“Knowledge Strength”: maximising the reliability of evidence derived from environmental modelling in the face of uncertainty – the case of the salmon louse (<i>Lepeophtheirus salmonis</i>)
Article Full Text (PDF)

Supplementary Files

Supplementary Material (PDF)

Keywords

aquaculture
decision making
Atlantic salmon farming
Blue Economy

How to Cite

Murray, A., Asplin, L., a Nordi, G., Erenbjerg, S., Gallego, A., Ives, S. C., King, E., Kragesteen, T., Murphy, J., Rabe, B., Sandvik, A. D., Skardhamar, J., & Moriarty, M. (2025). “Knowledge Strength”: maximising the reliability of evidence derived from environmental modelling in the face of uncertainty – the case of the salmon louse (Lepeophtheirus salmonis). Socio-Environmental Systems Modelling, 7, 18750. https://doi.org/10.18174/sesmo.18750

Abstract

Policy developments for a sustainable Blue Economy require scientific advice. An important component of the Blue Economy is salmon (Salmo salar) aquaculture, the sustainability of which is limited by salmon louse (Lepeophtheirus salmonis) infection. This parasite impacts both farmed and wild salmonid fish. Modelling is a valuable source for advice, but inevitable uncertainties exist. Here we develop an approach we call “Knowledge Strength” to maximise our confidence in model results; this is aimed at reducing uncertainties in model outputs and understanding the remaining uncertainty in these outputs, to maximise our confidence in model results, so that we can give policy makers the best advice to support informed decision making. The approach consists of addressing five questions: (1) What is the objective addressed by the model? (2) What are the causes of uncertainty in model outputs? We describe uncertainties due to (a) limitations of computing, (b) model building and (c) parameters, and (d) forcing data. (3) What is the statistical nature of uncertainty? Noise and bias are qualitatively different. (4) How can knowledge strength be maximised given those uncertainties? Approaches of resourcing (“power”) and analysis (“wisdom”) are considered. (5) How can information, including uncertainties, be communicated to different audiences?

Policy makers/managers define and resource the objective for question 1, modellers address questions 2 to 4 - but their solutions are made transparent, and the communication question 5 is a two-way process with outputs transparent to immediate decision makers and external stakeholders. Examples of the policy environment behind salmon lice management are detailed in the Supplementary Material covering Scotland, Norway and the Faroe Islands.

Article Full Text (PDF)

References

Adams T.P., Proud R., and Black K.D. (2015) Connected networks of sea lice populations: dynamics and implications for control. Aquaculture Environment Interactions 6, 273-284.

Asplin, L., Albretsen, J., Johnsen, I.A., and Sandvik, A.D. (2020) The hydrodynamic foundation for salmon lice dispersion modeling along the Norwegian coast. Ocean Dynamics, 70, 1151-1167.

Beck, S., and Mahony, M. (2018) The IPCC and the new map of science and politics. Wiley Interdisciplinary Reviews: Climate Change, 9, e547.

Bevan, L.D., 2022. The ambiguities of uncertainty: A review of uncertainty frameworks relevant to the assessment of environmental change. Futures, 137, p.102919.

Boden, L.A., Auty, H., Bessell, P., Duckett, D., Liu, J., Kyle, C., McKee, A., Sutherland, L.A., Reynolds, J., Barend, M., and McKendrick, I.J. (2015). Scenario planning: the future of the cattle and sheep industries in Scotland and their resiliency to disease. Preventive Veterinary Medicine, 121, 353-364.

Bouwknegt M and Havelaar AH, 2015. Uncertainty assessment using the NUSAP approach: a case study on the EFoNAO tool. EFSA supporting publication 2015:EN-663, 20 pp. https://efsa.onlinelibrary.wiley.com/doi/pdf/10.2903/sp.efsa.2015.EN-663

Box, G.E. and Lucefio, A. (1998) Quality quandaries models, assumptions, and robustness. Quality Engineering, 10, 595-598.

Brooker, A.J., Skern-Mauritzen, R., and Bron, J.E. (2018) Production, mortality, and infectivity of planktonic larval sea lice, Lepeophtheirus salmonis (Krøyer, 1837): current knowledge and implications for epidemiological modelling. ICES Journal of Marine Science, 75, 1214-1234.

Coates, A., Robinson, N., Dempster, T., Samsing, F., Johnsen, I., and Phillips, B.L. (2022) A metapopulation model reveals connectivity-driven hotspots in treatment resistance evolution in a marine parasite. ICES Journal of Marine Science, 79(10), pp.2682-2696.

Costanza, R., (2020) Valuing natural capital and ecosystem services toward the goals of efficiency, fairness, and sustainability. Ecosystem Services, 43, p.101096.

Coveney P., and Highfield R. (1998) Frontiers of Complexity: the search for order in a chaotic world. Faber & Faber, London.

Chin, A. (2014) Confucius: The Analects. Translation and commentary by Annping Chin, Penguin, New York.

De Pryck, K. and Hulme M. (2022). A Critical Assessment of the Intergovernmental Panel on Climate Change. Cambridge University Press.

Dempster, T., Overton, K., Bui, S., Stien, L.H., Oppedal, F., Karlsen, Ø., Coates, A., Phillips, B.L., and Barrett, L.T. (2021) Farmed salmonids drive the abundance, ecology and evolution of parasitic salmon lice in Norway. Aquaculture Environment Interactions, 13, 237-248.

Elsawah, S., Hamilton, S.H., Jakeman, A.J., Rothman, D., Schweizer, V., Trutnevyte, E., Carlsen, H., Drakes, C., Frame, B., Fu, B., Guivarch, C., Haasnoot, M., Kemp-Benedict, E., Kok, K., Kosow, H., Ryan, M., and van Delden, H. (2020) Scenario processes for socio-environmental systems analysis of futures: A review of recent efforts and a salient research agenda for supporting decision making. Science of the Total Environment, 729, 138393.

EFSA (2022) Guidance on good practice in conducting scientific assessments in animal health using modelling. EFSA Journal 20(5):7346 10.2903/j.efsa.2022.7346

FAO (2021) FAO Yearbook. Fishery and Aquaculture Statistics 2019/FAO annuaire. Statistiques des pêches et de l'aquaculture 2019/FAO anuario. Estadísticas de pesca y acuicultura 2019. Rome/Roma.

Garnier S., Moriarty M., O’Hara Murray R., Gallego A., and Murray A.G. (2024) Modelling assessment of how small-scale vertical movements of infectious sea lice larvae can affect their large-scale distribution in fjordic systems. Ecological Modelling 488, 110587.

Garnier S., O’Hara Murray R.O., Gillibrand P.A., Gallego A., Robins P., and Moriarty M. (2025) Particle tracking modelling in coastal marine environments: Recommended practices and performance limitations. Ecological Modelling, 501, p.110999.

Hamre, L.A., Eichner, C., Caipang, C.M.A., Dalvin, S.T., Bron, J.E., Nilsen, F., Boxshall, G., and Skern-Mauritzen, R. (2013) The salmon louse Lepeophtheirus salmonis (Copepoda: Caligidae) life cycle has only two chalimus stages. PloS one, 8, e73539.

Heuch, P.A., Gettinby, G. and Revie, C.W. (2011) Counting sea lice on Atlantic salmon farms—empirical and theoretical observations. Aquaculture, 320, 149-153.

HM Treasury (2015) The Aqua Book: guidance on producing quality analysis for government. ISBN 978-1-910337-67-7.

Huserbråten, M.B.O., and Johnsen, I.A. (2022) Seasonal temperature regulates network connectivity of salmon louse. ICES Journal of Marine Science, 79, 1075-1082.

Jakeman, A.J., Elsawah, S., Wang, H.-H., Hamilton, S.H., Melsen, L., and Grimm, V (2024). Towards normalizing good practice across the whole modeling cycle: its instrumentation and future research topics. Socio-Environmental Systems Modelling, vol. 6, 18755, 2024, doi:10.18174/sesmo.18755

Jørgensen, S.E., and Bendoricchio. G, (2001) Fundamentals of ecological modelling (Vol. 21). Elsevier.

Kahneman, D., Sibony, O., and Sunstein, C.R. (2021) Noise: a flaw in human judgement. Hachette UK.

Karcher, D.B., Cvitanovic, C., van Putten, I.E., Colvin, R.M., Armitage, D., Aswani, S., Ballesteros, M., Ban, N.C., Barragán-Paladines, M.J., Bednarek, A., and Bell, J.D. (2022) Lessons from bright-spots for advancing knowledge exchange at the interface of marine science and policy. Journal of Environmental Management, 314, p.114994.

Knol, A.B., Petersen, A.C., Van der Sluijs, J.P. and Lebret, E., 2009. Dealing with uncertainties in environmental burden of disease assessment. Environmental Health, 8, pp.1-13.

Kragesteen, T. J., Simonsen, K., Visser, A. W., and Andersen, K. H., (2019) Optimal salmon lice treatment threshold and tragedy of the commons in salmon farm networks. Aquaculture 512: 734329

Lee, K.H., Noh, J., and Khim, J.S. (2020) The Blue Economy and the United Nations’ sustainable development goals: Challenges and opportunities. Environment international, 137, p.105528.

Lindström, T., Tildesley, M., and Webb, C. (2015) A Bayesian ensemble approach for epidemiological projections. PLoS computational biology, 11, e1004187.

Manheim, D. (2023) Building less-flawed metrics: Understanding and creating better measurement and incentive systems. Published in: Patterns , Vol. 4, No. 10 (13 October 2023).

Marine Directorate (2023) Salmon Parasites in Linnhe Lorn and Shuna (SPILLS) Final Project Report https://www.gov.scot/publications/salmon-parasite-interactions-linnhe-lorn-shuna-spills-final-project-report/documents/

Maas, T.Y., Pauwelussen, A., and Turnhout, E., (2022) Co-producing the science–policy interface: towards common but differentiated responsibilities. Humanities and Social Sciences Communications, 9, 1-11.

Moriarty, M., Ives, S.C., Murphy, J.M., and Murray, A.G. (2023) Modelling parasite impacts of aquaculture on wild fish: The case of the salmon louse (Lepeophtheirus salmonis) on out-migrating wild Atlantic salmon (Salmo salar) smolt. Preventive Veterinary Medicine, 214, p.105888.

Moriarty, M., Murphy, J.M., Brooker, A.J., Waites, W., Revie, C.W., Adams, T.P., Lewis, M., Reinardy, H.C., Phelan, J.P., Coyle, J.P., Rabe, B., Ives, S.C., Armstrong, J.D., Sandvik, A.D., Asplin, L., Karlsen, Ø., Garnier, S., á Norði, G., Gillibrand, P.A., Last, K.S., and Murray, A.G. (2024) A gap analysis on modelling of sea lice infection pressure from salmonid farms: (I) A structured knowledge review. Aquaculture Environment Interactions, 16, 1-25.

Murphy, J.M., Moriarty, M., Brooker, A.J., Waites, W., Revie, C.W., Adams, T.P., Lewis, M., Reinardy, H.C., Phelan, J.P., Coyle, J.P., Rabe, B., Ives, S.C., Armstrong, J.D., Sandvik, A.D., Asplin, L., Karlsen, Ø., Garnier, S., á Norᵭi, G., Gillibrand, P.A., Last, K.S. and Murray, A.G. (2024) A gap analysis on modelling of sea lice infection pressure from salmonid farms. II. Identifying and ranking knowledge gaps – output of an international workshop. Aquaculture Environment Interactions, 16, 27-42.

Murray, A.G., Shephard, S., Asplin, L., Adams, T., Ådlandsvik, B., Gallego, A., Hartnett, M., Askeland, I., Pert, C.C., Rabe, B., and Gargan, P.G. (2022a). A standardised generic framework of sea lice model components for application in coupled hydrodynamic-particle models. In Sea Lice Biology and Control. 5M Books (pp. 167-187).

Murray, A., Falconer, L., Clarke, D., and Kennerley, A., (2022b). Climate change impacts on marine aquaculture relevant to the UK and Ireland. MCCIP Science Review 2022, 18pp.

OSR (2023) Regulatory Guidance Intelligent Transparency updated 2023. Office of Statistics Regulation UK Statistics Authority. https://osr.statisticsauthority.gov.uk/transparency/

Overton, K., Dempster, T., Oppedal, F., Kristiansen, T.S., Gismervik, K., and Stien, L.H. (2019) Salmon lice treatments and salmon mortality in Norwegian aquaculture: a review. Reviews in Aquaculture, 11, 1398-1417.

Rabe, B., Gallego, A., Wolf, J., O’Hara Murray, R., Stuvier, C., Price, D., and Johnson, H. (2020) Applied connectivity modelling at local to regional scale: The potential for sea lice transmission between Scottish finfish aquaculture management areas. Estuarine, Coastal and Shelf Science, 238, 106716.

Rodela, R., and Speelman, E.N. (2023) Serious games in natural resource management: steps toward assessment of their contextualized impacts. Current Opinion in Environmental Sustainability, 65, p.101375.

Rounsevell, M.D., Arneth, A., Brown, C., Cheung, W.W., Gimenez, O., Holman, I., Leadley, P., Luján, C., Mahevas, S., Marechaux, I., Pélissier, R. Verburg P.H., Vieilledent G., Wintel B.A., and Shin Y.-J. (2021) Identifying uncertainties in scenarios and models of socio-ecological systems in support of decision-making. One Earth, 4, 967-985.

Sævik, P.N., and Sandvik, A.D. (2023) Suspicious patterns in self-reported sea lice data may be explained by population dynamics. Aquaculture, 576, p.739886.

Salama, N.K.G., Murray, A.G., and Rabe, B. (2016) Simulated environmental transport distances of Lepeophtheirus salmonis in Loch Linnhe, Scotland, for informing aquaculture area management structures. Journal of Fish Diseases, 39, 419-428.

Saltelli, A. and Annoni, P. (2010) How to avoid a perfunctory sensitivity analysis. Environmental Modelling & Software, 25, 1508-1517.

Saltelli, A., Aleksankina, K., Becker, W., Fennell, P., Ferretti, F., Holst, N., Li, S., and Wu, Q. (2019) Why so many published sensitivity analyses are false: A systematic review of sensitivity analysis practices. Environmental Modelling & Software, 114, 29-39.

Samsing, F., Johnsen, I., Dempster, T., Oppedal, F., and Treml, E.A. (2017) Network analysis reveals strong seasonality in the dispersal of a marine parasite and identifies areas for coordinated management. Landscape Ecology, 32, 1953-1967.

Semenov, M.A. and Stratonovitch, P. (2010) Use of multi-model ensembles from global climate models for assessment of climate change impacts. Climate research, 41, 1-14.

Skogen, M.D., Ji, R., Akimova, A., Daewel, U., Hansen, C., Hjøllo, S.S., van Leeuwen, S.M., Maar, M., Macias, D., Mousing, E.A., and Almroth-Rosell, E. (2021) Disclosing the truth: are models better than observations?. Marine Ecology Progress Series, 680, 7-13.

Speigelhalter, D. (2017) Risk and Uncertainty Communication. The Annual Review of Statistics and Its Application 4, 31-60.

Stentiford, G.D., Bateman, I.J., Hinchliffe, S.J., Bass, D., Hartnell, R., Santos, E.M., Devlin, M.J., Feist, S.W., Taylor, N.G.H., Verner-Jeffreys, D.W., and Van Aerle, R. (2020) Sustainable aquaculture through the One Health lens. Nature Food, 1, 468-474.

Stige, L.C., Helgesen, K.O., Viljugrein, H., and Qviller, L. (2022) Modelling salmon lice-induced mortality of wild salmon post-smolts is highly sensitive to calibration data. Aquaculture Environment Interactions, 14, 263-277.

Stirling, A. (2010) Keep it complex. Nature, 468, 1029-1031.

Taranger, G.L., Karlsen, Ø., Bannister, R.J., Glover, K.A., Husa, V., Karlsbakk, E., Kvamme, B.O., Boxaspen, K.K., Bjørn, P.A., Finstad, B., and Madhun, A.S. (2015) Risk assessment of the environmental impact of Norwegian Atlantic salmon farming. ICES Journal of Marine Science, 72, 997-1021.

Thompson, C.R., Bron, J., Bui, S., Dalvin, S., Fordyce, M.J., á Norði, G., and Skern‐Mauritzen, R. (2022) A novel method for the rapid enumeration of planktonic salmon lice in a mixed zooplankton assemblage using fluorescence. Aquaculture Research, 53, 2317-2329.

Treasurer J., Bron, J. and Bricknell, I. (eds) (2022) Sea Lice Biology and Control. 5m Books Ltd.

UK Government (2023) Publishing Accessible Documents. Central Digital and Data Office. https://www.gov.uk/guidance/publishing-accessible-documents.

Vollset, K.W., Krontveit, R.I., Jansen, P.A., Finstad, B., Barlaup, B.T., Skilbrei, O.T., Krkošek, M., Romunstad, P., Aunsmo, A., Jensen, A.J., and Dohoo, I. (2016) Impacts of parasites on marine survival of Atlantic salmon: A meta‐analysis. Fish and Fisheries, 17, 714-730.

Vormedal, I. (2023). Sea-lice regulation in salmon-farming countries: how science shape policies for protecting wild salmon. Aquaculture International, pp. 1-17.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2025 Alexander Murray, Lars Asplin, Gunnvor a Nordi, Sissal Erenbjerg, Alejandro Gallego, Stephen C Ives, Erin King, Trondur Kragesteen, Joanne Murphy, Berit Rabe, Anne D Sandvik, Jofrid Skardhamar , Meadhbh Moriarty