Abstract
Many researchers have called for more consideration of cross-scale dynamics in models of socio-ecological systems, but this is a fundamentally difficult thing to do. Focussing on cross-scale feedbacks and tipping points, this paper uses three example models to demonstrate and reflect on how cross-scale dynamics can be incorporated into aggregate models. Tipping points - where a small perturbation can lead to a qualitative change in a system - are generally the result of nonlinear feedback mechanisms. These feedback mechanisms often operate on different levels within or across scales. Tipping points occurring on one level or scale may cascade across to others. Interest in these types of cross-scale feedbacks and tipping points is high, but consideration of how to model them is underdeveloped. The representation of cross-scale feedbacks and tipping points in aggregated models of socio-ecological systems remains a critical challenge for modellers, with implications for the types of models and policy advice that can be developed. We present three case studies to demonstrate and reflect on how cross-scale feedbacks and tipping points can be represented and analysed in these models. Two key themes emerge from our reflections: (i) the variety and trade-offs in ways to explore and present model behaviour, using tools such as scenario analysis and phase portraits; and (ii) the subjectivity inherent in considering and implementing scale, in aggregated models.
References
Abson, D.J., Fischer, J., Leventon, J., Newig, J., Schomerus, T., Vilsmaier, U., von Wehrden, H., Abernethy, P., Ives, C.D., Jager, N.W., & Lang, D.J. (2017). Leverage points for sustainability transformation. Ambio, 46, 30–39. https://doi.org/10.1007/s13280-016-0800-y
Ahlborg, H., Ruiz-Mercado, I., Molander, S., & Masera, O. (2019). Bringing Technology into Social-Ecological Systems Research—Motivations for a Socio-Technical-Ecological Systems Approach. Sustainability, 11, 2009. https://doi.org/10.3390/su11072009
Aschemann-Witzel, J., Gantriis, R. F., Fraga, P., & Perez-Cueto, F.J.A. (2020). Plant-based food and protein trend from a business perspective: markets, consumers, and the challenges and opportunities in the future. Critical Reviews in Food Science and Nutrition, 61(18), 3119-3128. https://doi.org/10.1080/10408398.2020.1793730
Barbrook-Johnson, P., Sharpe, S., Pasqualino, R., Senra de Moura, F., Nijsee, F., Vercoulen, P., Clark, A., Peñasco, P., Diaz Anadon, L., Mercure, J-F., Hepburn, C., Farmer, J.D., & Lenton, T.M. (2023). New economic models of energy innovation and transition: Addressing new questions and providing better answers. EEIST project. https://eeist.co.uk/eeist-reports/
Biggs, D., Biggs, R., Dakos, V., Scholes, R. J., & Schoon, M. (2011). Are we entering an era of concatenated global crises? Ecology and Society, 16(2), 27. http://www.ecologyandsociety.org/vol16/iss2/art27/
Biggs, R., Peterson, G.D., & Rocha, J.C. (2018) The Regime shifts database: a framework for analyzing regime shifts in social-ecological systems. Ecology and Society, 23(3), 9. https://doi.org/10.5751/ES-10264-230309
Chrysafi, A., Virkki, V., Jalava, M., Sandström, V., Piipponen, J., Porkka, M., Sandström, V., Piipponen, J., LaMere, K., Lade, S., & Kummu, M. (2022). Quantifying Earth system interactions for sustainable food production via expert elicitation. Nature Sustainability, 5, 830–842. https://doi.org/10.1038/s41893-022-00940-6
Eker, S., Reese, G., & Obersteiner, M. (2019) Modelling the drivers of a widespread shift to sustainable diets. Nature Sustainability, 2, 725–735. https://doi.org/10.1038/s41893-019-0331-1
Farmer, J.D., Hepburn, C., Ives, M.C., Hale, T., Wetzer, T., Mealy, P., Rafaty, R., Srivastav, S., & Way, R. (2019) Sensitive Intervention Points in the post-carbon transition. Science, 364, 6436, 132-134. DOI: 10.1126/science.aaw7287
Follett, R.F., & Reed, D.A. (2010) Soil carbon sequestration in grazing lands: societal benefits and policy implications. Rangeland Ecology and Management. 63, 4–15. https://doi.org/10.2111/08-225.1
Füllsack, M., Plakolb S., & Jäger G. (2021) Predicting regime shifts in social systems modelled with agent-based methods. Journal of Computational Social Science 4,1, 163-185. https://doi.org/10.1007/s42001-020-00071-y
Garmestani, A.S., Allen, C.R., & Benson, M.H. (2013) Can law foster social-ecological resilience? Ecology and Society, 18, 37. https://doi.org/10.5751/ES-05927-180237.
Grigorvey, I. (2015). AnyLogic 7 in Three Days: A Quick Course in Simulation Modeling. AnyLogic.
Helbing, D. (2013) Globally networked risks and how to respond. Nature, 497, 51-59
Hepburn, C., Allas, T., Cozzi, L., Liebreich, M., Skea, J., Whitmarsh, L., Wilkes, G., & Worthington, B. (2020) Sensitive intervention points to achieve net-zero emissions. Climate Change Committee, Sixth Carbon Budget Policy Advisory Group. https://www.theccc.org.uk/publication/sensitive-intervention-points-to-achieve-net-zero-emissions-sixth-carbon-budget-policy-advisory-group/
Homer-Dixon, T., Walker, B., Biggs, R., Crépin, A.-S., Folke, C., Lambin, E.F., Peterson, G.D., Rockström, J., Scheffer, M., Steffen, W., & Troell, M. (2015) Synchronous failure: the emerging causal architecture of global crisis. Ecology and Society, 20(3), 6. http://dx.doi.org/10.5751/ES-07681-200306
Hughes, T. P., S. Carpenter, J. Rockström, M. Scheffer, & Walker, B. (2013). Multiscale regime shifts and planetary boundaries. Trends in Ecology and Evolution, 28(7), 389-395. https://doi.org/10.1016/j.tree.2013.05.019
Iwanaga, T., Wang, H.-H., Hamilton, S.H., Grimm, V., Koralewski, T.E., Salado, A., Elsawah, S., Razavi, S., Yang, J., Glynn, P., Badham, J., Voinov, A., Chen, M., Grant, W.E., Peterson, T.R., Frank, K., Shenk, G., Barton, C.M., Jakeman, A.J., & Little, J.C. (2021a) Socio-technical scales in socio-environmental modeling: Managing a system-of-systems modeling approach. Environmental Modelling & Software, 135, 104885. https://doi.org/10.1016/j.envsoft.2020.104885
Iwanaga, T., Wang, H.-H., Koralewski, T.E., Grant, W.E., Jakeman, A.J., & Little, J.C. (2021b) Toward a complete interdisciplinary treatment of scale: Reflexive lessons from socioenvironmental systems modeling. Elementa Science of the Anthropocene, 9, 00182. https://doi.org/10.1525/elementa.2020.00182
Kim, D., Kwon, Y.-K., & Hyun Cho, K.-H. (2008) The biphasic behavior of incoherent feed‐forward loops in biomolecular regulatory networks. Bioessays 30, 11‐12, 1204-1211.
Klipp, E., Liebermeister, W., Wierling, C., & Kowald, A. (2016). Systems biology: a textbook. John Wiley & Sons.
Klose A.K., Karle, V., Winkelmann R., & Donges J.F. (2020) Emergence of cascading dynamics in interacting tipping elements of ecology and climate. Royal Society Open Science, 7:200599. https://doi.org/10.1098/rsos.200599
Kuznetsov, Y. A. (2004) Elements of applied bifurcation theory. Vol. 112. New York: Springer.
Lam, D.P.M., Martín-López, B., Wiek, A., Bennett, E.M., Frantzeskaki, N., Horcea-Milcu, A.I, & Lang, D.J. (2020). Scaling the impact of sustainability initiatives: a typology of amplification processes. Urban Transformations, 2, 3. https://doi.org/10.1186/s42854-020-00007-9
Lenton, T. (2020) Tipping positive change. Philosophical Transactions of the Royal Society B, B3752019012320190123. http://doi.org/10.1098/rstb.2019.0123
Lenton, T., Benson, S., Smith, T., Ewer, T., Lanel, V., Petykowski, E., Powell. T.W.R., Abrams, J.F., Blomsma, F., & Sharpe, S. (2022). Operationalising positive tipping points towards global sustainability. Global Sustainability, 5, e1. https://doi.org/10.1017/sus.2021.30
Marten, G. (2005). Environmental Tipping Points: A New Paradigm for Restoring Ecological Security. Journal of Policy Studies (Japan), 20, 75-87.
Manjana, M., Hodbod, J., Baggio, J., Benessaiah, K., Calderón-Contreras, R., Donges, J.F., Mathias, J.-D., Rocha, J.C., Schoon, M., & Werners, S.E. (2018) Defining tipping points for social-ecological systems scholarship—an interdisciplinary literature review. Environmental Research Letters, 13, 033005. https://doi.org/10.1088/1748-9326/aaaa75
Maplesoft (2021). Maple. Maplesoft, Waterloo Maple Inc., Waterloo, Ontario.
Milchunas, D.G., & Lauenroth, W.K. (1993) Quantitative effects of grazing on vegetation and soils over a global range of environments. Ecological Monographs, 63, 327–366.
Mealy, P., Barbrook-Johnson, P., Ives M.C., Srivastav, S., & Hepburn, C. (2023). Sensitive intervention points: a strategic approach to climate action, Oxford Review of Economic Policy, 39, 4, 694–710, https://doi.org/10.1093/oxrep/grad043
Millennium Ecosystem Assessment (2005) Ecosystems and Human Well-Being: Synthesis. Island Press, Washington, DC.
Moallemi, E. A., Zare, F., Reed, P. M., Elsawah, S., Ryan, M. J., & Bryan, B. A. (2020). Structuring and evaluating decision support processes to enhance the robustness of complex human–natural systems. Environmental Modelling & Software, 123, 104551. https://doi.org/10.1016/j.envsoft.2019.104551
Oesterheld, M., Sala, O., & McNaughton, S. (1992) Effect of animal husbandry on herbivore carrying capacity at a regional scale. Nature, 356, 234-236. https://doi.org/10.1038/356234a0
Ragab, R., & Prudhomme, C. (2002) SW - soil and Water: climate change and water resources management in arid and semi-arid regions: prospective and challenges for the 21st century. Biosystems Engineering, 81, 3–34. https://doi.org/10.1006/bioe.2001.0013
Razavi, S., Jakeman, A., Saltelli, A., Prieur, C., Iooss, B., Borgonovo, E., Plischke, E., Lo Piano, S., Iwanaga, T., Becker, W., Tarantola, S., Guillaume, J.H.A., Jakeman, J., Gupta, H., Melillo, N., Rabitti, G., Chabridon, V., Duan, Q., Sun, X., Smith, S., Sheikholeslami, R., Hosseini, N., Asadzadeh, M., Puy, A., Kucherenko, S. & Maier, H.R. (2021). The future of sensitivity analysis: an essential discipline for systems modeling and policy support. Environmental Modelling & Software, 137, 104954. https://doi.org/10.1016/j.envsoft.2020.104954
Ritchie, H. & Roser, M. (2013). Land Use. Our World in Data. https://ourworldindata.org/land-use
Ritchie, H., Rodés-Guirao, L., Mathieu, E., Gerber, M., Ortiz-Ospina, E., Hasell, J. & Roser, M. (2023) Population Growth. Our World In Data. https://ourworldindata.org/population-growth.
Rocha, J. C., Peterson, G., Bodin, Ö., & Levin, S. (2018). Cascading regime shifts within and across scales. Science, 362(6421), 1379-1383. https://doi.org/10.1126/science.aat7850
Sharpe, S., & Lenton, T. (2021) Upward-scaling tipping cascades to meet climate goals: plausible grounds for hope, Climate Policy, 21:4, 421-433. https://doi.org/10.1080/14693062.2020.1870097
Stephens, P. A., & Sutherland, W. J. (1999). Consequences of the Allee effect for behaviour, ecology and conservation. Trends in ecology & evolution, 14(10), 401-405. https://doi.org/10.1016/S0169-5347(99)01684-5
Systemiq (2023). The Breakthrough Effect: how tipping points can accelerate net zero. https://www.systemiq.earth/breakthrough-effect/
Teague, R., Grant, B. & Wang, H.-H. (2015) Assessing optimal configurations of multi-paddock grazing strategies in tallgrass prairie using a simulation model. Journal of Environmental Management, 150, 262-273. https://doi.org/10.1016/j.jenvman.2014.09.027
Twidwell, D., West, A.S., Hiatt, W.B., Ramirez, A.L., Taylor Winter, J., Engle, D.M., Fuhlendorf, S.D., & Carlson, J.D. (2016) Plant invasions or fire policy: which has altered fire behavior more in tallgrass prairie? Ecosystems, 19, 256–368 https://doi.org/10.1007/s10021-015-9937-y
Twidwell, D., Wonkka, C.L., Wang, H.-H., Grant, W.E., Allen, C.R., Fuhlendorf, S.D., Garmestani, A.S., Angeler, D.G., Taylor, C.A., Jr., Kreuter, U.P., & Rogers, W.E. (2019) Coerced resilience in fire management. Journal of Environmental Management, 240, 368-373. https://doi.org/10.1016/j.jenvman.2019.02.073
Troell M., Naylor R.L., Metian M., Beveridge M., Tyedmers M.B., Folke C., Arrow K.J., Barrett Sc., Crépin A.-S., Ehrlich P.A., Gren A., Kautsky N., Levin S.A., Nyborg K., Österblom H., Polasky S., Scheffer M., Walker B.H., Xepapadeas T., & de Zeeuw A. (2014) Does aquaculture add resilience to the global food system? PNAS, 111 (37), 13257-13263 https://doi.org/10.1073/pnas.1404067111
Van Voorn, G. A. K., & Kooi, B. W. (2017) Combining bifurcation and sensitivity analysis for ecological models. The European Physical Journal Special Topics 226: 2101-2118. https://doi.org/10.1140/epjst/e2017-70030-2
Van Voorn, G. A. K., Hemerik, L., Boer, M. P., & Kooi, B. W. (2007). Heteroclinic orbits indicate overexploitation in predator–prey systems with a strong Allee effect. Mathematical biosciences, 209(2), 451-469. https://doi.org/10.1016/j.mbs.2007.02.006
Van Voorn, G.A.K., Hengeveld, G., & Verhagen, J. (2020) An agent-based model representation to assess resilience and efficiency of food supply chains. PLoS ONE 15(11): e0242323. https://doi.org/10.1371/journal.pone.0242323
Walker, B., & Abel, N. (2001) Resilient rangelands: adaptation in complex systems. In: Gunderson, L.H., Holling, C.S. (Eds.), Panarchy: Understanding Transformations in Human and Natural Systems. Island Press, Washington, DC, pp. 293–314.
Wang, H.-H., Grant, W.E., & Teague, R. (2020) Modeling rangelands as spatially-explicit complex adaptive systems. Journal of Environmental Management, 269, 110762. https://doi.org/10.1016/j.jenvman.2020.110762
Wang, H.-H., & Grant, W.E. (2021) Reflections of two systems ecologists on modelling coupled human and natural (socio-ecological, socio-environmental) systems. Ecological Modelling, 440, 109403. https://doi.org/10.1016/j.ecolmodel.2020.109403
Wang, H.H., Van Voorn, G., Grant, W.E., Zare, F., Giupponi, C., Steinmann, P., Müller, B., Elsawah, S., van Delden, H., Athanasiadis, I. N., Sun, Z., Jager, W., Little, J. C., & Jakeman, A.J. (2023). Scale decisions and good practices in socio-environmental systems modelling: guidance and documentation during problem scoping and model formulation. Socio-Environmental Systems Modelling, 5, 18563. https://doi.org/10.18174/sesmo.18563
Wilensky, U. (1999). NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL.
Wilcox, B.P., Birt, A., Archer, S.R., Fuhlendorf, S.D., Kreuter, U.P., Sorice, M.G., van Leeuwen, W.J., & Zou, C.B. (2018a) Viewing woody-plant encroachment through a social–ecological lens. Bioscience, 68, 691–705. https://doi.org/10.1093/biosci/biy051
Wilcox, B.P., Birt, A., Fuhlendorf, S.D., & Archer, S.R. (2018b) Emerging frameworks for understanding and mitigating woody plant encroachment in grassy biomes. Current Opinion in Environmental Sustainability. 32, 46–52. https://doi.org/10.1016/j.cosust.2018.04.005
Wilcox, B.P., Fuhlendorf, S.D., Walker, Twidwell, D., Wu, X.B., Goodman, L.E., Treadwell, M., J.W., & Birt, A. (2021) Saving imperiled grassland biomes by recoupling fire and grazing: a case study from the Great Plains. Frontiers in Ecology and the Environment, 20, 3, 179-186. https://doi.org/10.1002/fee.2448
Wilhelm, T. (2009). The smallest chemical reaction system with bistability. BMC systems biology, 3(1), 1-9. https://doi.org/10.1186/1752-0509-3-90
Winkelmann, R., Donges, J. F., Smith, E. K., Milkoreit, M., Eder, C., Heitzig, J., Katsanidou, A., Widermann, M., Wunderling, N. & Lenton, T.M. (2022). Social tipping processes towards climate action: A conceptual framework. Ecological Economics, 192, 107242. https://doi.org/10.1016/j.ecolecon.2021.107242.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2024 Peter Barbrook-Johnson, George van Voorn, Hsiao-Hsuan Wang, Fateme Zare, William E. Grant, Zach Posnik, Melvin Lippe