Kernel-based sensitivity indices for any model behavior and screening
Article Full Text (PDF)

Supplementary Files

Supplementary Material (PDF)

Keywords

clustering
dependency models
RHKS
Multivariate weighted distributions
reducing uncertainties

How to Cite

Lamboni, M. (2023). Kernel-based sensitivity indices for any model behavior and screening. Socio-Environmental Systems Modelling, 5, 18566. https://doi.org/10.18174/sesmo.18566

Abstract

Complex models are often used to understand interactions and drivers of human-induced and/or natural phenomena. It is worth identifying the input variables that drive the model output(s) in a given domain and/or govern specific model behaviors such as contextual indicators based on socioenvironmental models. Using the theory of multivariate weighted distributions to characterize specific model behaviors, we propose new measures of association between inputs and such behaviors. Our measures rely on sensitivity functionals (SFs) and kernel methods, including variance-based sensitivity analysis. The proposed ℓ1-based kernel indices account for interactions among inputs, higher-order moments of SFs, and their upper bounds are somehow equivalent to the Morris-type screening measures, including dependent elementary effects. Empirical kernel-based indices are derived, including their statistical properties for the computational issues, and numerical results are provided.

Article Full Text (PDF)

References

Arnold, B. C., Ghosh, I., & Alzaatreh, A. (2017). Construction of bivariate and multivariate weighted distributions via conditioning. Communications in Statistics - Theory and Methods, 46(18): 8897–8912.

Aronszajn, N. (1950). Theory of reproducing kernels. Transactions of the American Mathematical Society, 68: 337–404.

Berlinet, A., Thomas, C., & Gnan, T. A. (2004). Reproducing Kernel Hilbert Space in probability and statistics. Kluwer Academic.

Bezdek, J. C., Ehrlich, R., & Full, W. (1984). Fcm: The fuzzy c-means clustering algorithm. Computers & Geosciences, 10(2-3):191–203.

Borgonovo, E., Tarantola, S., Plischke, E., & Morris, M. D. (2014). Transformations and invariance in the sensitivity analysis of computer experiments. Journal of the Royal Statistical Society Series B, 76(5): 925–947.

Campbell, K., McKay, M. D., & Williams, B. J. (2006). Sensitivity analysis when model outputs are functions. Reliability Engineering & System Safety, 91(10-11): 1468 – 1472.

Chevalier, C., Ginsbourger, D., Bect, J., & Molchanov, I. (2013). Estimating and quantifying uncertainties on level sets using the vorob’ev expectation and deviation with gaussian process models. In: Ucinski D., Atkinson A., Patan M. (eds) mODa 10 - Advances in Model-Oriented Design and Analysis. Contributions to Statistics, pages 35–43.

Elsawah, S., Filatova, T., Jakeman, A., Kettner, A., Zellner, M., Athanasiadis, I., Hamilton, S., Axtell, R., Brown, D., Gilligan, J., Janssen, M., Robinson, D., Rozenberg, J., Ullah, I., & Lade, S. (2020). Eight grand challenges in socio-environmental systems modeling. Socio-Environmental Systems Modelling, 2, 16226.

Fisher, R. A. (1934). The effect of methods of ascertainment upon the frequencies. Ann. Eugen., 6: 13–25.

Fort, J.-C., Klein, T., & Lagnoux, A. (2021). Global sensitivity analysis and Wasserstein spaces. SIAM/ASA Journal on Uncertainty Quantification, 9(2): 880–921.

Fossum, T. O., Travelletti, C., Eidsvik, J., Ginsbourger, D., & Rajan, K. (2020). Learning excursion sets of vector-valued gaussian random fields for autonomous ocean sampling. ArXiv, abs/2007.03722.

French, J. P. & Sain, S. R. (2013). Spatio-temporal exceedance locations and confidence regions. The Annals of Applied Statistics, 7(3): 1421–1449.

Gamboa, F., Janon, A., Klein, T., & Lagnoux, A. (2014). Sensitivity analysis for multidimensional and functional outputs. Electron. J. Statist., 8(1): 575–603.

Höppner, F., Klawonn, F., Kruse, R., & Runkler, T. (1999). Fuzzy cluster analysis: methods for classification, data analysis and image recognition. John Wiley & Sons.

Jain, K. & Nanda, A. K. (1995). On multivariate weighted distributions. Communications in Statistics Theory and Methods, 24(10): 2517–2539.

Joe, H. (2014). Dependence Modeling with Copulas. Chapman & Hall/CRC, London.

Kocherlakota, S. (1995). Discrete bivariate weighted distributions under multiplicative weight function. Communications in Statistics - Theory and Methods, 24(2):533–551.

Lamboni, M. (2016). Global sensitivity analysis: a generalized, unbiased and optimal estimator of total-effect variance. Statistical Papers, pages 1–26.

Lamboni, M. (2019). Multivariate sensitivity analysis: Minimum variance unbiased estimators of the first-order and total-effect covariance matrices. Reliability Engineering & System Safety, 187: 67 – 92.

Lamboni, M. (2020a). Derivative-based generalized sensitivity indices and Sobol’ indices. Mathematics and Computers in Simulation, 170: 236 – 256.

Lamboni, M. (2020b). Uncertainty quantification: a minimum variance unbiased (joint) estimator of the non-normalized Sobol’ indices. Statistical Papers, 61: 1939–1970.

Lamboni, M. (2021). On dependency models and dependent generalized sensitivity indices. arXiv preprint arXiv2104.12938.

Lamboni, M. (2022a). Efficient dependency models: Simulating dependent random variables. Mathematics and Computers in Simulation, 200: 199–217.

Lamboni, M. (2022b). Weak derivative-based expansion of functions: ANOVA and some inequalities. Mathematics and Computers in Simulation, 194: 691–718.

Lamboni, M. (2023). On exact distribution for multivariate weighted distributions and classification. Methodology and Computing Applied Probability, 25: 1–41.

Lamboni, M., Koeble, R., & Leip, A. (2016). Multi-scale land-use disaggregation modelling: Concept and application to EU countries. Environmental Modelling & Software, 82: 183–217.

Lamboni, M. & Kucherenko, S. (2021). Multivariate sensitivity analysis and derivative-based global sensitivity measures with dependent variables. Reliability Engineering & System Safety, 212: 107519.

Lamboni, M., Monod, H., & Makowski, D. (2011). Multivariate sensitivity analysis to measure global contribution of input factors in dynamic models. Reliability Engineering and System Safety, 96: 450–459.

Lamboni, M., Sanaa, M., & Tenenhaus-Aziza, F. (2014). Sensitivity analysis for critical control points determination and uncertainty analysis to link FSO and process criteria: Application to listeria monocytogenes in soft cheese made from pasteurized milk. Risk Analysis, 34(4): 751–764.

Mahfoud, M. & Patil, G. (1982). On weighted distributions, pages 479–492. Institute of Mathematical Statistics, Amsterdam: North Holland.

Mara, T. A., Tarantola, S., & Annoni, P. (2015). Non-parametric methods for global sensitivity analysis of model output with dependent inputs. Environmental Modelling & Software, 72: 173 – 183.

Morris, M. (1991). Factorial sampling plans for preliminary computational experiments. Technometrics, 33: 161–174.

Navarro, J., Ruiz, J. M., & Aguila, Y. D. (2006). Multivariate weighted distributions: a review and some extensions. Statistics, 40(1): 51–64.

Nelsen, R. (2006). An Introduction to Copulas. Springer-Verlag, New York.

Owen, A. (2014). Sobol’ indices and Shapley value. Journal on Uncertainty Quantification, 2: 245–251.

Owen, A. B., Dick, J., & Chen, S. (2014). Higher order Sobol’ indices. Information and Inference: A Journal of the IMA, 3(1): 59–81.

Patil, G. P. & Rao, C. R. (1978). Weighted distributions and size-biased sampling with applications to wildlife populations and human families. Biometrics, 34(2): 179–189.

Rao, C. R. (1965). On discrete distributions arising out of methods of ascertainment. Sankhya: The Indian Journal of Statistics, Series A (1961-2002), 27(2/4):311–324.

Rose, K. A., Smith, E. P., Gardner, R. H., Brenkert, A. L., & Bartell, S. M. (1991). Parameter sensitivities, Monte Carlo filtering, and model forecasting under uncertainty. Journal of Forecasting, 10: 117–133.

Roux, S., Buis, S., Lafolie, F., & Lamboni, M. (2021). Cluster-based gsa: Global sensitivity analysis of models with temporal or spatial outputs using clustering. Environmental Modelling & Software, 140: 105046.

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., & Tarantola, S. (2008). Global Sensitivity Analysis: the Primer. Wiley, New York.

Saltelli, A. & Tarantola, S. (2002). On the relative importance of input factors in mathematical models: Safety assessment for nuclear waste disposal. Journal of the American Statistical Association, 97: 702–709.

Saltelli, A., Tarantola, S., Campolongo, F., & Ratto, M. (2004). Sensitivity analysis in practice. Probability and Statistics. John Wiley and Sons, Chichester.

Schölkopf, B. & Smola, A. J. (2002). Learning with Kernels. MIT Press, Cambridge, MA.

Sklar, A. (1959). Fonctions de répartition à n dimensions et leurs marges. Publications de l’Institut Statistique de l’Université de Paris, 8: 229–231.

Skorohod, A. V. (1976). On a representation of random variables. Theory Probability and its Applications, 21(3): 645–648.

Sobol, I. M. (1993). Sensitivity analysis for non-linear mathematical models. Mathematical Modelling and Computational Experiments, 1: 407–414.

Spear, R. & Hornberger, G. (1980). Eutrophication in peel inlet-II. identification of critical uncertainties via generalized sensitivity analysis. Water Research, 14(1): 43–49.

Xiao, S., Lu, Z., & Wang, P. (2018). Multivariate global sensitivity analysis for dynamic models based on wavelet analysis. Reliability Engineering & System Safety, 170: 20–30.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2023 Matieyendou Lamboni