Global sensitivity analysis of the dynamics of a distributed hydrological model at the catchment scale
Article Full Text (PDF)

Supplementary Files

Supplementary Material (PDF)

Keywords

Global sensitivity analysis
hydrology
functional principal components
polynomial chaos expansion
distributed model

How to Cite

Radišić, K., Rouzies, E., Lauvernet, C., & Vidard, A. (2023). Global sensitivity analysis of the dynamics of a distributed hydrological model at the catchment scale. Socio-Environmental Systems Modelling, 5, 18570. https://doi.org/10.18174/sesmo.18570

Abstract

The PESHMELBA model simulates water and pesticide transfers at the catchment scale. Its objective is to help the process of decision making in the common management of long-term water quality. Performing the global sensitivity analysis (GSA) of this type of model is necessary to trace the output variability to the input parameters. The goal of the present work is to perform a GSA, while considering the spatio-temporal nature and the high dimensionality of the model. The output considered is the surface moisture simulated over a two-month period on a catchment of assorted mesh elements (plots). The GSA is performed on the dynamical outputs, rewritten through their functional principal components. Sobol’ indices are then estimated through polynomial chaos expansion on each principal component. The analysis differs between the two types of behaviour observed in the surface moisture outputs. The hydrodynamic properties of the surface soil have a dominant influence on the average surface moisture. Nonetheless, the parameters describing deeper soil layers influence the output dynamics of those plots where the surface moisture is saturated. We obtain Sobol’ indices with high precision while using a limited number of model estimations and considering the models spatio-temporal nature. The physical interpretation of the GSA confirms and augments our knowledge on the model.

Article Full Text (PDF)

References

Antoniadis, A., Lambert-Lacroix, S., & Poggi, J.-M. (2021). Random forests for global sensitivity analysis: A selective review. Reliability Engineering & System Safety, 206:107312. doi:10.1016/j.ress.2020.107312.

Blatman, G. & Sudret, B. (2011). Adaptive sparse polynomial chaos expansion based on least angle regression. Journal of Computational Physics, 230(6):2345–2367. doi:10.1016/j.jcp.2010.12.021.

Buis, S., Piacentini, A., Déclat, D., & the PALM Group (2006). PALM: a computational framework for assembling 435 high-performance computing applications. Concurrency and Computation: Practice and Experience, 18(2):231–245. doi:10.1002/cpe.914.

Campbell, K., McKay, M. D., & Williams, B. J. (2006). Sensitivity analysis when model outputs are functions. Reliability Engineering & System Safety, 91(10-11):1468–1472. doi:10.1016/j.ress.2005.11.049.

Da Veiga, S. (2015). Global sensitivity analysis with dependence measures. Journal of Statistical Computation and Simulation, 85(7):1283–1305. doi:10.1080/00949655.2014.945932.

De Lozzo, M. & Marrel, A. (2017). Sensitivity analysis with dependence and variance-based measures for spatio-temporal numerical simulators. Stochastic Environmental Research and Risk Assessment, 31(6):1437–1453. doi:10.1007/s00477-016-1245-3.

Dubreuil, S., Berveiller, M., Petitjean, F., & Salaün, M. (2014). Construction of bootstrap confidence intervals on sensitivity indices computed by polynomial chaos expansion. Reliability Engineering & System Safety, 121:263–275. doi:10.1016/j.ress.2013.09.011.

Fajraoui, N., Ramasomanana, F., Younes, A., Mara, T. A., Ackerer, P., & Guadagnini, A. (2011). Use of global sensitivity analysis and polynomial chaos expansion for interpretation of nonreactive transport experiments in laboratory-scale porous media. Water Resources Research, 47(2). doi:10.1029/2010WR009639.

Ferrer Savall, J., Franqueville, D., Barbillon, P., Benhamou, C., Durand, P., Taupin, M.-L., Monod, H., & Drouet, J.-L. (2019). Sensitivity analysis of spatio-temporal models describing nitrogen transfers, transformations and losses at the landscape scale. Environmental Modelling & Software, 111: 356–367. doi:10.1016/j.envsoft.2018.09.010.

Frésard, F. (2010). Cartographie des sols d’un petit bassin versant en Beaujolais viticole, en appui à l’évaluation du risque de contamination des eaux par les pesticides. Master’s thesis, Université de Franche Comté.

Gamboa, F., Janon, A., Klein, T., & Lagnoux, A. (2014). Sensitivity analysis for multidimensional and functional outputs. Electronic Journal of Statistics, 8(1). doi:10.1214/14-EJS895.

Garcia-Cabrejo, O. & Valocchi, A. (2014). Global Sensitivity Analysis for multivariate output using Polynomial Chaos Expansion. Reliability Engineering & System Safety, 126:25–36. doi:10.1016/j.ress.2014.01.005.

Il Idrissi, M., Chabridon, V., & Iooss, B. (2021). Developments and applications of Shapley effects to reliability-oriented sensitivity analysis with correlated inputs. Environmental Modelling & Software, 143:105115. doi:10.1016/j.envsoft.2021.105115.

Iooss, B. & Prieur, C. (2019). Shapley effects for sensitivity analysis with correlated inputs : comparison with sobol’ indices, numerical estimation and applications. International Journal for Uncertainty Quantification, 9(5):493–514. doi:10.1615/Int.J.UncertaintyQuantification.2019028372.

Lamboni, M., Monod, H., & Makowski, D. (2011). Multivariate sensitivity analysis to measure global contribution of input factors in dynamic models. Reliability Engineering & System Safety, 96(4):450–459. doi:10.1016/j.ress.2010.12.002.

Le Gratiet, L., Marelli, S., & Sudret, B. (2015). Metamodel-based sensitivity analysis: Polynomial chaos expansions and Gaussian processes. pages 1–37. arXiv:1606.04273.

Lüthen, N., Marelli, S., & Sudret, B. (2023). A spectral surrogate model for stochastic simulators computed from trajectory samples. Computer Methods in Applied Mechanics and Engineering, 406:115875. doi: 10.1016/j.cma.2022.115875.

Marelli, S., Lüthen, N., & Sudret, B. (2022). UQLab user manual – Polynomial chaos expansions. Technical report, Chair of Risk, Safety and Uncertainty Quantification, ETH Zurich, Switzerland. Report UQLab-V2.0-104.

Marelli, S. & Sudret, B. (2014). UQLab: A Framework for Uncertainty Quantification in Matlab. In Vulnerability, Uncertainty, and Risk, pages 2554–2563, Liverpool, UK. American Society of Civil Engineers. doi:10.1061/9780784413609.257.

Marrel, A., Perot, N., & Mottet, C. (2015). Development of a surrogate model and sensitivity analysis for spatio-temporal numerical simulators. Stochastic Environmental Research and Risk Assessment, 29(3):959–974. doi:10.1007/s00477-0140927-y.

Morris, M. D. (1991). Factorial Sampling Plans for Preliminary Computational Experiments. Technometrics, 33(2):161–174. doi:10.1080/00401706.1991.10484804.

Nagel, J. B., Rieckermann, J., & Sudret, B. (2020). Principal component analysis and sparse polynomial chaos expansions for global sensitivity analysis and model calibration: Application to urban drainage simulation. Reliability Engineering & System Safety, 195:106737. doi:10.1016/j.ress.2019.106737.

Perrin, T., Roustant, O., Rohmer, J., Alata, O., Naulin, J., Idier, D., Pedreros, R., Moncoulon, D., & Tinard, P. (2021). Functional principal component analysis for global sensitivity analysis of model with spatial output. Reliability Engineering & System Safety, 211:107522. doi:10.1016/j.ress.2021.107522.

Peyrard, X., Liger, L., Guillemain, C., & Gouy, V. (2016). A trench study to assess transfer of pesticides in subsurface lateral flow for a soil with contrasting texture on a sloping vineyard in Beaujolais. Environmental Science and Pollution Research, 23(1):14–22. doi:10.1007/s11356-015-4917-5.

Ramsay, J. O. & Silverman, B. W. (2005). Functional data analysis. Springer series in statistics. Springer, New York, 2nd edition.

Ross, P. J. (2003). Modeling Soil Water and Solute Transport—Fast, Simplified Numerical Solutions. Agronomy Journal, 95(6):1352–1361. doi:10.2134/agronj2003.1352.

Roux, S., Buis, S., Lafolie, F., & Lamboni, M. (2021). Cluster-based GSA: Global sensitivity analysis of models with temporal or spatial outputs using clustering. Environmental Modelling & Software, 140: 105046. doi:10.1016/j.envsoft.2021.105046.

Rouzies, E., Lauvernet, C., Barachet, C., Morel, T., Branger, F., Braud, I., & Carluer, N. (2019). From agricultural catchment to

management scenarios: A modular tool to assess effects of landscape features on water and pesticide behavior. Science of The Total Environment, 671:1144–1160. doi:10.1016/j.scitotenv.2019.03.060.

Rouzies, E., Lauvernet, C., Sudret, B., & Vidard, A. (2023). How is a global sensitivity analysis of a catchment-scale, distributed pesticide transfer model performed? Application to the PESHMELBA model. Geoscientific Model Development, 16(11):3137–3163. doi:10.5194/gmd-16-3137-2023.

Saint-Geours, N., Bailly, J.-S., Grelot, F., & Lavergne, C. (2014). Multi-scale spatial sensitivity analysis of a model for economic appraisal of flood risk management policies. Environmental Modelling & Software, 60: 153–166. doi:10.1016/j.envsoft.2014.06.012.

Saltelli, A., Aleksankina, K., Becker, W., Fennell, P., Ferretti, F., Holst, N., Li, S., & Wu, Q. (2019). Why so many published sensitivity analyses are false: A systematic review of sensitivity analysis practices. Environmental Modelling & Software, 114:29–39. doi:10.1016/j.envsoft.2019.01.012.

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., & Tarantola, S. (2008). Global sensitivity analysis: the primer. John Wiley & Sons. doi:10.1002/9780470725184.

Sobol’, I. (2001). Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Mathematics and Computers in Simulation, 55(1-3):271–280. doi:10.1016/S0378-4754(00)00270-6.

Song, X., Zhang, J., Zhan, C., Xuan, Y., Ye, M., & Xu, C. (2015). Global sensitivity analysis in hydrological modeling: Review of concepts, methods, theoretical framework, and applications. Journal of Hydrology, 523:739–757. doi:10.1016/j.jhydrol.2015.02.013.

Sudret, B. (2008). Global sensitivity analysis using polynomial chaos expansions. Reliability Engineering & System Safety, 93(7):964–979. doi:10.1016/j.ress.2007.04.002.

Van Genuchten, M. T. (1980). A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Science Society of America Journal, 44(5):892–898. doi:10.2136/sssaj1980.03615995004400050002x.

Xiao, H. & Li, L. (2016). Discussion of paper by Matieyendou Lamboni, Hervé Monod, David Makowski “Multivariate sensitivity analysis to measure global contribution of input factors in dynamic models”, Reliab. Eng. Syst. Saf. 99 (2011) 450–459. Reliability Engineering & System Safety, 147:194–195. doi:10.1016/j.ress.2015.10.015.

Xu, L., Lu, Z., & Xiao, S. (2019). Generalized sensitivity indices based on vector projection for multivariate output. Applied Mathematical Modelling, 66: 592–610. doi:10.1016/j.apm.2018.10.009.

Zhu, X. & Sudret, B. (2021). Global sensitivity analysis for stochastic simulators based on generalized lambda surrogate models. Reliability Engineering & System Safety, 214:107815. doi:10.1016/j.ress.2021.107815.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2023 Katarina Radišić, Emilie Rouzies, Claire Lauvernet, Arthur Vidard