Perspectives on confronting issues of scale in systems modeling
Article Full Text (PDF)


socio-environmental modeling
integrated modeling
interdisciplinary scale

How to Cite

Iwanaga, T., Steinmann, P., Sadoddin, A., Robinson, D., Snow, V., Grimm, V., & Wang, H.-H. (2022). Perspectives on confronting issues of scale in systems modeling. Socio-Environmental Systems Modelling, 4.


Issues of scale pervade every aspect of socio-environmental systems (SES) modeling. They can stem from the context of both the modeling process, and the purpose of the integrated model. A webinar hosted by the National Socio-Environmental Synthesis Center (SESYNC), The Integrated Assessment Society (TIAS) and the journal Socio-Environmental Systems Modelling (SESMO) explored how model stakeholders can address issues of scale. Four key considerations were raised: (1) being aware of our influence on the modeling pathway, and developing a shared language to overcome cross-disciplinary communication barriers; (2) that localized effects may aggregate to influence behavior at larger scales, necessitating the consideration of multiple scales; (3) that these effects are “patterns” that can be elicited to capture understanding of a system (of systems); and (4) recognition that the scales must be relevant to the involved stakeholders and decision makers. Key references in these four areas of consideration are presented to complement the discussion of confronting scale as a grand challenge in socio-environmental modeling. By considering these aspects within the integrated modeling process, we are better able to confront the issues of scale in socio-environmental modeling.
Article Full Text (PDF)


Ayllón, D., Railsback, S.F., Gallagher, C., Augusiak, J., Baveco, H., Berger, U., Charles, S., Martin, R., Focks, A., Galic, N., Liu, C., van Loon, E.E., Nabe-Nielsen, J., Piou, C., Polhill, J.G., Preuss, T.G., Radchuk, V., Schmolke, A., Stadnicka-Michalak, J., Thorbek, P. & Grimm, V. (2021). Keeping modelling notebooks with TRACE: Good for you and good for environmental research and management support. Environmental Modelling & Software, 136, 104932.

Bankes, S. (1993). Exploratory Modeling for Policy Analysis. Operations Research, 41, 435–449.

Bar-Yam, Y. (1997). Dynamics of complex systems. Perseus Books, USA.

Braun, W. (2002). The System Archetypes. System, pp. 1–26. Available at:

Bryant, R.H., Snow, V.O., Shorten, P.R., & Welten, B.G. (2020). Can alternative forages substantially reduce N leaching? findings from a review and associated modelling. New Zealand Journal of Agricultural Research, 63, 3–28.

Castronova, A.M., Goodall, J.L., & Ercan, M.B. (2013). Integrated modeling within a Hydrologic Information System: An OpenMI based approach. Environmental Modelling & Software, 39, 263–273.

Chérel, G., Cottineau, C. & Reuillon, R. (2015). Beyond Corroboration: Strengthening Model Validation by Looking for Unexpected Patterns. PLoS ONE, 10, e0138212.

Cirillo, P. & Taleb, N.N. (2020). Tail risk of contagious diseases. Nature Physics, 16, 606–613.

David, O., Ascough, J.C., Lloyd, W., Green, T.R., Rojas, K.W., Leavesley, G.H. & Ahuja, L.R. (2013). A software engineering perspective on environmental modeling framework design: The Object Modeling System. Environmental Modelling & Software, 39, 201–213.

DeAngelis, D.L. & Mooij, W.M. (2003). In praise of mechanistically rich models. In: C.D. Canham, J.J. Cole, & W.K. Lauenroth (Eds.), Models in Ecosystem Science. Princeton University Press, Princeton, New Jersey, pp. 63–82.

Egli, L., Weise, H., Radchuk, V., Seppelt, R. & Grimm, V. (2019). Exploring resilience with agent-based models: State of the art, knowledge gaps and recommendations for coping with multidimensionality. Ecological Complexity, 40, 100718.

Elsawah, S., Filatova, T., Jakeman, A.J., Kettner, A.J., Zellner, M.L., Athanasiadis, I.N., Hamilton, S.H., Axtell, R.L., Brown, D.G., Gilligan, J.M., Janssen, M.A., Robinson, D.T., Rozenberg, J., Ullah, I.I.T. & Lade, S.J. (2020). Eight grand challenges in socio-environmental systems modeling. Socio-Environmental Systems Modelling, 2, 16226.

Eusgeld, I., Nan, C. & Dietz, S. (2011). “System-of-systems” approach for interdependent critical infrastructures. Reliability Engineering & System Safety, 96, 679–686.

Fielke, S.J., Kaye-Blake, W., Mackay, A., Smith, W., Rendel, J. & Dominati, E. (2018). Learning from resilience research: Findings from four projects in New Zealand. Land Use Policy, 70, 322–333.

Gamma, E. (Ed.) (1994). Design patterns: elements of reusable object-oriented software, Addison-Wesley professional computing series. Addison-Wesley, Reading, Mass.

Grimm, V., Augusiak, J., Focks, A., Frank, B.M., Gabsi, F., Johnston, A.S.A., Liu, C., Martin, B.T., Meli, M., Radchuk, V., Thorbek, P. & Railsback, S.F. (2014). Towards better modelling and decision support: Documenting model development, testing, and analysis using TRACE. Ecological Modelling, 280, 129–139.

Grimm, V. & Railsback, S.F. (2012). Pattern-oriented modelling: a ‘multi-scope’ for predictive systems ecology. Philosophical Transactions of the Royal Soceity B, 367, 298–310.

Grimm, V., Railsback, S.F., Vincenot, C.E., Berger, U., Gallagher, C., DeAngelis, D.L., Edmonds, B., Ge, J., Giske, J., Groeneveld, J., Johnston, A.S.A., Milles, A., Nabe-Nielsen, J., Polhill, J.G., Radchuk, V., Rohwäder, M.-S., Stillman, R.A., Thiele, J.C. & Ayllón, D. (2020). The ODD Protocol for Describing Agent-Based and Other Simulation Models: A Second Update to Improve Clarity, Replication, and Structural Realism. Journal of Artificial Societies & Social Simulation, 23, 7.

Hamilton, S.H., ElSawah, S., Guillaume, J.H.A., Jakeman, A.J. & Pierce, S.A. (2015). Integrated assessment and modelling: Overview and synthesis of salient dimensions. Environmental Modelling & Software, 64, 215–229.

Hutton, E.W.H, Piper, M.D. & Tucker, G.E. (2020). The Basic Model Interface 2.0: A standard interface for coupling numerical models in the geosciences. Journal of Open Source Software, 5, 2317.

Iwanaga, T., Wang, H.-H., Hamilton, S.H., Grimm, V., Koralewski, T.E., Salado, A., Elsawah, S., Razavi, S., Yang, J., Glynn, P., Badham, J., Voinov, A., Chen, M., Grant, W.E., Peterson, T.R., Frank, K., Shenk, G., Barton, C.M., Jakeman, A.J. & Little, J.C. (2021a). Socio-technical scales in socio-environmental modeling: Managing a system-of-systems modeling approach. Environmental Modelling & Software, 135, 104885.

Iwanaga, T., Wang, H.-H., Koralewski, T.E., Grant, W.E., Jakeman, A.J. & Little, J.C. (2021b). Toward a complete interdisciplinary treatment of scale: Reflexive lessons from socioenvironmental systems modeling. Elementa: Science of the Anthropocene, 9(1), 00182.

Jafino, B.A., Haasnoot, M., Kwakkel, J.H., 2019. What are the merits of endogenising land-use change dynamics into model-based climate adaptation planning? Socio-Environmental Systems Modelling, 1, 16126.

John, A., Horne, A., Nathan, R., Stewardson, M., Webb, J.A., Wang, J. & Poff, N.L. (2021). Climate change and freshwater ecology: Hydrological and ecological methods of comparable complexity are needed to predict risk. WIREs Climate Change, 12, e692.

Koo, H., Iwanaga, T., Croke, B.F.W., Jakeman, A.J., Yang, J., Wang, H.-H., Sun, X., Lü, G., Li, X., Yue, T., Yuan, W., Liu, X. & Chen, M. (2020). Position Paper: Sensitivity Analysis of Spatially Distributed Environmental Models- A pragmatic framework for the exploration of uncertainty sources. Environmental Modelling & Software, 134, 104857.

Kwakkel, J.H., Auping, W.L. & Pruyt, E. (2013). Dynamic scenario discovery under deep uncertainty: The future of copper. Technological Forecasting & Social Change, 80, 789–800.

Lade, S., Walker, B. & Haider, L. (2020). Resilience as pathway diversity: linking systems, individual, and temporal perspectives on resilience. Ecology & Society, 25(3), 19.

Lempert, R., Popper, S. & Bankes, S. (2003). Shaping the Next One Hundred Years: New Methods for Quantitative, Long-Term Policy Analysis. RAND Corporation.

Ligmann-Zielinska, A., Siebers, P.-O., Magliocca, N., Parker, D.C., Grimm, V., Du, J., Cenek, M., Radchuk, V., Arbab, N.N., Li, S., Berger, U., Paudel, R., Robinson, D.T., Jankowski, P., An, L., Ye, X., 2020. ‘One Size Does Not Fit All’: A Roadmap of Purpose-Driven Mixed-Method Pathways for Sensitivity Analysis of Agent-Based Models. Journal of Artificial Societies & Social Simulation, 23, 6.

Little, J.C., Hester, E.T., Elsawah, S., Filz, G.M., Sandu, A., Carey, C.C., Iwanaga, T. & Jakeman, A.J. (2019). A tiered, system-of-systems modeling framework for resolving complex socio-environmental policy issues. Environmental Modelling & Software, 112, 82–94.

Meadows, D.H. (2008). Thinking in Systems: A Primer. Chelsea Green Publishing.

Meinen, B.U. & Robinson, D.T. (2021). Agricultural erosion modelling: Evaluating USLE and WEPP field-scale erosion estimates using UAV time-series data. Environmental Modelling & Software, 137, 104962.

Musters, C.J.M., de Graaf, H.J. & ter Keurs, W.J. (1998). Defining socio-environmental systems for sustainable development. Ecological Economics, 26, 243–258.

Noble, M.M., Harasti, D., Pittock, J. & Doran, B. (2021). Using GIS fuzzy-set modelling to integrate social-ecological data to support overall resilience in marine protected area spatial planning: A case study. Ocean & Coastal Management, 212, 105745.

Peckham, S.D., Hutton, E.W.H. & Norris, B. (2013). A component-based approach to integrated modeling in the geosciences: The design of CSDMS. Computers & Geosciences, 53, 3–12.

Penning de Vries, F.W.T. (1977). Evaluation of simulation models in agriculture and biology: Conclusions of a workshop. Agricultural Systems, 2, 99–107.

Potter, S., Doran, B. & Mathews, D. (2016). Modelling collective Yawuru values along the foreshore of Roebuck Bay, Western Australia using fuzzy logic. Applied Geography, 77, 8–19.

Rounsevell, M.D.A., Robinson, D.T. & Murray-Rust, D. (2012). From actors to agents in socio-ecological systems models. Philosophical Transactions of the Royal Society B, 367, 259–269.

Schlüter, M., Müller, B. & Frank, K. (2019). The potential of models and modeling for social-ecological systems research: the reference frame ModSES. Ecology and Society, 24, art31.

Senge, P.M. (1990). The Fifth Discipline. Currency.

Špicar, R. (2014). System Dynamics Archetypes in Capacity Planning. Procedia Engineering, 24th DAAAM International Symposium on Intelligent Manufacturing and Automation, 2013, 69, 1350–1355.

Steinmann, P., Auping, W.L. & Kwakkel, J.H. (2020). Behavior-based scenario discovery using time series clustering. Technological Forecasting and Social Change, 156, 120052.

The National Socio-Environmental Synthesis Center (2021). Confronting Issues of Scale in Socio-Environmental Modeling, Socio-Environmental Systems Modeling Series. 25 June 2021. Available at:

Topping, C.J., Alrøe, H.F., Farrell, K.N. & Grimm, V. (2015). Per Aspera ad Astra: Through Complex Population Modeling to Predictive Theory. The American Naturalist, 186, 669–674.

Vemuri, V.R. (1978). Modeling of complex systems: an introduction, Operations research and industrial engineering. Academic Press, New York.

Voinov, A. & Shugart, H.H. (2013). “Integronsters”, integral and integrated modeling. Environmental Modelling & Software, 39, 149–158.

Walker, W.E., Harremoës, P., Rotmans, J., van der Sluijs, J.P., van Asselt, M.B.A., Janssen, P. & Krayer von Krauss, M.P. (2003). Defining Uncertainty: A Conceptual Basis for Uncertainty Management in Model-Based Decision Support. Integrated Assessment, 4, 5–17.

Wang, H.-H. & Grant, W.E. (2021). Reflections of two systems ecologists on modelling coupled human and natural (socio-ecological, socio-environmental) systems. Ecological Modelling, 440, 109403.

West, S., Haider, L., Sinare, H. & Karpouzoglou, T. (2014). Beyond Divides: Prospects of Synergy between Resilience and Pathways Approaches to Sustainability. STEPS Working Paper.

Whelan, G., Kim, K., Pelton, M.A., Castleton, K.J., Laniak, G.F., Wolfe, K., Parmar, R., Babendreier, J. & Galvin, M. (2014). Design of a component-based integrated environmental modeling framework. Environmental Modelling & Software, 55, 1–24.

Will, M., Dressler, G., Kreuer, D., Thulke, H.-H., Grêt-Regamey, A. & Müller, B. (2021). How to make socio-environmental modelling more useful to support policy and management? People & Nature 3, 560–572.

Zare, F., Guillaume, J.H.A., ElSawah, S., Croke, B., Fu, B., Iwanaga, T., Merritt, W., Partington, D., Ticehurst, J. & Jakeman, A.J. (2021). A formative and self-reflective approach to monitoring and evaluation of interdisciplinary team research: An integrated water resource modelling application in Australia. Journal of Hydrology, 596, 126070.

Zhang, F., Chen, M., Kettner, A.J., Ames, D.P., Harpham, Q., Yue, S., Wen, Y. & Lü, G. (2021). Interoperability engine design for model sharing and reuse among OpenMI, BMI and OpenGMS-IS model standards. Environmental Modelling & Software, 144, 105164.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2022 Takuya Iwanaga, Patrick Steinmann, Amir Sadoddin, Derek T. Robinson, Val Snow, Volker Grimm, Hsiao-Hsuan Wang