Chimaera Modelling – when the modellers must reconcile inconsistent elements or purposes
Article Full Text (PDF)

Keywords

participation
inter-subjectivity
multi-actor
complex projects
project management

How to Cite

Edmonds, B., Hofstede, G. J., Koch, J., le Page, C., Lim, T., Lippe, M., Nöldeke, B., & van Delden, H. (2025). Chimaera Modelling – when the modellers must reconcile inconsistent elements or purposes. Socio-Environmental Systems Modelling, 6, 18593. https://doi.org/10.18174/sesmo.18593

Abstract

Socio-Ecological System modelling projects are becoming increasingly complicated, with multiple actors and aspects being the norm. Such projects can cause problems for the modellers when this involves different elements, goals, philosophies, etc., all pulling in different directions – we call this “Chimaera Modelling.” Although such situations are common when you talk to modellers, they do not seem to be explicitly discussed in the literature. In this paper, we attempt to turn this perceived “inside” phenomenon into an “outside” phenomenon and to start a debate to increase transparency among the modelling community. We discuss the different aspects which may be relevant to this problem to start this debate, including: the underlying philosophy, modelling goals, extent of choice the modellers have, different stages of modelling, and kinds of actors that are involved. We further map out some of the dimensions with which Chimaera Modelling connects. We briefly discuss these and propose to the community as a whole to work on their methodological development, feasibility, risks and applicability as their resolution is far beyond the scope of this paper. We end with a brief description of the broad possible approaches to such situations. Our main message is a call for recognition of Chimaera Modelling as a likely side-effect of multi-stakeholder, multi-purpose projects, and to take this into account proactively at the project team level and be transparent about the tensions and contradictions that underly such modelling.

Article Full Text (PDF)

References

Achter, S., Borit, M., Chattoe-Brown, E., & Siebers, P.O., (2022). RAT-RS: a reporting standard for improving the documentation of data use in agent-based modelling. International Journal of Social Research Methodology, 25(4), 517-540. https://doi.org/10.1080/13645579.2022.2049511

An, L. (2012). Modeling human decisions in coupled human and natural systems: Review of agent-based models. Ecological Modelling, 229, 25-36. https://doi.org/10.1016/j.ecolmodel.2011.07.010

An, L., Grimm, V., Sullivan, A., Turner Ii, B. L., Malleson, N., Heppenstall, A., Vincenot, C., Robinson, D., Ye, X., Liu, J., Lindkvist, E., & Tang, W. (2021). Challenges, tasks, and opportunities in modeling agent-based complex systems. Ecological Modelling, 457, 109685. https://doi.org/10.1016/j.ecolmodel.2021.109685

Ayllón, D., Railsback, S. F., Gallagher, C., Augusiak, J., Baveco, H., Berger, U., Charles, S., Martin, R., Focks, A., Galic, N., Liu, C., van Loon, E., Nabe-Nielsen, J., Piou, C., Polhill, G., Preuss, T.G., Radchuck, V., Schmolke, A., Stadnicka-Michalak, J., Thorbek, P.,, Grimm, V. (2021) Keeping modelling notebooks with TRACE: Good for you and good for environmental research and management support. Environmental Modelling & Software, 136, 104932, https://dx.doi.org/10.1016/j.envsoft.2020.104932

Badham, J., Elsawah, S., Guillaume, J. H., Hamilton, S. H., Hunt, R. J., Jakeman, A. J., Pierce, S., Snow, V., Babbar-Sebens, M., Fu, B., Gober, P., Hill, M.C., Iwanga, T., Loucks, D. P., Merritt, W. S., Peckham, S.D., Richmond, A. K., Zare, F., Ames, D., & Bammer, G. (2019). Effective modeling for Integrated Water Resource Management: A guide to contextual practices by phases and steps and future opportunities. Environmental Modelling & Software, 116, 40-56. https://doi.org/10.1016/j.envsoft.2019.02.013

Bammer, G. (2013). Disciplining Interdisciplinarity. ANU E Press. https://library.oapen.org/bitstream/handle/20.500.12657/33556/459901.pdf

Barnaud, C. & Van Paassen, A. (2013). Equity, Power Games, and Legitimacy: Dilemmas of Participatory Natural Resource Management. Ecology and Society, 18(2). http://dx.doi.org/10.5751/ES-05459-180221

Bolte, J. P., Hulse, D. W., Gregory, S. V., & Smith, C. (2007). Modeling biocomplexity–actors, landscapes and alternative futures. Environmental Modelling & Software, 22(5), 570-579. https://doi.org/10.1016/j.envsoft.2005.12.033

Brugnach, M., & Ingram, H. (2012). Ambiguity: the challenge of knowing and deciding together. Environmental Science & Policy 15(1), 60-71. http://dx.doi.org/10.1016/j.envsci.2011.10.005

Checkland, P. B. (1981). Systems Thinking, Systems Practice, John Wiley & Sons Ltd, London.

Checkland, P. B. & Scholes, J. (1990). Soft Systems Methodology in Action, John Wiley & Sons Ltd, London.

De Jongh, D. C. J. (1978). Structural parameter sensitivity of the ‘limits to growth’ world model. Applied Mathematical Modelling, 2(2), 77-80.

Diouf, E.G., Brévault, T., Ndiaye, S., Faye, E., Chailleux, A., Diatta, P., & Piou, C. (2022). An agent-based model to simulate the boosted Sterile Insect Technique for fruit fly management. Ecological Modelling, 468, 109951. https://doi.org/10.1016/j.ecolmodel.2022.109951

Edmonds, B., le Page, C., Bithell, M., Chattoe-Brown, E., Grimm, V., Meyer, R., Montañola-Sales, C., Ormerod, P., Root H. & Squazzoni. F. (2019) Different Modelling Purposes. Journal of Artificial Societies & Social Simulation, 22(3), 6. http://doi.org/10.18564/jasss.3993

Elsawah, S., Filatova, T., Jakeman, A. J., Kettner, A. J., Zellner, M. L., Athanasiadis, I. N., Hamilton, S. H., Axtell, R. L., Brown, D. G., Gilligan, J. M., Janssen, M. A., Robinson, D. T., Rozenberg, J., Ullah, I. I. T., & Lade, S. J. (2020). Eight grand challenges in socio-environmental systems modeling. Socio-Environmental Systems Modelling, 2, 16226. https://doi.org/10.18174/sesmo.2020a16226

Epstein, J. M. (2008). Why model? Journal of Artificial Societies & Social Simulation, 11(4), 12. https://jasss.soc.surrey.ac.uk/11/4/12.html

Etienne, M., & Balandier, P. (2003). Interactions bétail-végétation dans les systèmes sylvo-pastoraux en France| Livestock-vegetation interactions in silvopastoral systems in France. Schweizerische Zeitschrift fur Forstwesen, 154(5), 161-168.

Filatova, T. (2015). Empirical agent-based land market: Integrating adaptive economic behavior in urban land-use models. Computers, Environment and Urban Systems, 54, 397–413. https://doi.org/10.1016/j.compenvurbsys.2014.06.007

Friedman, M. (1953). Essays in positive economics. University of Chicago press.

Geller, A. (2014). Building Empirical Multiagent Models from First Principles When Fieldwork Is Difficult or Impossible. In: Smajgl, A., Barreteau, O. (Eds.), Empirical Agent-Based Modelling – Challenges and Solutions Volume 1: The Characterisation and Parameterisation of Empirical Agent-Based Models. Springer, New York, pp. 223–237. http://doi.org/10.1007/978-1-4614-6134-0_12

Gigerenzer, G., & Goldstein, D. G. (1996). Reasoning the Fast and Frugal Way: Models of Bounded Rationality. Psychological Review, 103, 650–669. https://doi.org/10.1093/acprof:oso/9780199744282.003.0002

Gigerenzer, G., & Selten, R. (2001). Rethinking Rationality. In: Bounded Rationality. The Adaptive Toolbox. MIT Press, Cambridge, London.

Grimm, V., Railsback, S. F., Vincenot, C. E., Berger, U., Gallagher, C., DeAngelis, D. L., Edmonds, B., Ge, J. Giske, J., Groeneveld, J., Johnston, A. S.A., Milles, A., Nabe-Nielsen, J. Polhill, J. G., Radchuk, V., Rohwäder, M., Stillman, R. A., Thiele, J. C., & Ayllón, D. (2020). The ODD Protocol for Describing Agent-Based and Other Simulation Models: A Second Update to Improve Clarity, Replication, and Structural Realism. Journal of Artificial Societies & Social Simulation, 23(2), 7. http://doi.org/10.18564/jasss.4259

Hassan, S., Pavón, J., Antunes, L., & Gilbert, N. (2010). Injecting Data into Agent-Based Simulation. In: Takadama, K., Cioffi-Revilla, C., Deffuant, G. (Eds.), Simulating Interacting Agents and Social Phenomena. Springer, Tokyo, pp. 179–191. http://doi.org/10.1007/978-4-431-99781-8_13

Hewitt, R., Van Delden, H., & Escobar, F. (2014). Participatory land use modelling, pathways to an integrated approach. Environmental Modelling & Software, 52, 149-165. http://doi.org/10.1016/j.envsoft.2013.10.019

Inouye, A. M., Lach, D. H., Stevenson, J. R., Bolte, J. P., & Koch, J. (2017). Participatory modeling to assess climate impacts on water resources in the Big Wood Basin, Idaho. Environmental Modeling with Stakeholders: Theory, Methods, and Applications, 289-306. http://doi.org/10.1007/978-3-319-25053-3_14

Iwanaga, T., Wang, H., Hamilton, S. H., Grimm, V. Koralewski, T. E., Salado, A. Elsawah, S., Razavi, S., Yang,J., Glynn, P., Badham, J., Voinov, A., Chen, M., Grant, W. E., Peterson, T. R., Frank, K. Shenk, G. Barton, C. M. Jakeman, A. J., & Little, J. C. (2021). Socio-technical scales in socio-environmental modelling: Managing a system-of-systems modelling approach, Environmental Modelling & Software, 135, 104885. http://doi.org/10.1016/j.envsoft.2020.104885

Jakeman, A. J., Letcher, R. A., & Norton, J. P. (2006). Ten iterative steps in development and evaluation of environmental models. Environmental Modelling & Software, 21(5), 602-614.

https://doi.org/10.1016/j.envsoft.2006.01.004.

Koch, J., Friedman, J. R., Paladino, S., Plassin, S., & Spencer, K. (2019) Conceptual modeling for improved understanding of the Rio Grande/Río Bravo socio-environmental system. Socio-Environmental Systems Modeling, 1, 16127. https://doi.org/10.18174/sesmo.2019a16127.

Laatabi, A., Marilleau, N., Nguyen-Huu, T., Hbid, H., & Babram, M. A., (2018). ODD+2D: An ODD based protocol for mapping data to empirical ABMs. Journal of Artificial Societies and Social Simulation, 21. https://doi.org/10.18564/jasss.3646

Ligmann-Zielinska, A., Siebers, P. O., Magliocca, N., Parker, D. C., Grimm, V., Du, J., V. & Ye, X. (2020). ‘One size does not fit all’: a roadmap of purpose-driven mixed-method pathways for sensitivity analysis of agent-based models. Journal of Artificial Societies & Social Simulation, 23(1), 6. http://doi.org/10.18564/jasss.4201

Lim, T. C., Glynn, P. D., Shenk, G. W., Bitterman, P., Guillaume, J. H. A., Little, J. C., & Webster, D. G. (2023). Recognizing political influences in participatory social-ecological systems modeling. Socio-Environmental Systems Modelling, 5, 18509. https://doi.org/10.18174/sesmo.18509

Lippe, M., Minh, T. T., Neef, A., Hilger, T., Hoffmann, V., Lam, N. T., & Cadisch, G. (2011). Building on qualitative datasets and participatory processes to simulate land use change in a mountain watershed of Northwest Vietnam. Environmental Modelling & Software, 26(12), 1454-1466. https://doi.org/10.1111/gcbb.12176

Lotzmann, U., Neumann, M., & Möhring, M. (2015). From Text To Agents-Process Of Developing Evidence-Based Simulation Models. In European Conference on Modelling and Simulation, (pp. 71-77). https://www.scs-europe.net/dlib/2015/ecms2015acceptedpapers/0071-abs_ECMS2015_0104.pdf

Martín-López, B., Palomo, I., García-Llorente, M., Iniesta-Arandia, I., Castro, A. J., Del Amo, D. G., Gómez-Baggethun, E., & Montes, C. (2017). Delineating boundaries of social-ecological systems for landscape planning: A comprehensive spatial approach. Land Use Policy, 66, 90-104.

Meadows, D. H., Meadows, D. L., Randers, J., & Behrens III, W. W. (1972). The limits to growth. Club of Rome.

Muelder H., & Filatova T. (2018). One Theory - Many Formalizations: Testing Different Code Implementations of the Theory of Planned Behaviour in Energy Agent-Based Models. Journal of Artificial Societies & Social Simulation, 21(4), 5. https://doi.org/10.18564/jasss.3855

Naivinit, W., le Page, C., Trébuil, G., & Gajaseni, N., (2010). Participatory agent-based modelling and simulation of rice production and labor migrations in Northeast Thailand. Environmental Modelling & Software 25, 1345–1358. https://doi.org/10.1016/j.envsoft.2010.01.012

Plassin, S., Koch, J., Paladino, S., Friedman, J. R., Spencer, K., & Vaché, K. B. (2020). A socio-environmental geodatabase for integrative research in the transboundary Rio Grande/Río Bravo basin. Scientific Data, 7(1), 80. https://doi.org/10.1038/s41597-020-0410-1

Robinson, D.T., Brown, D.G., Parker, D.C., Schreinemachers, P., Janssen, M.A., Huigen, M., Wittmer, H., Gotts, N., Promburom, P., Irwin, E., Berger, T., Gatzweiler, F., & Barnaud, C., (2007). Comparison of empirical methods for building agent-based models in land use science. Journal of Land Use Science 2(1), 31–55. https://doi.org/10.1080/17474230701201349

Sandoval-Solis, S., Paladino, S., Garza-Diaz, L., Nava, L., Friedman, J., Ortiz-Partida, J. P., Plassin, S., Gomez-Quiroga, G., Koch, J., Fleming, J., Lane, B. A., Wineland, S., Mirchi, A., Saiz-Rodriguez, R., & Neeson, T. (2022). Environmental flows in the rio grande-rio bravo basin. Ecology & Society, 27(1), art20. https://doi.org/10.5751/ES-12944-270120

Sargent, R. G. (2013). Verification and Validation of Simulation Models. Journal of Simulation, 7, 12-24. https://doi.org/10.1109/WSC.2013.6721430

Schilirò, D. (2018). Economic Decisions and Simon’s Notion of Bounded Rationality. International Business Research, 11, 64. https://doi.org/10.5539/ibr.v11n7p64

Simon, H.A. (1972). Theories of Bounded Rationality. In: McGuire, C.B., Radner, R. (Eds.), Decision and Organization. Elsevier, Amsterdam, pp. 161–176.

Snapp, S. (2022). Modeling futurity: examining epistemological assumptions and political context in urbanization modeling. https://shareok.org/handle/11244/335643

Spies, T. A., White, E., Ager, A., Kline, J. D., Bolte, J. P., Platt, E. K., Olsen, K. A., Pabst, R. J., Barrons, A. M. G., Bailey, J. D., Charnley, S., Morzillo, A. T., Koch, J., Steen-Adams, M. M., Singleton, P. H., Sulzman, J., Schwartz, C., & Csuti, B. (2017). Using an agent-based model to examine forest management outcomes in a fire-prone landscape in Oregon, USA. Ecology & Society, 22(1), 25. https://www.jstor.org/stable/26270069

Van Delden, H., Van Vliet, J., Rutledge, D. T. & Kirkby, M. J. (2011a). Comparison of scale and scaling issues in integrated land-use models for policy support. Agriculture, Ecosystems & Environment, 142(1-2), 18-28. https://doi.org/10.1016/j.agee.2011.03.005

Van Delden, H., Seppelt, R., White, R. & Jakeman, A. J. (2011b). A methodology for the design and development of integrated models for policy support. Environmental Modelling & Software, 26, 266-279. https://doi.org/10.1016/j.envsoft.2010.03.021

van Vliet, J., Bregt, A. K., Brown, D. G., van Delden, H., Heckbert, S., & Verburg, P. H. (2016). A review of current calibration and validation practices in land-change modeling. Environmental Modelling & Software, 82, 174-182. https://doi.org/10.1016/j.envsoft.2016.04.017

Verburg, P. H., Dearing, J. A., Dyke, J. G., Leeuw, S. van der, Seitzinger, S., Steffen, W., & Syvitski, J., (2016). Methods and approaches to modelling the Anthropocene. Global Environmental Change, 39, 328–340. https://doi.org/10.1016/j.gloenvcha.2015.08.007

Voinov, A., Bousquet, F. (2010). Modelling with stakeholders. Environmental Modelling & Software, 25(11), 1268-1281. https://doi.org/10.1016/j.envsoft.2010.03.007

Voinov, A., Shugart, H.H., (2013). ‘Integronsters’, integral and integrated modeling. Environmental Modelling & Software, 39, 149-158. https://doi.org/10.1016/j.envsoft.2012.05.014

Voinov, A., Kolagani, N., McCall, M. K., Glynn, P. D., Kragt, M. E., Ostermann, F. O., Pierce, S. A., & Ramu, P. (2016). Modelling with stakeholders – Next generation. Environmental Modelling & Software, 77, 196-220, https://doi.org/10.1016/j.envsoft.2015.11.016

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2024 Bruce Edmonds, Gert Jan Hofstede, Jennifer Koch, Christophe le Page, Theo Lim, Melvin Lippe, Beatrice Nöldeke, Hedwig van Delden