Assessing convergence in global sensitivity analysis: a review of methods for assessing and monitoring convergence
Article Full Text (PDF)


global sensitivity analysis
good modeling practice

How to Cite

Sun, X., Jakeman, A. J., Croke, B. F., Roberts, S. G., & Jakeman, J. D. (2024). Assessing convergence in global sensitivity analysis: a review of methods for assessing and monitoring convergence. Socio-Environmental Systems Modelling, 6, 18678.


In global sensitivity analysis (GSA) of a model, a proper convergence analysis of metrics is essential for ensuring a level of confidence or trustworthiness in sensitivity results obtained, yet is somewhat deficient in practice. The level of confidence in sensitivity measures, particularly in relation to their influence and support for decisions from scientific, social and policy perspectives, is heavily reliant on the convergence of GSA. We review the literature and summarize the available methods for monitoring and assessing convergence of sensitivity measures based on application purposes. The aim is to expose the various choices for convergence assessment and encourage further testing of available methods to clarify their level of robustness. Furthermore, the review identifies a pressing need for comparative studies on convergence assessment methods to establish a clear hierarchy of effectiveness and encourages the adoption of systematic approaches for enhanced robustness in sensitivity analysis.

Article Full Text (PDF)


Akomeah, E., Lindenschmidt, K. E., & Chapra, S. C. (2019). Comparison of aquatic ecosystem functioning between eutrophic and hypereutrophic cold-region river-lake systems. Ecological Modelling, 393, 25–36.

Anstett-Collin, F., Goffart, J., Mara, T., & Denis-Vidal, L. (2015). Sensitivity analysis of complex models: Coping with dynamic and static inputs. Reliability Engineering and System Safety, 134, 268–275.

Archer, G. E. B., Saltelli, A., & Sobol, I. M. (1997). Sensitivity measures, anova-like techniques and the use of bootstrap. Journal of Statistical Computation and Simulation, 58(2), 99–120.

Asensio-Sevilla, M. I., Santos-Martín, M. T., Álvarez-León, D., & Ferragut-Canals, L. (2020). Global sensitivity analysis of fuel-type-dependent input variables of a simplified physical fire spread model. Mathematics and Computers in Simulation, 172, 33–44.

Awad, M., Senga Kiesse, T., Assaghir, Z., & Ventura, A. (2019). Convergence of sensitivity analysis methods for evaluating combined influences of model inputs. Reliability Engineering and System Safety, 189, 109–122.

Bajracharya, A., Awoye, H., Stadnyk, T., & Asadzadeh, M. (2020). Time variant sensitivity analysis of hydrological model parameters in a cold region using flow signatures. Water, 12(4), 961.

Baroni, G., Scheiffele, L. M., Schrön, M., Ingwersen, J., & Oswald, S. E. (2018). Uncertainty, sensitivity and improvements in soil moisture estimation with cosmic-ray neutron sensing. Journal of Hydrology, 564, 873–887.

Baroni, G., & Francke, T. (2020). An effective strategy for combining variance- and distribution-based global sensitivity analysis. Environmental Modelling and Software, 134, 104851.

Benedetti, L., Claeys, F., Nopens, I., & Vanrolleghem, P. A. (2011). Assessing the convergence of LHS Monte Carlo simulations of wastewater treatment models. Water Science and Technology, 63(10), 2219–2224.

Berezowski, T., Nossent, J., Chormaåski, J., & Batelaan, O. (2015). Spatial sensitivity analysis of snow cover data in a distributed rainfall-runoff model. Hydrology and Earth System Sciences, 19(4), 1887–1904.

Borroni, C. G. (2013). A new rank correlation measure. Statistical Papers, 54(2), 255–270.

Branger, F., Giraudet, L. G., Guivarch, C., & Quirion, P. (2015). Global sensitivity analysis of an energy-economy model of the residential building sector. Environmental Modelling and Software, 70, 45–54.

Brembilla, E., Mardaljevic, J., & Hopfe, C. J. (2015). Sensitivity analysis studying the impact of reflectance values assigned in climate-based daylight modelling. 14th International Conference of IBPSA - Building Simulation 2015, BS 2015, Conference Proceedings, September, 1197–1204.

Budamala, V., & Baburao Mahindrakar, A. (2020). Integration of Adaptive Emulators and Sensitivity Analysis for Enhancement of Complex Hydrological Models. Environmental Processes, 7(4), 1235–1253.

Campolongo, F., Cariboni, J., & Saltelli, A. (2007). An effective screening design for sensitivity analysis of large models. Environmental Modelling and Software, 22(10), 1509–1518.

Castaings, W., Borgonovo, E., Morris, M. D., & Tarantola, S. (2012). Sampling strategies in density-based sensitivity analysis. Environmental Modelling and Software, 38, 13–26.

Chaney, N. W., Herman, J. D., Ek, M. B., & Wood, E. F. (2016). Deriving global parameter estimates for the Noah land surface model using FLUXNET and machine learning. Journal of Geophysical Research, 121(22), 13,218-13,235.

Chisari, C., Rizzano, G., Amadio, C., & Galdi, V. (2018). Sensitivity analysis and calibration of phenomenological models for seismic analyses. Soil Dynamics and Earthquake Engineering, 109, 10–22.

Ciric, C., Ciffroy, P., & Charles, S. (2012). Use of sensitivity analysis to identify influential and non-influential parameters within an aquatic ecosystem model. Ecological Modelling, 246(C), 119–130.

Cloke, H. L., Pappenberger, F., & Renaud, J. P. (2008). Multi-Method Global Sensitivity Analysis (MMGSA) for modelling floodplain hydrological processes. Hydrological Processes, 22(11), 1660–1674.

Confalonieri, R., Bellocchi, G., Bregaglio, S., Donatelli, M., & Acutis, M. (2010a). Comparison of sensitivity analysis techniques: A case study with the rice model WARM. Ecological Modelling, 221(16), 1897–1906.

Confalonieri, R., Bregaglio, S., & Acutis, M. (2012). Quantifying plasticity in simulation models. Ecological Modelling, 225, 159–166.

Confalonieri, R., Bellocchi, G., Tarantola, S., Acutis, M., Donatelli, M., & Genovese, G. (2010b). Sensitivity analysis of the rice model WARM in Europe: Exploring the effects of different locations, climates and methods of analysis on model sensitivity to crop parameters. Environmental Modelling & Software, 25(4), 479–488.

Coolen-Maturi, T. (2014). A new weighted rank coefficient of concordance. Journal of Applied Statistics, 41(8), 1721–1745.

Cosenza, A., Mannina, G., Vanrolleghem, P. A., & Neumann, M. B. (2013). Global sensitivity analysis in wastewater applications: A comprehensive comparison of different methods. Environmental Modelling and Software, 49, 40–52.

Cosenza, A., Mannina, G., Vanrolleghem, P. A., & Neumann, M. B. (2014). Variance-based sensitivity analysis for wastewater treatment plant modelling. Science of the Total Environment, 470–471, 1068–1077.

Crosetto, M., Tarantola, S., & Saltelli, A. (2000). Sensitivity and uncertainty analysis in spatial modelling based on GIS. Agriculture, Ecosystems and Environment, 81(1), 71–79.

Cruz May, E., Bassam, A., Ricalde, L. J., Escalante Soberanis, M. A., Oubram, O., May Tzuc, O., Alanis, A. Y., & Livas-García, A. (2021). Global sensitivity analysis for a real-time electricity market forecast by a machine learning approach: A case study of Mexico. International Journal of Electrical Power and Energy Systems, 135, 107505.

Dai, H., & Ye, M. (2015). Variance-based global sensitivity analysis for multiple scenarios and models with implementation using sparse grid collocation. Journal of Hydrology, 528, 286–300.

Devak, M., & Dhanya, C. T. (2017). Sensitivity analysis of hydrological models: Review and way forward. Journal of Water and Climate Change, 8(4), 557–575.

Do, N. C., & Razavi, S. (2020). Correlation Effects? A Major but Often Neglected Component in Sensitivity and Uncertainty Analysis. Water Resources Research, 56(3).

Douglas-Smith, D., Iwanaga, T., Croke, B. F. W., & Jakeman, A. J. (2020). Certain trends in uncertainty and sensitivity analysis: An overview of software tools and techniques. Environmental Modelling and Software, 124, 104588.

Estrada, V., & Diaz, M. S. (2010). Global sensitivity analysis in the development of first principle-based eutrophication models. Environmental Modelling and Software, 25(12), 1539–1551.

Faggianelli, G. A., Mora, L., & Merheb, R. (2017). Uncertainty quantification for Energy Savings Performance Contracting: Application to an office building. Energy and Buildings, 152, 61–72.

Garcia, D., Arostegui, I., & Prellezo, R. (2019). Robust combination of the Morris and Sobol methods in complex multidimensional models. Environmental Modelling and Software, 122, 104517.

Ge, Q., & Menendez, M. (2014). An Efficient Sensitivity Analysis Approach for Computationally Expensive Microscopic Traffic Simulation Models. International Journal of Transportation, 2(2), 49–64.

Ghasemizade, M., Baroni, G., Abbaspour, K., & Schirmer, M. (2017). Combined analysis of time-varying sensitivity and identifiability indices to diagnose the response of a complex environmental model. Environmental Modelling and Software, 88, 22–34.

Gilardelli, C., Confalonieri, R., Cappelli, G. A., & Bellocchi, G. (2018). Sensitivity of WOFOST-based modelling solutions to crop parameters under climate change. Ecological Modelling, 368, 1–14.

Gilquin, L., Prieur, C., Arnaud, E., & Monod, H. (2021). Iterative estimation of Sobol’ indices based on replicated designs. Computational and Applied Mathematics, 40(1), 1–23.

Gokarakonda, S., van Treeck, C., & Rawal, R. (2019). Influence of building design and control parameters on the potential of mixed-mode buildings in India. Building and Environment, 148, 157–172.

Gómez-Delgado, M., & Tarantola, S. (2006). GLOBAL sensitivity analysis, GIS and multi-criteria evaluation for a sustainable planning of a hazardous waste disposal site in Spain. International Journal of Geographical Information Science, 20(4), 449–466.

Gschwend, D., Soltic, P., Edinger, P., Wokaun, A., & Vogel, F. (2017). Performance evaluation of gasoline alternatives using a thermodynamic spark-ignition engine model. Sustainable Energy and Fuels, 1(9), 1991–2005.

Guillaume, J. H. A., Jakeman, J. D., Marsili-Libelli, S., Asher, M., Brunner, P., Croke, B., Hill, M. C., Jakeman, A. J., Keesman, K. J., Razavi, S., & Stigter, J. D. (2019). Introductory overview of identifiability analysis: A guide to evaluating whether you have the right type of data for your modeling purpose. Environmental Modelling and Software, 119, 418–432.

Gupta, H. V., & Razavi, S. (2018). Revisiting the Basis of Sensitivity Analysis for Dynamical Earth System Models. Water Resources Research, 54(11), 8692–8717.

Hart, J., & Gremaud, P. (2019). Robustness of the Sobol’ indices to distributional uncertainty. International Journal for Uncertainty Quantification, 9(5), 453–469.

Hartmann, A., Šimůnek, J., Aidoo, M. K., Seidel, S. J., & Lazarovitch, N. (2018). Implementation and Application of a Root Growth Module in HYDRUS. Vadose Zone Journal, 17(1), 170040.

Helton, J. C., Davis, F. J., & Johnson, J. D. (2005). A comparison of uncertainty and sensitivity analysis results obtained with random and Latin hypercube sampling. Reliability Engineering and System Safety, 89(3), 305–330.

Herman, J. D., Kollat, J. B., Reed, P. M., & Wagener, T. (2013). Technical Note: Method of Morris effectively reduces the computational demands of global sensitivity analysis for distributed watershed models. Hydrology and Earth System Sciences, 17(7), 2893–2903.

Homma, T., & Saltelli, A. (1996). Importance measures in global sensitivity analysis of nonlinear models. Reliability Engineering & System Safety, 52(1), 1–17.

Hornberger, G., & Spear, R. (1981). Approach to the preliminary analysis of environmental systems. J. Environ. Manage.; (United States), 12:1, 7–18.

Hsieh, N. H., Bois, F. Y., Tsakalozou, E., Ni, Z., Yoon, M., Sun, W., Klein, M., Reisfeld, B., & Chiu, W. A. (2021). A Bayesian population physiologically based pharmacokinetic absorption modeling approach to support generic drug development: application to bupropion hydrochloride oral dosage forms. Journal of Pharmacokinetics and Pharmacodynamics, 5.

Hsieh, N. H., Reisfeld, B., Bois, F. Y., & Chiu, W. A. (2018). Applying a global sensitivity analysis workflow to improve the computational efficiencies in physiologically-based pharmacokinetic modeling. Frontiers in Pharmacology, 9, 1–17.

Hsieh, N. H., Reisfeld, B., & Chiu, W. A. (2020). pksensi: An R package to apply global sensitivity analysis in physiologically based kinetic modeling. SoftwareX, 12, 100609.

Hu, Y., Garcia-Cabrejo, O., Cai, X., Valocchi, A. J., & DuPont, B. (2015). Global sensitivity analysis for large-scale socio-hydrological models using Hadoop. Environmental Modelling & Software, 73, 231–243.

Huo, X., Gupta, H., Niu, G. Y., Gong, W., & Duan, Q. (2019). Parameter Sensitivity Analysis for Computationally Intensive Spatially Distributed Dynamical Environmental Systems Models. Journal of Advances in Modeling Earth Systems, 11(9), 2896–2909.

Iman, R. L., & Conover, W. J. (1987). A Measure of Top-Down Correlation. Technometrics, 29(3), 351.

Isaksson, A., Wallman, M., Göransson, H., & Gustafsson, M. G. (2008). Cross-validation and bootstrapping are unreliable in small sample classification. Pattern Recognition Letters, 29(14), 1960–1965.

Jabloun, M., Li, X., Zhang, X., Tao, F., Hu, C., & Olesen, J. E. (2018). Sensitivity of simulated crop yield and nitrate leaching of the wheat-maize cropping system in the North China Plain to model parameters. Agricultural and Forest Meteorology, 263, 25–40.

Jakeman, A. J., Letcher, R. A., & Norton, J. P. (2006). Ten iterative steps in development and evaluation of environmental models. Environmental Modelling and Software, 21(5), 602–614.

Jakeman, J. (2023). PyApprox: A software package for sensitivity analysis, Bayesian inference, optimal experimental design, and multi-fidelity uncertainty quantification and surrogate modeling. Environmental Modelling and Software, 170, 105825.

Janssen, H. (2013). Monte-Carlo based uncertainty analysis: Sampling efficiency and sampling convergence. Reliability Engineering and System Safety, 109, 123–132.

Kavetski, D., & Clark, M. P. (2010). Ancient numerical daemons of conceptual hydrological modeling: 2. Impact of time stepping schemes on model analysis and prediction. Water Resources Research, 46(10), 2009WR008896.

KC, U., Aryal, J., Garg, S., & Hilton, J. (2021). Global sensitivity analysis for uncertainty quantification in fire spread models. Environmental Modelling and Software, 143, 105110.

KC, U., Garg, S., Hilton, J., & Aryal, J. (2020). A cloud-based framework for sensitivity analysis of natural hazard models. Environmental Modelling and Software, 134, 104800.

Kelleher, C., & Wagener, T. (2011). Ten guidelines for effective data visualization in scientific publications. Environmental Modelling & Software, 26(6), 822–827.

Khan, S., & Kaklis, P. (2021). From regional sensitivity to intra-sensitivity for parametric analysis of free-form shapes: Application to ship design. Advanced Engineering Informatics, 49, 101314.

Khorashadi Zadeh, F., Nossent, J., Sarrazin, F., Pianosi, F., van Griensven, A., Wagener, T., & Bauwens, W. (2017). Comparison of variance-based and moment-independent global sensitivity analysis approaches by application to the SWAT model. Environmental Modelling and Software, 91, 210–222.

Koo, H., Iwanaga, T., Croke, B. F. W., Jakeman, A. J., Yang, J., Wang, H. H., Sun, X., Lü, G., Li, X., Yue, T., Yuan, W., Liu, X., & Chen, M. (2020). Position paper: Sensitivity analysis of spatially distributed environmental models- a pragmatic framework for the exploration of uncertainty sources. Environmental Modelling and Software, 134, 104857.

Krishnan, P., & Aggarwal, P. (2018). Global sensitivity and uncertainty analyses of a web based crop simulation model (web InfoCrop wheat) for soil parameters. Plant and Soil, 423(1–2), 443–463.

Krishnan, P., Maity, P. P., & Kundu, M. (2021). Sensitivity analysis of cultivar parameters to simulate wheat crop growth and yield under moisture and temperature stress conditions. Heliyon, 7(7), e07602.

Kroll, S., Dirckx, G., Donckels, B. M. R., Van Dorpe, M., Weemaes, M., & Willems, P. (2016). Modelling real-time control of WWTP influent flow under data scarcity. Water Science and Technology, 73(7), 1637–1643.

Lebedeva, G., Sorokin, A., Faratian, D., Mullen, P., Goltsov, A., Langdon, S. P., Harrison, D. J., & Goryanin, I. (2012). Model-based global sensitivity analysis as applied to identification of anti-cancer drug targets and biomarkers of drug resistance in the ErbB2/3 network. European Journal of Pharmaceutical Sciences, 46(4), 244–258.

Leolini, L., Bregaglio, S., Moriondo, M., Ramos, M. C., Bindi, M., & Ginaldi, F. (2018). A model library to simulate grapevine growth and development: software implementation, sensitivity analysis and field level application. European Journal of Agronomy, 99, 92–105.

Li, P., & Ren, L. (2019). Evaluating the effects of limited irrigation on crop water productivity and reducing deep groundwater exploitation in the North China Plain using an agro-hydrological model: I. Parameter sensitivity analysis, calibration and model validation. Journal of Hydrology, 574(2), 497–516.

Likhachev, D. V. (2019). Parametric sensitivity analysis as an essential ingredient of spectroscopic ellipsometry data modeling: An application of the Morris screening method. Journal of Applied Physics, 126(18).

Liu, J., Liu, Z., Zhu, A. X., Shen, F., Lei, Q., & Duan, Z. (2019a). Global sensitivity analysis of the APSIM-Oryza rice growth model under different environmental conditions. Science of the Total Environment, 651, 953–968.

Liu, K., Xin, X., Ma, J., Zhang, J., & Yu, Q. (2019b). Sensitivity analysis of ship traffic in restricted two-way waterways considering the impact of LNG carriers. Ocean Engineering, 192, 106556.

Locatelli, T., Tarantola, S., Gardiner, B., & Patenaude, G. (2017). Variance-based sensitivity analysis of a wind risk model - Model behaviour and lessons for forest modelling. Environmental Modelling and Software, 87, 84–109.

Mai, J., & Tolson, B. A. (2019). Model Variable Augmentation (MVA) for Diagnostic Assessment of Sensitivity Analysis Results. Water Resources Research, 55(4), 2631–2651.

Mailier, J., Delmotte, A., Cloutier, M., Jolicoeur, M., & VandeWouwer, A. (2011). Sensitivity analysis for parameter identification of a plant growth model. In IFAC Proceedings Volumes (IFAC-PapersOnline) (Vol. 44, Issue 1 PART 1). IFAC.

Marino, S., Hogue, I. B., Ray, C. J., & Kirschner, D. E. (2008). A methodology for performing global uncertainty and sensitivity analysis in systems biology. Journal of Theoretical Biology, 254(1), 178–196.

Matthews, C. J., Newton, D. B., Braddock, R. D., & Yu, B. (2007). Analysing the sensitivity behaviour of two hydrology models. Environmental Modeling and Assessment, 12(1), 27–41.

Medina, Y., & Muñoz, E. (2020a). A simple time-varying sensitivity analysis (TVSA) for assessment of temporal variability of hydrological processes. Water, 12(9), 2463.

Medina, Y., & Muñoz, E. (2020b). Analysis of the relative importance of model parameters in watersheds with different hydrological regimes. Water, 12(9), 2376.

Moreau, P., Viaud, V., Parnaudeau, V., Salmon-Monviola, J., & Durand, P. (2013). An approach for global sensitivity analysis of a complex environmental model to spatial inputs and parameters: A case study of an agro-hydrological model. Environmental Modelling and Software, 47, 74–87.

Neumann, M. B. (2012). Comparison of sensitivity analysis methods for pollutant degradation modelling: A case study from drinking water treatment. Science of the Total Environment, 433, 530–537.

Nguyen, A. T., & Reiter, S. (2015). A performance comparison of sensitivity analysis methods for building energy models. Building Simulation, 8(6), 651–664.

Nossent, J., Elsen, P., & Bauwens, W. (2011). Sobol’ sensitivity analysis of a complex environmental model. Environmental Modelling and Software, 26(12), 1515–1525.

Page, T., Smith, P., Beven, K., Pianosi, F., Sarrazin, F., Almeida, S., Holcombe, L., Freer, J., Chappell, N., & Wagener, T. (2023). Technical note: The CREDIBLE Uncertainty Estimation (CURE) toolbox: facilitating the communication of epistemic uncertainty. Hydrology and Earth System Sciences, 27(13), 2523–2534.

Paleari, L., & Confalonieri, R. (2016). Sensitivity analysis of a sensitivity analysis: We are likely overlooking the impact of distributional assumptions. Ecological Modelling.

Paleari, L., Movedi, E., Zoli, M., Burato, A., Cecconi, I., Errahouly, J., Pecollo, E., Sorvillo, C., & Confalonieri, R. (2021). Sensitivity analysis using Morris: Just screening or an effective ranking method? Ecological Modelling, 455, 109648.

Pappenberger, F., Beven, K. J., Ratto, M., & Matgen, P. (2008). Multi-method global sensitivity analysis of flood inundation models. Advances in Water Resources, 31(1), 1–14.

Peeters, L. J. M., Pagendam, D. E., Crosbie, R. S., Rachakonda, P. K., Dawes, W. R., Gao, L., Marvanek, S. P., Zhang, Y. Q., & McVicar, T. R. (2018). Determining the initial spatial extent of an environmental impact assessment with a probabilistic screening methodology. Environmental Modelling and Software, 109, 353–367.

Peng, X., Adamowski, J., Inam, A., Alizadeh, M. R., & Albano, R. (2020). Development of a behaviour-pattern based global sensitivity analysis procedure for coupled socioeconomic and environmental models. Journal of Hydrology, 585, 124745.

Pianosi, F., Beven, K., Freer, J., Hall, J. W., Rougier, J., Stephenson, D. B., & Wagener, T. (2016). Sensitivity analysis of environmental models: A systematic review with practical workflow. Environmental Modelling and Software, 79, 214–232.

Pianosi, F., Sarrazin, F., & Wagener, T. (2015). A Matlab toolbox for Global Sensitivity Analysis. Environmental Modelling & Software, 70, 80–85.

Pianosi, F., Sarrazin, F., & Wagener, T. (2020). How successfully is open-source research software adopted? Results and implications of surveying the users of a sensitivity analysis toolbox. Environmental Modelling and Software, 124.

Qian, G., & Mahdi, A. (2020). Sensitivity analysis methods in the biomedical sciences. Mathematical Biosciences, 323, 108306.

Ravalico, J. K., Dandy, G. C., & Maier, H. R. (2010). Management Option Rank Equivalence (MORE) - A new method of sensitivity analysis for decision-making. Environmental Modelling and Software, 25(2), 171–181.

Ravasi, R. A., Paleari, L., Vesely, F. M., Movedi, E., Thoelke, W., & Confalonieri, R. (2020). Ideotype definition to adapt legumes to climate change: A case study for field pea in Northern Italy. Agricultural and Forest Meteorology, 291.

Razavi, S., & Gupta, H. V. (2016a). A new framework for comprehensive, robust, and efficient global sensitivity analysis: 1. Theory. Water Resources Research, 52(1), 423–439.

Razavi, S., & Gupta, H. V. (2016b). A new framework for comprehensive, robust, and efficient global sensitivity analysis: 2. Application. Water Resources Research, 52(1), 440–455.

Razavi, S., & Gupta, H. V. (2019). A multi-method Generalized Global Sensitivity Matrix approach to accounting for the dynamical nature of earth and environmental systems models. Environmental Modelling and Software, 114, 1–11.

Razavi, S., Jakeman, A., Saltelli, A., Prieur, C., Iooss, B., Borgonovo, E., Plischke, E., Lo Piano, S., Iwanaga, T., Becker, W., Tarantola, S., Guillaume, J. H. A., Jakeman, J., Gupta, H., Melillo, N., Rabitti, G., Chabridon, V., Duan, Q., Sun, X., … Maier, H. R. (2021). The Future of Sensitivity Analysis: An essential discipline for systems modeling and policy support. Environmental Modelling and Software, 137.

Razavi, S., Sheikholeslami, R., Gupta, H. V., & Haghnegahdar, A. (2019). VARS-TOOL: A toolbox for comprehensive, efficient, and robust sensitivity and uncertainty analysis. Environmental Modelling and Software, 112, 95–107.

Reinhart, B. D., Frankenberger, J. R., Hay, C. H., Bowling, L. C., & Hancock, B. G. (2020). Development and Sensitivity Analysis of an Online Tool for Evaluating Drainage Water Recycling Decisions. Transactions of the ASABE, 63(6), 1991–2002.

Reusser, D. E., Buytaert, W., & Zehe, E. (2011). Temporal dynamics of model parameter sensitivity for computationally expensive models with the Fourier amplitude sensitivity test. Water Resources Research, 47(7).

Robles, A., Ruano, M. V., Ribes, J., Seco, A., & Ferrer, J. (2014a). Global sensitivity analysis of a filtration model for submerged anaerobic membrane bioreactors (AnMBR). Bioresource Technology, 158, 365–373.

Robles, A., Ruano, M. V., Ribes, J., Seco, A., & Ferrer, J. (2014b). Model-based automatic tuning of a filtration control system for submerged anaerobic membrane bioreactors (AnMBR). Journal of Membrane Science, 465, 14–26.

Ruano, M. V., Ribes, J., Seco, A., & Ferrer, J. (2012). An improved sampling strategy based on trajectory design for application of the Morris method to systems with many input factors. Environmental Modelling and Software, 37, 103–109.

Şalap-Ayça, S., Jankowski, P., Clarke, K. C., & Nara, A. (2021). Is less more? Experimenting with visual stacking of coincident maps for spatial global sensitivity analysis in urban land-use change modeling. Environmental Modelling and Software, 145.

Saltelli, A., Chan, K., & Scott, E. (2000). Sensitivity Analysis: Wiley Series in Probability and Statistics. Wiley.

Saltelli, Andrea, & Annoni, P. (2010). How to avoid a perfunctory sensitivity analysis. Environmental Modelling and Software, 25(12), 1508–1517.

Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., & Tarantola, S. (2010). Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index. Computer Physics Communications, 181(2), 259–270.

Saltelli, A., & Bolado, R. (1998). An alternative way to compute Fourier amplitude sensitivity test (FAST). Computational Statistics and Data Analysis, 26(4), 445–460.

Saltelli, A., Jakeman, A., Razavi, S., & Wu, Q. (2021). Sensitivity analysis: A discipline coming of age. Environmental Modelling & Software, 146, 105226.

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., & Tarantola, S. (2007). Global Sensitivity Analysis. The Primer. In International Statistical Review. John Wiley & Sons, Ltd.

Saltelli, A., Tarantola, S., Campolongo, F., & Ratto, M. (2004). Sensitivity analysis in practice: a guide to assessing scientific models.

Salviano, L. O., Gasparin, E. E., Mattos, V. C. N., Barbizan, B., Saltara, F., de Mello, P. E. B., Dezan, D. J., & Yanagihara, J. I. (2021). Sensitivity analysis and optimization of a CO2 centrifugal compressor impeller with a vaneless diffuser. Structural and Multidisciplinary Optimization, 64(3), 1607–1627.

Sarrazin, F., Hartmann, A., Pianosi, F., Rosolem, R., & Wagener, T. (2018). V2Karst V1.1: A parsimonious large-scale integrated vegetation-recharge model to simulate the impact of climate and land cover change in karst regions. In Geoscientific Model Development (Vol. 11, Issue 12).

Sarrazin, F., Pianosi, F., & Wagener, T. (2016). Global Sensitivity Analysis of environmental models: Convergence and validation. Environmental Modelling and Software, 79, 135–152.

Savage, I. R. (1956). Contributions to the Theory of Rank Order Statistics-the Two-Sample Case. The Annals of Mathematical Statistics, 27(3), 590–615.

Seo, S. B., Duchnowski, E. M., O’Neal, M., Motta, A. T., Passelaigue, F., Kang, S., Pastore, G., Manera, A., Petrov, V., Huang, P. H., & Brown, N. R. (2021). Sensitivity analysis of BISON model for characterization of impact of experimental parameters on hydrogen migration and redistribution in zirconium-based alloys. Journal of Nuclear Materials, 550, 152941.

Sheikholeslami, R., Gharari, S., Papalexiou, S. M., & Clark, M. P. (2021). VISCOUS: A Variance-Based Sensitivity Analysis Using Copulas for Efficient Identification of Dominant Hydrological Processes. Water Resources Research, 57(7), 1–24.

Sheikholeslami, R., & Razavi, S. (2017). Progressive Latin Hypercube Sampling: An efficient approach for robust sampling-based analysis of environmental models. Environmental Modelling and Software, 93, 109–126.

Sheikholeslami, R., Razavi, S., Gupta, H. V., Becker, W., & Haghnegahdar, A. (2019a). Global sensitivity analysis for high-dimensional problems: How to objectively group factors and measure robustness and convergence while reducing computational cost. Environmental Modelling and Software, 111, 282–299.

Sheikholeslami, R., Razavi, S., & Haghnegahdar, A. (2019b). What should we do when a model crashes? Recommendations for global sensitivity analysis of Earth and environmental systems models. Geoscientific Model Development, 12(10), 4275–4296.

Sheikholeslami, R., Yassin, F., Lindenschmidt, K. E., & Razavi, S. (2017). Improved understanding of river ice processes using global sensitivity analysis approaches. Journal of Hydrologic Engineering, 22(11), 04017048.

Shin, M. J., Guillaume, J. H. A., Croke, B. F. W., & Jakeman, A. J. (2013). Addressing ten questions about conceptual rainfall-runoff models with global sensitivity analyses in R. Journal of Hydrology, 503, 135–152.

Shin, M. J., Guillaume, J. H. A., Croke, B. F. W., & Jakeman, A. J. (2015). A review of foundational methods for checking the structural identifiability of models: Results for rainfall-runoff. Journal of Hydrology, 520, 1–16.

Sieber, A., & Uhlenbrook, S. (2005). Sensitivity analyses of a distributed catchment model to verify the model structure. Journal of Hydrology, 310(1–4), 216–235.

Silvestro, P. C., Pignatti, S., Yang, H., Yang, G., Pascucci, S., Castaldi, F., & Casa, R. (2017). Sensitivity analysis of the Aquacrop and SAFYE crop models for the assessment of water limited winter wheat yield in regional scale applications. PLoS ONE, 12(11), 1–30.

Sobol, M. (1993). Sensitivity Estimates for Nonlinear Mathematical Models. Mathematical Modeling and Computational Experiment, 1(4), 407–414.$9.00

Song, X. M., Kong, F. Z., Zhan, C. S., Han, J. W., & Zhang, X. H. (2013a). Parameter identification and global sensitivity analysis of Xin’anjiang model using meta-modeling approach. Water Science and Engineering, 6(1), 1–17.

Song, X., Bryan, B. A., Almeida, A. C., Paul, K. I., Zhao, G., & Ren, Y. (2013b). Time-dependent sensitivity of a process-based ecological model. Ecological Modelling, 265, 114–123.

Song, X., Bryan, B. A., Paul, K. I., & Zhao, G. (2012). Variance-based sensitivity analysis of a forest growth model. Ecological Modelling, 247, 135–143.

Song, X., Zhang, J., Zhan, C., Xuan, Y., Ye, M., & Xu, C. (2015). Global sensitivity analysis in hydrological modeling: Review of concepts, methods, theoretical framework, and applications. Journal of Hydrology, 523(225), 739–757.

Specka, X., Nendel, C., & Wieland, R. (2019). Temporal sensitivity analysis of the MONICA model: Application of two global approaches to analyze the dynamics of parameter sensitivity. Agriculture (Switzerland), 9(2), 37.

Sreedevi, S., Eldho, T. I., Madhusoodhanan, C. G., & Jayasankar, T. (2019). Multiobjective sensitivity analysis and model parameterization approach for coupled streamflow and groundwater table depth simulations using SHETRAN in a wet humid tropical catchment. Journal of Hydrology, 579, 124217.

Sudheer, K. P., Lakshmi, G., & Chaubey, I. (2011). Application of a pseudo simulator to evaluate the sensitivity of parameters in complex watershed models. Environmental Modelling and Software, 26(2), 135–143.

Sun, X. (2021). SAConvergenceAnalysis. GitHub.

Sun, X., Croke, B., Jakeman, A., & Roberts, S. (2022). Benchmarking Active Subspace methods of global sensitivity analysis against variance-based Sobol’ and Morris methods with established test functions. Environmental Modelling & Software, 149, 105310.

Sun, X., Croke, B., Roberts, S., & Jakeman, A. (2021). Comparing methods of randomizing Sobol′ sequences for improving uncertainty of metrics in variance-based global sensitivity estimation. Reliability Engineering & System Safety, 210, 107499.

Tan, J., Cui, Y., & Luo, Y. (2017). Assessment of uncertainty and sensitivity analyses for ORYZA model under different ranges of parameter variation. European Journal of Agronomy, 91, 54–62.

Tang, Y., Reed, P., Wagener, T., & Van Werkhoven, K. (2007). Comparing sensitivity analysis methods to advance lumped watershed model identification and evaluation. Hydrology and Earth System Sciences, 11(2), 793–817.

Tarantola, S., Becker, W., & Zeitz, D. (2012). A comparison of two sampling methods for global sensitivity analysis. Computer Physics Communications, 183(5), 1061–1072.

Tarantola, S., Ferretti, F., Lo Piano, S., Kozlova, M., Lachi, A., Rosati, R., Puy, A., Roy, P., Vannucci, G., Kuc-Czarnecka, M., & Saltelli, A. (2024). An annotated timeline of sensitivity analysis. Environmental Modelling & Software, 174, 105977.

Touhami, H. B., Lardy, R., Barra, V., & Bellocchi, G. (2013). Screening parameters in the Pasture Simulation model using the Morris method. Ecological Modelling, 266(1), 42–57.

Touzani, S., & Busby, D. (2014). Screening Method Using the Derivative-based Global Sensitivity Indices with Application to Reservoir Simulator. Oil & Gas Science and Technology – Revue d’IFP Energies Nouvelles, 69(4), 619–632.

Uliana, E. M., da Silva, D. D., Moreira, M. C., & Pereira, D. dos R. (2019). Global sensitivity analysis methods applied to hydrologic modeling with the SAC-SMA model. Engenharia Agricola, 39(1), 65–74.

Upreti, D., Pignatti, S., Pascucci, S., Tolomio, M., Li, Z., Huang, W., & Casa, R. (2020). A Comparison of Moment-Independent and Variance-Based Global Sensitivity Analysis Approaches for Wheat Yield Estimation with the Aquacrop-OS Model. Agronomy, 10(4), 607.

Van Werkhoven, K., Wagener, T., Reed, P., & Tang, Y. (2008). Characterization of watershed model behavior across a hydroclimatic gradient. Water Resources Research, 44(1), 1–16.

Vanrolleghem, P. A., Mannina, G., Cosenza, A., & Neumann, M. B. (2015). Global sensitivity analysis for urban water quality modelling: Terminology, convergence and comparison of different methods. Journal of Hydrology, 522, 339–352.

Vigna, S. (2015). A weighted correlation index for rankings with ties. WWW 2015 - Proceedings of the 24th International Conference on World Wide Web, 1166–1176.

Wagener, T., & Pianosi, F. (2019). What has Global Sensitivity Analysis ever done for us? A systematic review to support scientific advancement and to inform policy-making in earth system modelling. Earth-Science Reviews, 194, 1–18.

Wagener, T., Van Werkhoven, K., Reed, P., & Tang, Y. (2009). Multiobjective sensitivity analysis to understand the information content in streamflow observations for distributed watershed modeling. Water Resources Research, 45(2), 1–5.

Wang, A., & Solomatine, D. P. (2019). Practical experience of sensitivity analysis: Comparing six methods, on three hydrological models, with three performance criteria. Water, 11(5), 1062, 1–26.

Wang, C., Duan, Q., Gong, W., Ye, A., Di, Z., & Miao, C. (2014). An evaluation of adaptive surrogate modeling based optimization with two benchmark problems. Environmental Modelling and Software, 60, 167–179.

Wang, H., Gong, W., Duan, Q., & Di, Z. (2020). Evaluation of parameter interaction effect of hydrological models using the sparse polynomial chaos (SPC) method. Environmental Modelling and Software, 125.

Wang, J., Li, X., Lu, L., & Fang, F. (2013). Parameter sensitivity analysis of crop growth models based on the extended Fourier Amplitude Sensitivity Test method. Environmental Modelling and Software, 48, 171–182.

Wang, Q., Guillaume, J. H. A., Jakeman, J. D., Yang, T., Iwanaga, T., Croke, B., & Jakeman, A. J. (2022). Assessing the predictive impact of factor fixing with an adaptive uncertainty-based approach. Environmental Modelling and Software, 148, 105290.

Wang, S., Flipo, N., & Romary, T. (2018). Time-dependent global sensitivity analysis of the C-RIVE biogeochemical model in contrasted hydrological and trophic contexts. Water Research, 144, 341–355.

Wate, P., Iglesias, M., Coors, V., & Robinson, D. (2020). Framework for emulation and uncertainty quantification of a stochastic building performance simulator. Applied Energy, 258, 113759.

Wu, Z., Ma, B., Wang, H., Hu, C., Lv, H., & Zhang, X. (2021). Identification of Sensitive Parameters of Urban Flood Model Based on Artificial Neural Network. Water Resources Management, 35(7), 2115–2128.

Yang, J. (2011). Convergence and uncertainty analyses in Monte-Carlo based sensitivity analysis. Environmental Modelling and Software, 26(4), 444–457.

Yang, J., Jakeman, A., Fang, G., & Chen, X. (2018). Uncertainty analysis of a semi-distributed hydrologic model based on a Gaussian Process emulator. Environmental Modelling and Software, 101, 289–300.

Yang, J., Liu, Y., Yang, W., & Chen, Y. (2012). Multi-Objective Sensitivity Analysis of a Fully Distributed Hydrologic Model WetSpa. Water Resources Management, 26(1), 109–128.

Zhan, C., Song, X., Xia, J., & Tong, C. (2013). An efficient integrated approach for global sensitivity analysis of hydrological model parameters. Environmental Modelling and Software, 41, 39–52.

Zhan, Y., & Zhang, M. (2013). Application of a combined sensitivity analysis approach on a pesticide environmental risk indicator. Environmental Modelling and Software, 49, 129–140.

Zhang, C., Chu, J., & Fu, G. (2013). Sobol’’s sensitivity analysis for a distributed hydrological model of Yichun River Basin, China. Journal of Hydrology, 480, 58–68.

Zhao, G., Bryan, B. A., & Song, X. (2014). Sensitivity and uncertainty analysis of the APSIM-wheat model: Interactions between cultivar, environmental, and management parameters. Ecological Modelling, 279, 1–11.

Zhao, Y., Nan, Z., Yu, W., & Zhang, L. (2019). Calibrating a hydrological model by stratifying frozen ground types and seasons in a cold alpine basin. Water, 11(5), 985.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2024 Xifu Sun, Anthony J. Jakeman, Barry F.W. Croke, Stephen G. Roberts, John D. Jakeman