical Forest Science, 13 (4), 786-799. https://www.jstor.org/stable/43582372

Dong, X., Li, F., Lin, Z., Harrison, S., Chen, Y., & Kug, J-S. (2021). Climate influence on the 2019 fires in Amazonia. Science of the Total Environment, 794, 148718. https://doi.org/10.1016/j.scitotenv.2021.148718

Dou, Y., Cosentino, F., Malek, Z., Maiorano, L., Thuiller, W., & Verburg, P. (2021). A new European land systems representation accounting for landscape characteristics. Landscape Ecology. https://doi.org/10.1007/s10980-021-01227-5

Easdale, M., & Aguiar, M. (2018). From traditional knowledge to novel adaptations of transhumant pastoralists the in face of new challenges in North Patagonia. Journal of Rural Studies, 63, 65–73. https://doi.org/10.1016/j.jrurstud.2018.09.001

Elliott M. R. (2008). Model Averaging Methods for Weight Trimming. Journal of Official Statistics, 24(4), 517–540.

Ellis, E., Beusen, A., & Goldewijk, K. (2020). Anthropogenic Biomes: 10,000 BCE to 2015 CE. Land, 9 (5), 129. https://doi.org/10.3390/land9050129

Eloy, L., Bilbao, B., Mistry, J., & Schmidt, I. (2017). From fire suppression to fire management: Advances and resistances to changes in fire policy in the savannas of Brazil and Venezuela. The Geographical Journal, 185 (1), https://doi.org/10.1111/geoj.12245.

Elsawah, S., Filatova, T., Jakeman, A., Kettner, A., Zellner, M., Athanasiadis, I., Hamilton, S., Axtell, R., Brown, D., Gilligan, J., Janssen, M., Robinson, D., Rozenberg, J., Ullah, I., & Lade, S. (2020). Eight grand challenges in socio-environmental systems modelling. Socio-environmental Systems Modelling, 2, 16226. https://doi.org/10.18174/sesmo.2020a16226

Erb, K-H., Haberl, H., Jepsen, M., Kuemmerle, T., Lindner, M., Muller, D,. Verburg, P., & Reenberg, A. (2013). A conceptual framework for analysing and measuring land-use intensity. Current Opinion in Environmental Sustainability, 5 (5), 464-470. https://doi.org/10.1016/j.cosust.2013.07.010

Eyring, V., Bony, S… & Taylor, K. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9, 1937-1958. https://doi.org/10.5194/gmd-9-1937-2016

FAOSTAT (2021). Statistical Databases. http://faostat.fao.org

Fernandes, P., Rossa, C., Madrigal, J., & Rigolot E. (2016). Updated state-of-the-art on the uses of prescribed burning. https://doi.org/10.13140/RG.2.2.31837.82400

Fetzel, T., Gradwohl, M., & Erb, K-H.-H. (2014). Conversion, intensification, and abandonment: A human appropriation of net primary production approach to analyze historic land-use dynamics in New Zealand 1860–2005. Ecological Economics, 97, 201–208. https://doi.org/10.1016/j.ecolecon.2013.12.002

Foley, J., DeFries, R., Asner, G., Barford, C., bonan, G., Carpenter, S., Chapin, S., Coe, M., Daily, G., Gibbs, H., Helkowski, J., Holloway, T., Howard, E., Kucharik, C., Monfreda, C., Patz, J., Prentice, C., Ramankutty, N., & Snyder, P. (2005). Global Consequences of Land Use. Science, 309 (5734), 570-574. https://doi.org/10.1126/science.1111772

Forkel, M., Andela, N., Harrison, S. P., Lasslop, G., van Marle, M., Chuvieco, E., Dorigo, W., Forrest, M., Hantson, S., Heil, A., Li, F., Melton, J., Sitch, S., Yue, C., & Arneth, A. (2019). Emergent relationships with respect to burned area in global satellite observations and fire-enabled vegetation models. Biogeosciences, 16(1), 57–76. https://doi.org/10.5194/bg-16-57-2019

Formatti, J. (2021). AgentPy: A Package for agent-based modelling in Python. Journal of Open Source Software, https://doi.org/10.21105/joss.03065

Fowler, C., & Welch, J. (2018). Fire Otherwise: Ethnobiology of Burning for a Changing World. Utah: University of Utah Press.

Fuchs, R, Alexander, P, Brown, C, Cossar, F, Henry, R, & Rounsevell, M. (2019). Why the US-China trade war spells disaster for the Amazon. Nature, 567, 451-454.

Gingrich, S., Niedertscheider, M., Kastner, T., Haberl, H., Cosor, G., Krausmann, F., Keummerle, T., Müller, D., Reith-Musel, A., Jepsen, M., Vadineanu, A., & Erb, K-H. (2015). Exploring long-term trends in land use change and aboveground human appropriation of net primary production in nine European countries. Land Use Policy, 47, 426-438.

Goldewijk, K., Beusen, A., Doelman, J., & Stehfest, E. (2017). Anthropogenic land use estimates for the Holocene – HYDE 3.2. Earth Syst. Sci. Data, 9, 927–953. https://doi.org/10.5194/essd-9-927-2017

Gomez-Gonzalez, S., Ojeda, F., & Fernandes, P. (2018). Portugal and Chile: Longing for sustainable forestry while rising from the ashes. Environmental Science & Policy, 81, 104-107. https://doi.org/10.1016/j.envsci.2017.11.006

Goss, M., Swain, D., Abatzoglou, J., Sarhadi, A., Kolden, C., Williams, A., & Diffenbaugh, N. (2020). Climate change is increasing the likelihood of extreme autumn wildfire conditions across California. Environmental Research Letters, 15, 094016. https://doi.org/10.1088/1748-9326/ab83a7

Govender, N., Trollope, W., & van Wilgen, B. (2006). The effect of fire season, fire frequency, rainfall and management on fire intensity in savanna vegetation in Africa. Journal of Applied Ecology, 43 (4). https://doi.org/10.1111/j.1365-2664.2006.01184.x

Haberl, H, Erb, K-H., & Krausmann, F. (2014). Human Appropriation of Net Primary Production: Patterns, Trends, and Planetary Boundaries. Annual Review of Environment and Resources, 39, 363-391. https://doi.org/10.1146/annurev-environ-121912-094620

Haberl, H., Erb, K-H., Krausmann, F., Gaube, V., Bondeau, A., Plutzar, C., Gingrich, S., Lucht, W., & Fischer-Kowalski, M. (2007). Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. PNAS, 104 (31), 12942-12947. https://doi.org/10.1073/pnas.0704243104

Haberl, H., Plutzar, C., Erb, K-H., Gaube, V., Pollheimer, M., Schulz, N. (2005). Human appropriation of net primary production as determinant of avifauna diversity in Austria. Agric. Ecosyst. Environ., 110 (3–4), 119–131.

Haddouchi, M., & Berrado, A. (2019). A survey of methods and tools used for interpreting Random Forest [Conference Presentation]. 2019 1st International Conference on Smart Systems and Data Science (ICSSD). https://doi.org/10.1109/ICSSD47982.2019.9002770

Hadjigeorgiou, I. (2011). Past, present and future of pastoralism in Greece. Pastoralism: Research, Policy and Practice, 1 (24). https://doi.org/10.1186/2041-7136-1-24

Hall, J., Loboda, T., Giglio, L., & McCarty, G. (2016). A MODIS-based burned area assessment for Russian croplands: Mapping requirements and challenges. Remote Sensing of Environment, 184, 506-521. https://doi.org/10.1016/j.rse.2016.07.022

Harper, A., Cox, P., Friedlingstein, P., Wiltshire, A., Jones, C., Sitch, S., Mercado, L., Groenendijk, M., Robertson, E., Kattge, J., Bonisch, G., Atkin, O., Bahn, M., Cornelissen, J., Niinemets, U., Onipchenko, V., Penuelas, J., Poorter, L., Reich, P., Soudzilovskaia, N., & van Bodegom, P. (2016). Improved representation of plant functional types and physiology in the Joint UK Environment Simulator (JULES v4.2) using plant trait information. Geoscientific Model Development, 9, 2415–2440. https://doi.org/10.5194/gmd-9-2415-2016

Hurtt., G., Chini, L., Sahajpal, R., Frokling, S., Bodirsky, B., Calvin, K., Doelman, J., Fisk., J., Fujimori, S., Goldewijk, K., Hasegawa, T., Havlik, P., Heinimann, A., Humpenoder, F., Jungclaus, J., Kaplan, J., Kennedy, J., Krisztin, T., Lawrence, D., Lawrence, P., Ma, L., Mertz, O., Pongratz, J., Popp, A., Poulter, B., Riahi, K., Shevliakova, E., Stehfest, E., Thornton, P., Tubiello, F., van Vuuren, D & Zhang, X. (2020). Harmonization of global land use change and management for the period 850-2100 (LUH2) for CMIP6. Geoscientific. Model Development., 13, 5425–5464. https://doi.org/10.5194/gmd-13-5425-2020

Intergovernmental Panel on Climate Change (IPCC) (2022). Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press.

International Union for the Conservation of Nature (IUCN) (2015). Gridded Species Distribution: Global Mammal & Reptile Richness Grids, 2015 Release. https://doi.org/10.7927/H4N014G5

Jacobson, A., Riggio, J., Tait, A., & Baillie, J. (2019). Global areas of low human impact (‘Low Impact Areas’) and fragmentation of the natural world. Scientific Reports, 9, 14179. https://doi.org/10.1038/s41598-019-50558-6

Jakimow, B., Griffiths, P., van der Linden, S., & Hostert, P. (2018). Mapping pasture management in the Brazilian Amazon from dense Landsat time series. Remote Sensing of Environment, 205, 453–468. https://doi.org/10.1016/j.rse.2017.10.009

Jakovac, C. C., Dutrieux, L. P., Siti, L., Peña-Claros, M., & Bongers, F. (2017). Spatial and temporal dynamics of shifting cultivation in the middle-Amazonas river: Expansion and intensification. PLOS ONE, 12(7), e0181092-. https://doi.org/10.1371/journal.pone.0181092

Johansson, M. U., Senay, S. D., Creathorn, E., Kassa, H., & Hylander, K. (2019). Change in heathland fire sizes inside vs. outside the Bale Mountains National Park, Ethiopia, over 50 years of fire-exclusion policy: lessons for REDD+. Ecology and Society, 24(4), 26. https://doi.org/10.5751/ES-11260-240426

Kalies, E., Larissa, L., & Kent, Y. (2016). Tamm Review: Are fuel treatments effective at achieving ecological and social objectives? A systematic review. Forest Ecology and Management, 375, 84-95. https://doi.org/10.1016/j.foreco.2016.05.021

Kastner, T., Matej, S., Forrest, M., & Erb K-H. (2021). Land use intensification increasingly drives the spatiotemporal patterns of the global human appropriation of net primary production in the last century. Global Change Biology, 28 (1), 307-332. https://doi.org/10.1111/gcb.15932

Kelley, D. I., Bistinas, I., Whitley, R., Burton, C., Marthews, T. R., & Dong, N. (2019). How contemporary bioclimatic and human controls change global fire regimes. Nature Climate Change, 9(9), 690–696. https://doi.org/10.1038/s41558-019-0540-7

Krausmann, F., Erb, K-H., Gingrich, S., Haberl, H., Bondeau, A., Gaube, V., Lauk, C., Plutzar, C., & Searchinger, T. (2013). Global human appropriation of net primary production doubled in the 20th century. PNAS, 100 (25), 10324-10329. https://doi.org/10.1073/pnas.1211349110

Krausmann, F., Gingrich, S., Haberl, H., Erb, K-H., Musel, A., Kastner, T., Kohlheb, N., Niedertscheider, M., & Schwarzlmuller, E. (2012). Long-term trajectories of the human appropriation of net primary production: Lessons from six national case studies. Ecological Economics, 77, 129-138.

Krawchuk, M. A., Moritz, M. A., Parisien, M.-A., van Dorn, J., & Hayhoe, K. (2009). Global Pyrogeography: The Current and Future Distribution of Wildfire. PLOS ONE, 4(4), e5102. https://doi.org/10.1371/journal.pone.0005102

Krywinski, M., & Altman, N. (2017). Classification and regression trees. Nature Methods, 14, 757-758. https://doi.org/10.1038/nmeth.4370

Kull, C. (2004). Isle of Fire: The Political Ecology of Landscape Burning in Madagascar. Chicago: The University of Chicago Press.

Kumar, P., Kumar, S., & Joshi, L. (2015). Socioeconomic and Environmental Implications of Agricultural Residue Burning: a Case Study of Punjab, India. New Delhi: Springer.

Kummu, M., Taka, M. & Guillaume, J. (2018). Gridded global datasets for Gross Domestic Product and Human Development Index over 1990–2015. Scientific Data, 5, 180004. https://doi.org/10.1038/sdata.2018.4

Lauk, C., & Erb, K-H. (2016). A Burning Issue: Anthropogenic Vegetation Fires. In H. Haberl, M. Fischer-Kowalski, F. Krausmann, & V. Winiwarter (Eds.), Social Ecology: Society-Nature Relations across Time and Space (pp. 335–348). Springer International Publishing. https://doi.org/10.1007/978-3-319-33326-7_15

Laris, P. (2002). Burning the Seasonal Mosaic: Preventative Burning Strategies in the Wooded Savanna of Southern Mali. Human Ecology, 30(2), 155–186. https://doi.org/10.1023/A:1015685529180

Lin, Y., Deng, X., Li, X., & Ma, E. (2014). Frontiers in Earth Science, 8(4), 512-523. https://doi.org/ 10.1007/s11707-014-0426-y

Liu, T., Marlier, M. E., Karambelas, A., Jain, M., Singh, S., Singh, M. K., Gautam, R., & DeFries, R. S. (2019). Missing emissions from post-monsoon agricultural fires in northwestern India: regional limitations of MODIS burned area and active fire products. Environmental Research Communications, 1(1), 011007. https://doi.org/10.1088/2515-7620/ab056c

Lovelace, R., Birkin, M., Ballas, D., & van Leeuwen, E. (2015). Evaluating the Performance of Iterative Proportional Fitting for Spatial Microsimulation: New Tests for an Established Technique, Journal of Artificial Societies and Social Simulation, 18 (2), 21. https://doi.org/ 10.18564/jasss.2768

Malek, Ž., Douw, B., van Vliet, J., van der Zanden, E. H., & Verburg, P. H. (2019). Local land-use decision-making in a global context. Environmental Research Letters, 14(8), 083006. https://doi.org/10.1088/1748-9326/ab309e

Malek, Ž., & Verburg, P. H. (2020). Mapping global patterns of land use decision-making. Global Environmental Change, 65, 102170. https://doi.org/10.1016/j.gloenvcha.2020.102170

Mangeon, S., Voulgarakis, A., Gilham, R., Harper, A., Sitch, S., & Folberth, G. (2016). INFERNO: a fire and emissions scheme for the UK Met Office’s Unified Model. Geoscientific Model Development, 9(8), 2685–2700. https://doi.org/10.5194/gmd-9-2685-2016

MacDonald, D., Crabtree, J., Wiesinger, G., Dax, T., Stamou, N., Fleury, P., Lazpita, J., & Gibon A. (2000). Agricultural abandonment in mountain areas of Europe: Environmental consequences and policy response. Journal of Environmental Management, 59 (1), 47-69. https://doi.org/10.1006/jema.1999.0335

Mayer, A., Kaufmann, L., Kalt, G., Matej, S., Theurl, M., Morais, T., Leip, A., & Erb, K-H. (2021). Applying the Human Appropriation of Net Primary Production framework to map provisioning ecosystem services and their relation to ecosystem functioning across the European Union. Ecosystem Services, 51, 101344. https://doi.org/10.1016/j.ecoser.2021.101344

McCarty, J., Korontzi, S., Justice, C., & Loboda, T. (2009). The spatial and temporal distribution of crop residue burning in the contiguous United States, Science of The Total Environment, 407 (21), 5701-5712. https://doi.org/10.1016/j.scitotenv.2009.07.009

McWethy, D. B., Higuera, P. E., Whitlock, C… & Tepley, A. J. (2013). A conceptual framework for predicting temperate ecosystem sensitivity to human impacts on fire regimes. Global Ecology and Biogeography, 22(8), 900–912. https://doi.org/10.1111/geb.12038

Melo, F. (2013). Area under the ROC Curve. In: Dubitzky W., Wolkenhauer O., Cho KH., Yokota H. (eds) Encyclopedia of Systems Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9863-7_209

Mertz, O., Padoch, C., Fox, J., Cramb, R. A., Leisz, S. J., Lam, N. T., & Vien, T. D. (2009). Swidden Change in Southeast Asia: Understanding Causes and Consequences. Human Ecology, 37(3), 259–264. http://www.jstor.org/stable/40343969

Millington, J., Perry G., & Romero-Calcerrada, R. (2007). Regression Techniques for Examining Land Use/Cover Change: A Case Study of a Mediterranean Landscape. Ecosystems, 10, 562-578. https://doi.org/10.1007/s10021-007-9020-4

Mingers, J. (1989). An Empirical Comparison of Pruning Methods for Decision Tree Induction. Machine Learning, 5, 227-243. https://doi.org/10.1023/A:1022604100933

Mistry, J., Berardi, A., Andrade, V., Kraho, T., Kraho, P., & Leonardos, O. (2005). Indigenous Fire Management in the cerrado of Brazil: The Case of the Kraho of Tocantins. Human Ecology, 33 (3), 365-386. https://www.jstor.org/stable/4603577

Nepstad, D. C., Verssimo, A., Alencar, A., Nobre, C., Lima, E., Lefebvre, P., Schlesinger, P., Potter, C., Moutinho, P., Mendoza, E., Cochrane, M., & Brooks, V. (1999). Large-scale impoverishment of Amazonian forests by logging and fire. Nature, 398(6727), 505–508. https://doi.org/10.1038/19066

Niedertscheider, M., & Erb, K-H. (2014). Land system change in Italy from 1884 to 2007: Analysing the North–South divergence on the basis of an integrated indicator framework. Land Use Policy, 39, 366–375. https://doi.org/10.1016/j.landusepol.2014.01.015

Osborne, T., Gornall, J., Hooker, J., Williams, K., Wiltshire, A., Betts, R., & Wheeler, T. (2015). JULES-crop: a parameterisation of crops in the Joint UK Land Environment Simulator. Geosci. Model. Dev. 8, 1139-1155. https://doi.org/10.5194/gmd-8-1139-2015

Page S., & Hooijer A. (2016). In the line of fire: the peatlands of Southeast Asia. Phil. Trans. R. Soc., B3712015017620150176. http://doi.org/10.1098/rstb.2015.0176

Pausas, J. G., & Keeley, J. E. (2019). Wildfires as an ecosystem service. Frontiers in Ecology and the Environment, 17 (5), 289–295. https://doi.org/10.1002/fee.2044

Pavleichik, V., Chibilev, A. (2018). Steppe Fires in Conditions the Regime of Reserve and Under Changing Anthropogenic Impacts. Geography & Natural Resources, 39, 212–221. https://doi.org/10.1134/S1875372818030046

Peco, B., Sanchez, A., & Azcarate, F. (2006). Abandonment in grazing systems: Consequences for vegetation and soil. Agriculture, Ecosystems & Environment. 113 (1-4), 284-294. https://doi.org/10.1016/j.agee.2005.09.017

Peng, L., Zhang, Q., & He, K. (2016). Survey-based pollutant emission inventory from open burning of straw in China. Environmental Sciences, 8, 1109-1118. https://doi.org/10.13198/j.issn.1001-6929.2016.08.02

Perkins, O., Smith, C., & Millington, J. (2021). Human-fire interactions: A Global Database. [Conference Presentation]. American Association of Geographers Annual Meeting (AAG), Seattle, USA. https://doi.org/10.5281/zenodo.4661182

Perkins, O., & Millington, J. (2021a). DAFI: a global database of Anthropogenic Fire. https://doi.org/10.6084/m9.figshare.c.5290792.v4

Perkins, O. & Millington, J. (2021b). Fire_GBM: Code for development of a global behavioural model of human fire impacts. Github repository. https://github.com/OliPerkins1987/Fire_GBM

Plehwe, D. (2021). The Development of Neoliberal Measures of Competitiveness. In Russ, D., & Stafford, J. (Eds.), Competition in World Politics (pp. 155-181). Bielefeld: transcript Verlag. https://doi.org/10.1515/9783839457474

Pliscoff, P., Folchi, M., Aliste, E., Cea, D., & Simonetti, J. (2020). Chile mega-fire 2017: An analysis of social representation of forest plantation territory. Applied Geography, 119, 102226. https://doi.org/10.1016/j.apgeog.2020.102226

Popp, A., Calvin, K., Fujimori, S., Havlik, P., Humpenoder, F., Stehfest, E., Bodirsky., B., Dietrich, J., Doelmann, J., Gusti, M., Hasegawa, T., Kyle, P., Obersteiner, M., Tabeua, A., Takahashi, K., Valin, H., Waldhoff, S., Weindl, I., Wise, M., Kriegler, E., Lotze-Campen, H., Fricko, O., Riahi, K., & van Vuuren, A. (2017). Land-use futures in the shared socio-economic pathways. Global Environmental Change, 42, 331-345. https://doi.org/10.1016/j.gloenvcha.2016.10.002

Pyne, S. J. (2001). Fire: A Brief History. University of Washington Press. http://www.jstor.org/stable/j.ctvcwnf8f

Rabin, S. S., Magi, B. I., Shevliakova, E., & Pacala, S. W. (2015). Quantifying regional, time-varying effects of cropland and pasture on vegetation fire. Biogeosciences, 12(22), 6591–6604. https://doi.org/10.5194/bg-12-6591-2015

Rabin, S. S., Ward, D. S., Malyshev, S. L., Magi, B. I., Shevliakova, E., & Pacala, S. W. (2018). A fire model with distinct crop, pasture, and non-agricultural burning: use of new data and a model-fitting algorithm. Geoscientific Model Development, 11(2), 815–842. https://doi.org/10.5194/gmd-11-815-2018

Ripley, B. (2019). tree: Classification and Regression Trees. R package version 1.0-40. https://CRAN.R-project.org/package=tree

Rounsevell, M. D. A., Robinson, D. T., & Murray-Rust, D. (2012). From actors to agents in socio-ecological systems models. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1586), 259–269. https://doi.org/10.1098/rstb.2011.0187

Running, S. (2012). A Measurable Planetary Boundary for the Biosphere. Science, 337 (6101), 1458-1459. https://doi.org/10.1126/science.1227620

Saladyga, T., Hessl, A., Nachin, B., & Pederson, N. (2013). Privatization, Drought, and Fire Exclusion in the Tuul River Watershed, Mongolia. Ecosystems, 16(6), 1139–1151. https://doi.org/10.1007/s10021-013-9673-0

Sanchez, P., Palm, C., & Buol, S. (2003). Fertility capability soil classification: a tool to help assess soil quality in the tropics. Geoderma, 114 (3-4), 157-185. https://doi.org/10.1016/S0016-7061(03)00040-5

Seijo, F., & Gray, R. (2012). Pre-Industrial Anthropogenic Fire Regimes in Transition: The Case of Spain and its Implications for Fire Governance in Mediterranean Type Biomes. Human Ecology Review, 19(1), 58–69. http://www.jstor.org/stable/24707615

Sembhi, H., Wooster, M., Zhang, T, Sharma, S., Singh, N., Agarwal., S., Boesch, H., Gupta, S., Misra., A., Tripathi, S., Mor., S., & Khaiwal, R. (2020). Post-monsoon air quality degradation across Northern India: assessing the impact of policy-related shifts in timing and amount of crop residue burnt. Environmental Research Letters, 15(10), 104067. https://doi.org/10.1088/1748-9326/aba714

Silva Sande, J., Rego, F., Fernandes P., & Rigolot, E. (2010). Towards Integrated Fire Management. Outcomes of the European Project Fire Paradox. Finald: European Forestry Institute.

Sletto, B. (2008). The Knowledge that Counts: Institutional Identities, Policy, Science, and the Conflict Over Fire Management in the Gran Sabana, Venezuela. World Development, 36 (10), 1938-1955. https://doi.org/10.1016/j.worlddev.2008.02.008

Smil, V. (1999). Crop residues incorporate more than half of the world’s agricultural phytomass. BioScience, 49(4), 299–308. http://www.jstor.org/stable/10.1525/bisi.1999.49.4.299

Smith, C., Perkins, O. & Mistry, J. (2022). Global decline in subsistence-oriented and smallholder fire use. Nature Sustainability. https://doi.org/10.1038/s41893-022-00867-y

Smith, B., Warlind, D., Arneth, A., Hickler, T., Leadley, P., Siltberg, J., & Zaehle, S. (2014). Implication of N cycling and N limitations on primary production in an individual-based dynamic vegetation model. Biogeosciences, 11, 2027-2054. https://doi.org/10.5194/bg-11-2027-2014

Solomon, T., Snyman, H., & Smit, G. (2007). Cattle-rangeland management practices and perceptions of pastoralists towards rangeland degradation in the Borana zone of southern Ethiopia. Journal of Environmental Management, 82 (4), 481-494. https://doi.org/10.1016/j.jenvman.2006.01.008

Steen-Adams, M., Charnley, S., & Adams, M. (2017). Historical perspective on the influence of wildfire policy, law, and informal institutions on management and forest resilience in a multi-ownership, frequent-fire, coupled human and natural system in Oregon, USA. Ecology and Society 22(3):23. https://doi.org/10.5751/ES-09399-220323

Stewart, P., Garvey, B., Torres, M., & de Farias, T. (2020). Amazonian destruction, Bolsonaro and COVID-19: Neoliberalism unchained. Capital & Class, 45 (2), 173-181. https://doi.org/ 10.1177/0309816820971131

Suhs, R., Giehl, E., & Peroni, N. (2020). Preventing traditional management can cause grassland loss within 30 years in southern Brazil. Scientific Reports, 10, 783. https://doi.org/10.1038/s41598-020-57564-z

Sun, D., Ge, Y., & Zhou, Y. (2019). Punishing and rewarding: How do policy measures affect crop straw use by farmers? An empirical analysis of Jiangsu Province of China. Energy Policy, 134, 110882. https://doi.org/10.1016/j.enpol.2019.110882

Suyanto, S., G. Applegate, R. P. Permana, N. Khususiyah, and I. Kurniawan. (2004). The role of fire in changing land use and livelihoods in Riau-Sumatra. Ecology and Society, 9(1): 15. http://www.ecologyandsociety.org/vol9/iss1/art15/

Taheripour, F., Richards, P., & Tyner, W. (2019). Consequences of a Trade War. Chinese tariffs and land use change emissions in Brazil [Conference presentation]. Agricultural & Applied Economics Associated Annual Meeting, Atlanta, Georgia. https://doi.org/10.22004/ag.econ.291073Taylor, C. A. (2003). Rangeland Monitoring and Fire: Wildfires and Prescribed Burning, Nutrient Cycling, and Plant Succession. Arid Land Research and Management, 17(4), 429–438. https://doi.org/10.1080/713936109

Teckentrup, L., Harrison, S. P., Hantson, S., Heil, A., Melton, J. R., Forrest, M., Li, F., Yue, C., Arneth, A., Hickler, T., Sitch, S., & Lasslop, G. (2019). Response of simulated burned area to historical changes in environmental and anthropogenic factors: a comparison of seven fire models. Biogeosciences, 16(19), 3883–3910. https://doi.org/10.5194/bg-16-3883-2019

Trigg, S., Dempewolf, J., Elgamri, M., Justice, C., & Gorsevski, V. (2012). Fire and land use change heighten tensions between pastoral nomads and mechanized farmers in Kordofan and White Nile States, Sudan. Journal of Land Use Science, 7 (3). https://doi.org/10.1080/1747423X.2011.565372

United Nations (UN) (2020). Human Development Index. http://hdr.undp.org/en/content/human-development-index-hdi

United Nations Environment Programme World Conservation Monitoring Centre (UNEP-WCMC) (2020). Global Protected Areas Database. https://www.protectedplanet.net

United Nations Environment Programme (UNEP) (2022). Spreading like Wildfire: The Rising Threat of Extraordinary Landscape Fires. A UNEP Rapid Response Assessment. Nairobi.

Václavík, T., Lautenbach, S., Kuemmerle, T., & Seppelt, R. (2013). Mapping global land system archetypes. Global Environmental Change, 23 (6), 1637-1647. https://doi.org/10.1016/j.gloenvcha.2013.09.004

van Oldenborgh, G., Krikken, F., Lewis, S., Leach, N., Lehner, F., Saunders, K., van Weele, M., Haustein, K., Li, S., Wallom, D., Sparrow, S., Arrighi, J., Singh, R., van Aalst, M., Philip, S., Vautard, R., & Otto, F. (2021) Attribution of the Australia bushfire risk to anthropogenic climate change. Natural Hazards and Earth System Sciences, 21 (3), 941-960.. https://doi.org/10.5194/nhess-21-941-2021

van Vliet, N., Mertz, O., Heinimann, A., Langanke, T., Pascual, U., Schmook, B., Adams, C., Schmidt-Vogt., Messerli, P., Leisz, S., Castella, J-C., Jorgensen, L., Birch-Thomsen, T., Hett, C., Bech-Bruun, T., Ickowitz, A., Vu, K-C., Yasukuki, K., & Ziegler, A. D. (2012). Trends, drivers and impacts of changes in swidden cultivation in tropical forest-agriculture frontiers: A global assessment. Global Environmental Change, 22(2), 418–429. https://doi.org/10.1016/j.gloenvcha.2011.10.009

van Zyl, J. (2001) The Shuttle Radar Topography Mission (SRTM): a breakthrough in remote sensing of topography. Acta Astronautica, 48 (5-12), 559-565. https://doi.org/10.1016/S0094-5765(01)00020-0

Varela, E., Gorriz-Mifsud, E., Ruiz-Mirazo, J., & Lopez-i-Gelats, F. (2018). Payment for Targeted Grazing: Integrating Local Shepherds into Wildfire Prevention. Forests, 9 (8), 464. https://doi.org/10.3390/f9080464

Verburg, P., Eliis, E., & Letourneau, A. (2011). A global assessment of market accessibility and market influence for global environmental change studies. Environmental Research Letters, 6 (3), 0304019. https://doi.org/10.1088/1748-9326/6/3/034019

Verburg, P., Alexander, P., Evans, T., Magliocca, N., Malek, Ž., Rounsevell, M., & van Vliet J. (2019). Beyond land cover change: towards a new generation of land use models. Current Opinion in Environmental Sustainability, 38, 77-85. https://doi.org/10.1016/j.cosust.2019.05.002

Vitousek, P., Mooney, H., Lubchenco, J., & Melillo, J. (1997). Human Domination of Earth’s Ecosystems. Science, 277 (5325), 494-499. https://doi.org/ 10.1126/science.277.5325.494

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L., Francois, R., Groelmund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T., Miller, E., Bache, S., Muller, K., Ooms, J., Robinson, D., Seidel, D., Spinu, V., Takahasi, K., Vaughan, D., Wilke, C., Woo, K., & Yutani, H. (2019). Welcome to the tidyverse. Journal of Open Source Software, 4(43), 1686. https://doi.org/10.21105/joss.01686

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2022 Oliver Perkins, Sarah Matej, Karlheinz Erb, James Millington