Abstract
Issues of scale pervade every aspect of socio-environmental systems (SES) modeling. They can stem from the context of both the modeling process, and the purpose of the integrated model. A webinar hosted by the National Socio-Environmental Synthesis Center (SESYNC), The Integrated Assessment Society (TIAS) and the journal Socio-Environmental Systems Modelling (SESMO) explored how model stakeholders can address issues of scale. Four key considerations were raised: (1) being aware of our influence on the modeling pathway, and developing a shared language to overcome cross-disciplinary communication barriers; (2) that localized effects may aggregate to influence behavior at larger scales, necessitating the consideration of multiple scales; (3) that these effects are “patterns†that can be elicited to capture understanding of a system (of systems); and (4) recognition that the scales must be relevant to the involved stakeholders and decision makers. Key references in these four areas of consideration are presented to complement the discussion of confronting scale as a grand challenge in socio-environmental modeling. By considering these aspects within the integrated modeling process, we are better able to confront the issues of scale in socio-environmental modeling.
References
Ayllón, D., Railsback, S.F., Gallagher, C., Augusiak, J., Baveco, H., Berger, U., Charles, S., Martin, R., Focks, A., Galic, N., Liu, C., van Loon, E.E., Nabe-Nielsen, J., Piou, C., Polhill, J.G., Preuss, T.G., Radchuk, V., Schmolke, A., Stadnicka-Michalak, J., Thorbek, P. & Grimm, V. (2021). Keeping modelling notebooks with TRACE: Good for you and good for environmental research and management support. Environmental Modelling & Software, 136, 104932. https://doi.org/10.1016/j.envsoft.2020.104932
Bankes, S. (1993). Exploratory Modeling for Policy Analysis. Operations Research, 41, 435–449. https://doi.org/10.1287/opre.41.3.435
Bar-Yam, Y. (1997). Dynamics of complex systems. Perseus Books, USA.
Braun, W. (2002). The System Archetypes. System, pp. 1–26. Available at: https://www.albany.edu/faculty/gpr/PAD724/724WebArticles/sys_archetypes.pdf
Bryant, R.H., Snow, V.O., Shorten, P.R., & Welten, B.G. (2020). Can alternative forages substantially reduce N leaching? findings from a review and associated modelling. New Zealand Journal of Agricultural Research, 63, 3–28. https://doi.org/10.1080/00288233.2019.1680395
Castronova, A.M., Goodall, J.L., & Ercan, M.B. (2013). Integrated modeling within a Hydrologic Information System: An OpenMI based approach. Environmental Modelling & Software, 39, 263–273. https://doi.org/10.1016/j.envsoft.2012.02.011
Chérel, G., Cottineau, C. & Reuillon, R. (2015). Beyond Corroboration: Strengthening Model Validation by Looking for Unexpected Patterns. PLoS ONE, 10, e0138212. https://doi.org/10.1371/journal.pone.0138212
Cirillo, P. & Taleb, N.N. (2020). Tail risk of contagious diseases. Nature Physics, 16, 606–613. https://doi.org/10.1038/s41567-020-0921-x
David, O., Ascough, J.C., Lloyd, W., Green, T.R., Rojas, K.W., Leavesley, G.H. & Ahuja, L.R. (2013). A software engineering perspective on environmental modeling framework design: The Object Modeling System. Environmental Modelling & Software, 39, 201–213. https://doi.org/10.1016/j.envsoft.2012.03.006
DeAngelis, D.L. & Mooij, W.M. (2003). In praise of mechanistically rich models. In: C.D. Canham, J.J. Cole, & W.K. Lauenroth (Eds.), Models in Ecosystem Science. Princeton University Press, Princeton, New Jersey, pp. 63–82.
Egli, L., Weise, H., Radchuk, V., Seppelt, R. & Grimm, V. (2019). Exploring resilience with agent-based models: State of the art, knowledge gaps and recommendations for coping with multidimensionality. Ecological Complexity, 40, 100718. https://doi.org/10.1016/j.ecocom.2018.06.008
Elsawah, S., Filatova, T., Jakeman, A.J., Kettner, A.J., Zellner, M.L., Athanasiadis, I.N., Hamilton, S.H., Axtell, R.L., Brown, D.G., Gilligan, J.M., Janssen, M.A., Robinson, D.T., Rozenberg, J., Ullah, I.I.T. & Lade, S.J. (2020). Eight grand challenges in socio-environmental systems modeling. Socio-Environmental Systems Modelling, 2, 16226. https://doi.org/10.18174/sesmo.2020a16226
Eusgeld, I., Nan, C. & Dietz, S. (2011). “System-of-systems” approach for interdependent critical infrastructures. Reliability Engineering & System Safety, 96, 679–686. https://doi.org/10.1016/j.ress.2010.12.010
Fielke, S.J., Kaye-Blake, W., Mackay, A., Smith, W., Rendel, J. & Dominati, E. (2018). Learning from resilience research: Findings from four projects in New Zealand. Land Use Policy, 70, 322–333. https://doi.org/10.1016/j.landusepol.2017.10.041
Gamma, E. (Ed.) (1994). Design patterns: elements of reusable object-oriented software, Addison-Wesley professional computing series. Addison-Wesley, Reading, Mass.
Grimm, V., Augusiak, J., Focks, A., Frank, B.M., Gabsi, F., Johnston, A.S.A., Liu, C., Martin, B.T., Meli, M., Radchuk, V., Thorbek, P. & Railsback, S.F. (2014). Towards better modelling and decision support: Documenting model development, testing, and analysis using TRACE. Ecological Modelling, 280, 129–139. https://doi.org/10.1016/j.ecolmodel.2014.01.018
Grimm, V. & Railsback, S.F. (2012). Pattern-oriented modelling: a ‘multi-scope’ for predictive systems ecology. Philosophical Transactions of the Royal Soceity B, 367, 298–310. https://doi.org/10.1098/rstb.2011.0180
Grimm, V., Railsback, S.F., Vincenot, C.E., Berger, U., Gallagher, C., DeAngelis, D.L., Edmonds, B., Ge, J., Giske, J., Groeneveld, J., Johnston, A.S.A., Milles, A., Nabe-Nielsen, J., Polhill, J.G., Radchuk, V., Rohwäder, M.-S., Stillman, R.A., Thiele, J.C. & Ayllón, D. (2020). The ODD Protocol for Describing Agent-Based and Other Simulation Models: A Second Update to Improve Clarity, Replication, and Structural Realism. Journal of Artificial Societies & Social Simulation, 23, 7. https://doi.org/10.18564/jasss.4259
Hamilton, S.H., ElSawah, S., Guillaume, J.H.A., Jakeman, A.J. & Pierce, S.A. (2015). Integrated assessment and modelling: Overview and synthesis of salient dimensions. Environmental Modelling & Software, 64, 215–229. https://doi.org/10.1016/j.envsoft.2014.12.005
Hutton, E.W.H, Piper, M.D. & Tucker, G.E. (2020). The Basic Model Interface 2.0: A standard interface for coupling numerical models in the geosciences. Journal of Open Source Software, 5, 2317. https://doi.org/10.21105/joss.02317
Iwanaga, T., Wang, H.-H., Hamilton, S.H., Grimm, V., Koralewski, T.E., Salado, A., Elsawah, S., Razavi, S., Yang, J., Glynn, P., Badham, J., Voinov, A., Chen, M., Grant, W.E., Peterson, T.R., Frank, K., Shenk, G., Barton, C.M., Jakeman, A.J. & Little, J.C. (2021a). Socio-technical scales in socio-environmental modeling: Managing a system-of-systems modeling approach. Environmental Modelling & Software, 135, 104885. https://doi.org/10.1016/j.envsoft.2020.104885
Iwanaga, T., Wang, H.-H., Koralewski, T.E., Grant, W.E., Jakeman, A.J. & Little, J.C. (2021b). Toward a complete interdisciplinary treatment of scale: Reflexive lessons from socioenvironmental systems modeling. Elementa: Science of the Anthropocene, 9(1), 00182. https://doi.org/10.1525/elementa.2020.00182
Jafino, B.A., Haasnoot, M., Kwakkel, J.H., 2019. What are the merits of endogenising land-use change dynamics into model-based climate adaptation planning? Socio-Environmental Systems Modelling, 1, 16126. https://doi.org/10.18174/sesmo.2019a16126
John, A., Horne, A., Nathan, R., Stewardson, M., Webb, J.A., Wang, J. & Poff, N.L. (2021). Climate change and freshwater ecology: Hydrological and ecological methods of comparable complexity are needed to predict risk. WIREs Climate Change, 12, e692. https://doi.org/10.1002/wcc.692
Koo, H., Iwanaga, T., Croke, B.F.W., Jakeman, A.J., Yang, J., Wang, H.-H., Sun, X., Lü, G., Li, X., Yue, T., Yuan, W., Liu, X. & Chen, M. (2020). Position Paper: Sensitivity Analysis of Spatially Distributed Environmental Models- A pragmatic framework for the exploration of uncertainty sources. Environmental Modelling & Software, 134, 104857. https://doi.org/10.1016/j.envsoft.2020.104857
Kwakkel, J.H., Auping, W.L. & Pruyt, E. (2013). Dynamic scenario discovery under deep uncertainty: The future of copper. Technological Forecasting & Social Change, 80, 789–800. https://doi.org/10.1016/j.techfore.2012.09.012
Lade, S., Walker, B. & Haider, L. (2020). Resilience as pathway diversity: linking systems, individual, and temporal perspectives on resilience. Ecology & Society, 25(3), 19. https://doi.org/10.5751/ES-11760-250319
Lempert, R., Popper, S. & Bankes, S. (2003). Shaping the Next One Hundred Years: New Methods for Quantitative, Long-Term Policy Analysis. RAND Corporation. https://doi.org/10.7249/MR1626
Ligmann-Zielinska, A., Siebers, P.-O., Magliocca, N., Parker, D.C., Grimm, V., Du, J., Cenek, M., Radchuk, V., Arbab, N.N., Li, S., Berger, U., Paudel, R., Robinson, D.T., Jankowski, P., An, L., Ye, X., 2020. ‘One Size Does Not Fit All’: A Roadmap of Purpose-Driven Mixed-Method Pathways for Sensitivity Analysis of Agent-Based Models. Journal of Artificial Societies & Social Simulation, 23, 6. https://doi.org/10.18564/jasss.4201
Little, J.C., Hester, E.T., Elsawah, S., Filz, G.M., Sandu, A., Carey, C.C., Iwanaga, T. & Jakeman, A.J. (2019). A tiered, system-of-systems modeling framework for resolving complex socio-environmental policy issues. Environmental Modelling & Software, 112, 82–94. https://doi.org/10.1016/j.envsoft.2018.11.011
Meadows, D.H. (2008). Thinking in Systems: A Primer. Chelsea Green Publishing.
Meinen, B.U. & Robinson, D.T. (2021). Agricultural erosion modelling: Evaluating USLE and WEPP field-scale erosion estimates using UAV time-series data. Environmental Modelling & Software, 137, 104962. https://doi.org/10.1016/j.envsoft.2021.104962
Musters, C.J.M., de Graaf, H.J. & ter Keurs, W.J. (1998). Defining socio-environmental systems for sustainable development. Ecological Economics, 26, 243–258. https://doi.org/10.1016/S0921-8009(97)00104-3
Noble, M.M., Harasti, D., Pittock, J. & Doran, B. (2021). Using GIS fuzzy-set modelling to integrate social-ecological data to support overall resilience in marine protected area spatial planning: A case study. Ocean & Coastal Management, 212, 105745. https://doi.org/10.1016/j.ocecoaman.2021.105745
Peckham, S.D., Hutton, E.W.H. & Norris, B. (2013). A component-based approach to integrated modeling in the geosciences: The design of CSDMS. Computers & Geosciences, 53, 3–12. https://doi.org/10.1016/j.cageo.2012.04.002
Penning de Vries, F.W.T. (1977). Evaluation of simulation models in agriculture and biology: Conclusions of a workshop. Agricultural Systems, 2, 99–107. https://doi.org/10.1016/0308-521X(77)90063-4
Potter, S., Doran, B. & Mathews, D. (2016). Modelling collective Yawuru values along the foreshore of Roebuck Bay, Western Australia using fuzzy logic. Applied Geography, 77, 8–19. https://doi.org/10.1016/j.apgeog.2016.09.016
Rounsevell, M.D.A., Robinson, D.T. & Murray-Rust, D. (2012). From actors to agents in socio-ecological systems models. Philosophical Transactions of the Royal Society B, 367, 259–269. https://doi.org/10.1098/rstb.2011.0187
Schlüter, M., Müller, B. & Frank, K. (2019). The potential of models and modeling for social-ecological systems research: the reference frame ModSES. Ecology and Society, 24, art31. https://doi.org/10.5751/ES-10716-240131
Senge, P.M. (1990). The Fifth Discipline. Currency.
Špicar, R. (2014). System Dynamics Archetypes in Capacity Planning. Procedia Engineering, 24th DAAAM International Symposium on Intelligent Manufacturing and Automation, 2013, 69, 1350–1355. https://doi.org/10.1016/j.proeng.2014.03.128
Steinmann, P., Auping, W.L. & Kwakkel, J.H. (2020). Behavior-based scenario discovery using time series clustering. Technological Forecasting and Social Change, 156, 120052. https://doi.org/10.1016/j.techfore.2020.120052
The National Socio-Environmental Synthesis Center (2021). Confronting Issues of Scale in Socio-Environmental Modeling, Socio-Environmental Systems Modeling Series. 25 June 2021. Available at: https://www.youtube.com/watch?v=q5H7jdahJyc
Topping, C.J., Alrøe, H.F., Farrell, K.N. & Grimm, V. (2015). Per Aspera ad Astra: Through Complex Population Modeling to Predictive Theory. The American Naturalist, 186, 669–674. https://doi.org/10.1086/683181
Vemuri, V.R. (1978). Modeling of complex systems: an introduction, Operations research and industrial engineering. Academic Press, New York.
Voinov, A. & Shugart, H.H. (2013). “Integronsters”, integral and integrated modeling. Environmental Modelling & Software, 39, 149–158. https://doi.org/10.1016/j.envsoft.2012.05.014
Walker, W.E., Harremoës, P., Rotmans, J., van der Sluijs, J.P., van Asselt, M.B.A., Janssen, P. & Krayer von Krauss, M.P. (2003). Defining Uncertainty: A Conceptual Basis for Uncertainty Management in Model-Based Decision Support. Integrated Assessment, 4, 5–17. https://doi.org/10.1076/iaij.4.1.5.16466
Wang, H.-H. & Grant, W.E. (2021). Reflections of two systems ecologists on modelling coupled human and natural (socio-ecological, socio-environmental) systems. Ecological Modelling, 440, 109403. https://doi.org/10.1016/j.ecolmodel.2020.109403
West, S., Haider, L., Sinare, H. & Karpouzoglou, T. (2014). Beyond Divides: Prospects of Synergy between Resilience and Pathways Approaches to Sustainability. STEPS Working Paper.
Whelan, G., Kim, K., Pelton, M.A., Castleton, K.J., Laniak, G.F., Wolfe, K., Parmar, R., Babendreier, J. & Galvin, M. (2014). Design of a component-based integrated environmental modeling framework. Environmental Modelling & Software, 55, 1–24. https://doi.org/10.1016/j.envsoft.2014.01.016
Will, M., Dressler, G., Kreuer, D., Thulke, H.-H., Grêt-Regamey, A. & Müller, B. (2021). How to make socio-environmental modelling more useful to support policy and management? People & Nature 3, 560–572. https://doi.org/10.1002/pan3.10207
Zare, F., Guillaume, J.H.A., ElSawah, S., Croke, B., Fu, B., Iwanaga, T., Merritt, W., Partington, D., Ticehurst, J. & Jakeman, A.J. (2021). A formative and self-reflective approach to monitoring and evaluation of interdisciplinary team research: An integrated water resource modelling application in Australia. Journal of Hydrology, 596, 126070. https://doi.org/10.1016/j.jhydrol.2021.126070
Zhang, F., Chen, M., Kettner, A.J., Ames, D.P., Harpham, Q., Yue, S., Wen, Y. & Lü, G. (2021). Interoperability engine design for model sharing and reuse among OpenMI, BMI and OpenGMS-IS model standards. Environmental Modelling & Software, 144, 105164. https://doi.org/10.1016/j.envsoft.2021.105164
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2022 Takuya Iwanaga, Patrick Steinmann, Amir Sadoddin, Derek T. Robinson, Val Snow, Volker Grimm, Hsiao-Hsuan Wang