From guinea pigs to guides: advancing lessons learned from reviewing end-to-end marine ecosystem models
Article (PDF)

Keywords

formal review
model performance
marine ecosystem models
Atlantis
ecosystem-based fisheries management

How to Cite

Perryman, H., Ainsworth, C. H., Masi, M., Kaplan, I. C., Townsend, H., Sagarese, S. R., Nuttall, M. A., Scott, R. L., & Repeta, H. C. (2025). From guinea pigs to guides: advancing lessons learned from reviewing end-to-end marine ecosystem models. Socio-Environmental Systems Modelling, 7, 18848. https://doi.org/10.18174/sesmo.18848

Abstract

Holistic approaches to managing living marine resources, which consider the suite of ecological and environmental interactions affecting a population, are becoming increasingly common. Often, these approaches utilize predictive models that include ecosystem dynamics. However, the application of marine ecosystem modeling tools is generally limited due to the lack of formal reviews of the model's utility and performance, despite these practices being commonplace for single-species stock assessment models. Herein, we provide an account of our experience undergoing a formal review of a Gulf of Mexico end-to-end marine ecosystem model. Guided by lessons learned from the “guinea pigs'' preceding us, described by Kaplan and Marshall (2016), we crafted and implemented a two-phase project timeline consisting of an informal review with regional experts and a formal review with independent experts. While the outcome of our review was that the model was not yet ready for use, a list of necessary model refinements provided by the reviewers offered a clear path for the model toward operational use. We reflect upon the practical challenges, successes, and setbacks encountered during our experience, offering insights into structuring a marine ecosystem model review for future applications. Additionally, building upon previous recommendations, we provide a list of baseline standards for reviewing marine ecosystem model performance. Addressing the inherent challenges in the review of marine ecosystem models is crucial for unlocking their potential contributions to ecosystem-based management, and our recommendations outlined herein offer guidance for future reviews.

 

Article (PDF)

References

Abas, A., Arifin, K., Ali, M. A. M., & Khairil, M. (2023). A systematic literature review on public participation in decision-making for local authority planning: A decade of progress and challenges. Environmental Development, 46, 100853. https://doi.org/10.1016/j.envdev.2023.100853

Ainsworth, C. H., Paris, C. B., Perlin, N., Dornberger, L. N., Patterson, W. F., Chancellor, E., Murawski, S., Hollander, D., Daly, K., Romero, I. C., Coleman, F., & Perryman, H. (2018). Impacts of the Deepwater Horizon oil spill evaluated using an end-to-end ecosystem model. PLOS ONE, 13(1), e0190840. https://doi.org/10.1371/journal.pone.0190840

Ainsworth, C. H., Schirripa, M. J., & Morzaria-Luna, H. N. (2015). An Atlantis Ecosystem Model for the Gulf of Mexico supporting Integrated Ecosystem Assessment (NOAA Technical Memorandum No. NMFS-SEFSC-676; p. 149). http://doi.org/10.7289/V5X63JVH

Ainsworth, C. H., & Walters, C. J. (2015). Ten common mistakes made in Ecopath with Ecosim modelling. Ecological Modelling, 308, 14–17. https://doi.org/10.1016/j.ecolmodel.2015.03.019

Aleksankina, K., Reis, S., Vieno, M., & Heal, M. R. (2019). Advanced methods for uncertainty assessment and global sensitivity analysis of an Eulerian atmospheric chemistry transport model. Atmospheric Chemistry and Physics, 19(5), 2881–2898. https://doi.org/10.5194/acp-19-2881-2019

Audzijonyte, A., Gorton, R., Kaplan, I., & Fulton, E. A. (2017a). Atlantis User’s Guide Part I: General Overview, Physics & Ecology. CSIRO living document.

Audzijonyte, A., Gorton, R., Kaplan, I., & Fulton, E. A. (2017b). Atlantis User’s Guide Part II: Socio-Economics. CSIRO living document.

Audzijonyte, A., Pethybridge, H., Porobic, J., Gorton, R., Kaplan, I., & Fulton, E. A. (2019). Atlantis: A spatially explicit end‐to‐end marine ecosystem model with dynamically integrated physics, ecology and socio‐economic modules. Methods in Ecology and Evolution, 10(10), 1814–1819. https://doi.org/10.1111/2041-210X.13272

Bennett, N. D., Croke, B. F. W., Guariso, G., Guillaume, J. H. A., Hamilton, S. H., Jakeman, A. J., Marsili-Libelli, S., Newham, L. T. H., Norton, J. P., Perrin, C., Pierce, S. A., Robson, B., Seppelt, R., Voinov, A. A., Fath, B. D., & Andreassian, V. (2013). Characterising performance of environmental models. Environmental Modelling & Software, 40, 1–20. https://doi.org/10.1016/j.envsoft.2012.09.011

Bracis, C., Lehuta, S., Savina-Rolland, M., Travers-Trolet, M., & Girardin, R. (2020). Improving confidence in complex ecosystem models: The sensitivity analysis of an Atlantis ecosystem model. Ecological Modelling, 431, 109133. https://doi.org/10.1016/j.ecolmodel.2020.109133

Brodziak, J., & Link, J. (2002). Ecosystem-Based Fishery Management: What is it and how can we do it? Bulletin of Marine Science, 70(2), 589–611.

Brown, H., Grüss, A., Hanisko, D., Primrose, J., Rester, J., Rivero, C., Siceloff, L., & Williams, J. (2019). Brown Shrimp In Gulf of Mexico Data Atlas. Stennis Space Center (MS): National Centers for Environmental Information. https://gulfatlas.noaa.gov/

Brown, S. K., Shivlani, M., Die, D., Sampson, D. B., & Ting, T. A. (2006). The Center for Independent Experts: The National External Peer Review Program of NOAA’s National Marine Fisheries Service. Fisheries, 31(12), 590–600. https://doi.org/10.1577/1548-8446(2006)31[590:TCFIE]2.0.CO;2

Bryndum-Buchholz, A., Boyce, D., Tittensor, D., Christensen, V., Bianchi, D., & Lotze, H. (2020). Climate-change impacts and fisheries management challenges in the North Atlantic Ocean. Marine Ecology Progress Series, 648, 1–17. https://doi.org/10.3354/meps13438

Cheung, W. W. L., Frölicher, T. L., Asch, R. G., Jones, M. C., Pinsky, M. L., Reygondeau, G., Rodgers, K. B., Rykaczewski, R. R., Sarmiento, J. L., Stock, C., & Watson, J. R. (2016). Building confidence in projections of the responses of living marine resources to climate change. ICES Journal of Marine Science, 73(5), 1283–1296. https://doi.org/10.1093/icesjms/fsv250

Coll, M., & Steenbeek, J. (2017). Standardized ecological indicators to assess aquatic food webs: The ECOIND software plug-in for Ecopath with Ecosim models. Environmental Modelling & Software, 89, 120–130. https://doi.org/10.1016/j.envsoft.2016.12.004

Collie, J. S., Botsford, L. W., Hastings, A., Kaplan, I. C., Largier, J. L., Livingston, P. A., Plagányi, É., Rose, K. A., Wells, B. K., & Werner, F. E. (2016). Ecosystem models for fisheries management: finding the sweet spot. Fish and Fisheries, 17(1), 101–125. https://doi.org/10.1111/faf.12093

Craig, J. K., & Link, J. S. (2023). It is past time to use ecosystem models tactically to support ecosystem‐based fisheries management: Case studies using Ecopath with Ecosim in an operational management context. Fish and Fisheries, 24(3), 381–406. https://doi.org/10.1111/faf.12733

de Gamiz-Zearra, A. L., Hansen, C., Corrales, X., & Andonegi, E. (2024). Increasing the reliability of the Bay of Biscay Atlantis model: A sensitivity analysis to parameters perturbations using a Morris screening approach. Ecological Modelling, 488, 110599. https://doi.org/10.1016/j.ecolmodel.2023.110599

de Mutsert, K., Steenbeek, J., Lewis, K., Buszowski, J., Cowan, J. H., & Christensen, V. (2016). Exploring effects of hypoxia on fish and fisheries in the northern Gulf of Mexico using a dynamic spatially explicit ecosystem model. Ecological Modelling, 331, 142–150. https://doi.org/10.1016/j.ecolmodel.2015.10.013

Dornberger, L. N., Montagna, P. A., & Ainsworth, C. H. (2023). Simulating oil-driven abundance changes in benthic marine invertebrates using an ecosystem model. Environmental Pollution, 316, 120450. https://doi.org/10.1016/j.envpol.2022.120450

European Commission. (2023). Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee, and the Committee of the Regions: EU Action Plan: Protecting and restoring marine ecosystems for sustainable and resilient fisheries (No. COM/2023/102 final).

Feng, Y., DiMarco, S. F., Balaguru, K., & Xue, H. (2019). Seasonal and Interannual Variability of Areal Extent of the Gulf of Mexico Hypoxia from a Coupled Physical‐Biogeochemical Model: A New Implication for Management Practice. Journal of Geophysical Research: Biogeosciences, 124(7), 1939–1960. https://doi.org/10.1029/2018JG004745

Fennel, K., Hetland, R., Feng, Y., & DiMarco, S. (2011). A coupled physical-biological model of the Northern Gulf of Mexico shelf: model description, validation and analysis of phytoplankton variability. Biogeosciences, 8(7), 1881–1899. https://doi.org/10.5194/bg-8-1881-2011

Fogarty, M. J. (2014). The art of ecosystem-based fishery management. Canadian Journal of Fisheries and Aquatic Sciences, 71(3), 479–490. https://doi.org/10.1139/cjfas-2013-0203

Fulton, E. A., Smith, A. D. M., & Smith, D. C. (2007). Alternative management strategies for southeast Australian Commonwealth Fisheries: stage 2: quantitative management strategy evaluation (p. 380) [Australian Fisheries Management Authority Report]. CSIRO.

Fulton, E. A., van Putten, E. I., Dutra, L. X. C., Melbourne-Thomas, J., Ogier, E., Thomas, L., Murphy, R. P., Butler, I., Ghebrezgabhier, D., Hobday, A. J., & Rayns, N. (2020). Adaptation of fisheries management to climate change Handbook. CSIRO.

Gaichas, S. K., Odell, G., Aydin, K. Y., & Francis, R. C. (2012). Beyond the defaults: functional response parameter space and ecosystem-level fishing thresholds in dynamic food web model simulations. Canadian Journal of Fisheries and Aquatic Sciences, 69(12), 2077–2094. https://doi.org/10.1139/f2012-099

Geary, W. L., Bode, M., Doherty, T. S., Fulton, E. A., Nimmo, D. G., Tulloch, A. I. T., Tulloch, V. J. D., & Ritchie, E. G. (2020). A guide to ecosystem models and their environmental applications. Nature Ecology & Evolution, 4(11), 1459–1471. https://doi.org/10.1038/s41559-020-01298-8

Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., Goss-Custard, J., Grand, T., Heinz, S. K., Huse, G., Huth, A., Jepsen, J. U., Jørgensen, C., Mooij, W. M., Müller, B., Pe’er, G., Piou, C., Railsback, S. F., Robbins, A. M., … DeAngelis, D. L. (2006). A standard protocol for describing individual-based and agent-based models. Ecological Modelling, 198(1–2), 115–126. https://doi.org/10.1016/j.ecolmodel.2006.04.023

Grimm, V., Berger, U., DeAngelis, D. L., Polhill, J. G., Giske, J., & Railsback, S. F. (2010). The ODD protocol: A review and first update. Ecological Modelling, 221(23), 2760–2768. https://doi.org/10.1016/j.ecolmodel.2010.08.019

Grimm, V., Johnston, A. S. A., Thulke, H.-H., Forbes, V. E., & Thorbek, P. (2020). Three questions to ask before using model outputs for decision support. Nature Communications, 11(1), 4959. https://doi.org/10.1038/s41467-020-17785-2

Grimm, V., Railsback, S. F., Vincenot, C. E., Berger, U., Gallagher, C., Deangelis, D. L., Edmonds, B., Ge, J., Giske, J., Groeneveld, J., Johnston, A. S. A., Milles, A., Nabe-Nielsen, J., Polhill, J. G., Radchuk, V., Rohwäder, M. S., Stillman, R. A., Thiele, J. C., & Ayllón, D. (2020). The ODD protocol for describing agent-based and other simulation models: A second update to improve clarity, replication, and structural realism. Journal of Artificial Societies and Social Simulation, 23(2). https://doi.org/10.18564/jasss.4259

Grüss, Arnaud. (2018). Spatial distributions predicted for the paper on monitoring programs of the Gulf of Mexico and the Gulf of Mexico Data Atlas. Distributed by: GRIIDC, Harte Research Institute, Texas A&M University–Corpus Christi. https://doi.org/10.7266/N7GM85QG

Hansen, C., Drinkwater, K. F., Jähkel, A., Fulton, E. A., Gorton, R., & Skern-Mauritzen, M. (2019). Sensitivity of the Norwegian and Barents Sea Atlantis end-to-end ecosystem model to parameter perturbations of key species. PLOS ONE, 14(2), e0210419. https://doi.org/10.1371/journal.pone.0210419

Heymans, J. J., Coll, M., Link, J. S., Mackinson, S., Steenbeek, J., Walters, C., & Christensen, V. (2016). Best practice in Ecopath with Ecosim food-web models for ecosystem-based management. Ecological Modelling, 331, 173–184. https://doi.org/10.1016/j.ecolmodel.2015.12.007

Heymans, S. J. J., Skogen, M., Schrum, C., & Solidoro, C. (2018). Enhancing Europe’s capability in end-to-end marine ecosystem modelling for societal benefit. https://doi.org/10.5281/zenodo.3516107

Hipsey, M. R., Gal, G., Arhonditsis, G. B., Carey, C. C., Elliott, J. A., Frassl, M. A., Janse, J. H., De Mora, L., & Robson, B. J. (2020). A system of metrics for the assessment and improvement of aquatic ecosystem models. Environmental Modelling & Software, 128, 104697. https://doi.org/10.1016/j.envsoft.2020.104697

Hodgson, E. E., Kaplan, I. C., Marshall, K. N., Leonard, J., Essington, T. E., Busch, D. S., Fulton, E. A., Harvey, C. J., Hermann, A. J., & McElhany, P. (2018). Consequences of spatially variable ocean acidification in the California Current: Lower pH drives strongest declines in benthic species in southern regions while greatest economic impacts occur in northern regions. Ecological Modelling, 383, 106–117. https://doi.org/10.1016/j.ecolmodel.2018.05.018

Horne, P. J., Kaplan, I. C., Marshall, K. N., Levin, P. S., Harvey, C. J., Hermann, A. J., & Fulton, E. A. (2010). Design and parameterization of a spatially explicit ecosystem model of the central California Current (NOAA Technical Memorandum No. NMFS-NWFSC-104; p. 140). https://repository.library.noaa.gov/view/noaa/3719

Howell, D., Schueller, A. M., Bentley, J. W., Buchheister, A., Chagaris, D., Cieri, M., Drew, K., Lundy, M. G., Pedreschi, D., Reid, D. G., & Townsend, H. (2021). Combining Ecosystem and Single-Species Modeling to Provide Ecosystem-Based Fisheries Management Advice Within Current Management Systems. Frontiers in Marine Science, 7, 607831. https://doi.org/10.3389/fmars.2020.607831

ICES. (2016). Report of the Working Group on Multispecies Assessment Methods (WGSAM) (ICES CM 2015/SSGEPI:20, p. 206). https://doi.org/10.17895/ices.pub.5673

ICES. (2018). Report of the Workshop on Stakeholder Input to, and Parameterization of, Ecosystem and Foodweb Models in the Irish Sea Aimed at a Holistic Approach to the Management of the Main Fish Stocks (WKIrish4) (ICES CM 2017/ACOM:54, p. 35). https://doi.org/10.17895/ices.pub.5427

ICES. (2019a). Advisory Plan (ICES Strategy, p. 18). http://doi.org/10.17895/ices.pub.5468

ICES. (2019b). Report of the Workshop on an Ecosystem-based Approach to Fishery Management for the Irish Sea (WKIrish5) (ICES CM 2018/ACOM:66, p. 55). https://doi.org/10.17895/ices.pub.19291121

ICES. (2019c). Working Group on Multispecies Assessment Methods (WGSAM) (ICES Scientific Reports. 1:91, p. 320). http://doi.org/10.17895/ices.pub.5758

ICES. (2019d). Workshop on Guidelines for Management Strategy Evaluations (WKGMSE2) (ICES Scientific Reports. 1:33, p. 162). http://doi.org/10.17895/ices.pub.5331

ICES. (2023). Working Group on Multispecies Assessment Methods (WGSAM; outputs from 2022 meeting) (ICES Scientific Reports No. 5:12; p. 233). https://doi.org/10.17895/ices.pub.22087292

Kaplan, I. C., Gaichas, S. K., Stawitz, C. C., Lynch, P. D., Marshall, K. N., Deroba, J. J., Masi, M., Brodziak, J. K. T., Aydin, K. Y., Holsman, K., Townsend, H., Tommasi, D., Smith, J. A., Koenigstein, S., Weijerman, M., & Link, J. (2021). Management Strategy Evaluation: Allowing the Light on the Hill to Illuminate More Than One Species. Frontiers in Marine Science, 8, 624355. https://doi.org/10.3389/fmars.2021.624355

Kaplan, I. C., & Marshall, K. N. (2016). A guinea pig’s tale: learning to review end-to-end marine ecosystem models for management applications. ICES Journal of Marine Science, 73(7), 1715–1724. https://doi.org/10.1093/icesjms/fsw047

Kempf, A., Spence, M. A., Lehuta, S., Trijoulet, V., Bartolino, V., Villanueva, M. C., & Gaichas, S. K. (2023). Skill assessment of models relevant for the implementation of ecosystem-based fisheries management. Fisheries Research, 268, 106845. https://doi.org/10.1016/j.fishres.2023.106845

Link, J. S. (2010). Adding rigor to ecological network models by evaluating a set of pre-balance diagnostics: A plea for PREBAL. Ecological Modelling, 221(12), 1580–1591. https://doi.org/10.1016/j.ecolmodel.2010.03.012

Link, J. S., Ihde, T. F., Harvey, C. J., Gaichas, S. K., Field, J. C., Brodziak, J. K. T., Townsend, H. M., & Peterman, R. M. (2012). Dealing with uncertainty in ecosystem models: The paradox of use for living marine resource management. Progress in Oceanography, 102, 102–114. https://doi.org/10.1016/j.pocean.2012.03.008

Link, J. S., Ihde, T. F., Townsend, H. M., Osgood, K. E., Schirripa, M. J., Kobayashi, D. R., Gaichas, S., Field, J. C., Levin, P. S., Aydin, K. Y., & Harvey, C. J. (2010). Report of the 2nd National Ecosystem Modeling Workshop (NEMoW II): bridging the credibility gap dealing with uncertainty in ecosystem models (NOAA Technical Memorandum No. NMFS-F/SPO-102; p. 72). http://spo.nmfs.noaa.gov/tm/

Liu, O. R., Kaplan, I. C., Hernvann, P., Fulton, E. A., Haltuch, M. A., Harvey, C. J., Marshall, K. N., et al. 2025. Climate Change Influences via Species Distribution Shifts and Century‐Scale Warming in an End‐To‐End California Current Ecosystem Model. Global Change Biology, 31: e70021. https://onlinelibrary.wiley.com/doi/10.1111/gcb.70021.

Lynch, P. D., Methot, R. D., & Link, J. S. (2018). Implementing a Next Generation Stock Assessment Enterprise: An Update to the NOAA Fisheries Stock Assessment Improvement Plan (NOAA Technical Memorandum No. NMFS-F/SPO-183; p. 127). http://doi.org/10.7755/TMSPO.183

Marshall, K. N., Koehn, L. E., Levin, P. S., Essington, T. E., & Jensen, O. P. (2019). Inclusion of ecosystem information in US fish stock assessments suggests progress toward ecosystem-based fisheries management. ICES Journal of Marine Science, 76(1), 1–9. https://doi.org/10.1093/icesjms/fsy152

Masi, M. D., Ainsworth, C. H., & Jones, D. L. (2017). Using a Gulf of Mexico Atlantis model to evaluate ecological indicators for sensitivity to fishing mortality and robustness to observation error. Ecological Indicators, 74, 516–525. https://doi.org/10.1016/j.ecolind.2016.11.008

Masi, M. D., Ainsworth, C. H., Kaplan, I. C., & Schirripa, M. J. (2018). Interspecific Interactions May Influence Reef Fish Management Strategies in the Gulf of Mexico. Marine and Coastal Fisheries, 10(1), 24–39. https://doi.org/10.1002/mcf2.10001

McGregor, V. L., Fulton, E. A., & Dunn, M. R. (2020). Addressing initialisation uncertainty for end-to-end ecosystem models: application to the Chatham Rise Atlantis model. PeerJ, 8, e9254. https://doi.org/10.7717/peerj.9254

McGregor, V. L., Horn, P. L., Fulton, E. A., & Dunn, M. R. (2019). From data compilation to model validation: a comprehensive analysis of a full deep-sea ecosystem model of the Chatham Rise. PeerJ, 7, e6517. https://doi.org/10.7717/peerj.6517

Morell, A., Shin, Y.-J., Barrier, N., Travers-Trolet, M., Halouani, G., & Ernande, B. (2023). Bioen-OSMOSE: A bioenergetic marine ecosystem model with physiological response to temperature and oxygen. Progress in Oceanography, 216, 103064. https://doi.org/10.1016/j.pocean.2023.103064

Morzaria-Luna, H., Ainsworth, C., & Scott, R. (2022). Impacts of deep-water spills on mesopelagic communities and implications for the wider pelagic food web. Marine Ecology Progress Series, 681, 37–51. https://doi.org/10.3354/meps13900

Morzaria-Luna, H. N., Ainsworth, C. H., Tarnecki, J. H., & Grüss, A. (2018). Diet composition uncertainty determines impacts on fisheries following an oil spill. Ecosystem Services, 33, 187–198. https://doi.org/10.1016/j.ecoser.2018.05.002

Ni, Y., Sandal, L., Kvamsdal, S., & Hansen, C. (2023). Using feedforward neural networks to represent ecosystem dynamics for bioeconomic analysis. Marine Ecology Progress Series, 716, 1–15. https://doi.org/10.3354/meps14360

Nilsen, I., Hansen, C., and Kaplan, I. C. 2025. A shifting chessboard: Projections of prawn, capelin, mesopelagic fish, zooplankton, and their Nordic and Barents Seas food web under climate change. Progress in Oceanography, 231: 103387. https://doi.org/10.1016/j.pocean.2024.103387.

O’Farrell, H., Grüss, A., Sagarese, S. R., Babcock, E. A., & Rose, K. A. (2017). Ecosystem modeling in the Gulf of Mexico: current status and future needs to address ecosystem-based fisheries management and restoration activities. Reviews in Fish Biology and Fisheries, 27(3), 587–614. https://doi.org/10.1007/s11160-017-9482-1

Olsen, E., Fay, G., Gaichas, S., Gamble, R., Lucey, S., & Link, J. S. (2016). Ecosystem Model Skill Assessment. Yes We Can! PLOS ONE, 11(1), e0146467. https://doi.org/10.1371/journal.pone.0146467

Olsen, E., Kaplan, I. C., Ainsworth, C., Fay, G., Gaichas, S., Gamble, R., Girardin, R., Eide, C. H., Ihde, T. F., Morzaria-Luna, H. N., Johnson, K. F., Savina-Rolland, M., Townsend, H., Weijerman, M., Fulton, E. A., & Link, J. S. (2018). Ocean Futures Under Ocean Acidification, Marine Protection, and Changing Fishing Pressures Explored Using a Worldwide Suite of Ecosystem Models. Frontiers in Marine Science, 5, 64. https://doi.org/10.3389/fmars.2018.00064

Ortega-Cisneros, K., Cochrane, K., & Fulton, E. A. (2017). An Atlantis model of the southern Benguela upwelling system: Validation, sensitivity analysis and insights into ecosystem functioning. Ecological Modelling, 355, 49–63. https://doi.org/10.1016/j.ecolmodel.2017.04.009

Payne, M. R., Barange, M., Cheung, W. W. L., MacKenzie, B. R., Batchelder, H. P., Cormon, X., Eddy, T. D., Fernandes, J. A., Hollowed, A. B., Jones, M. C., Link, J. S., Neubauer, P., Ortiz, I., Queirós, A. M., & Paula, J. R. (2016). Uncertainties in projecting climate-change impacts in marine ecosystems. ICES Journal of Marine Science, 73(5), 1272–1282. https://doi.org/10.1093/icesjms/fsv231

Perryman, H. A. (2024). Gulf-Mexico-Atlantis-Peer-Review. GitHub. https://github.com/hollyannperryman/Gulf-Mexico-Atlantis-Peer-Review.git

Perryman, H. A., Hansen, C., Howell, D., & Olsen, E. (2021). A Review of Applications Evaluating Fisheries Management Scenarios through Marine Ecosystem Models. Reviews in Fisheries Science & Aquaculture, 29(4), 800–835. https://doi.org/10.1080/23308249.2021.1884642

Perryman, H. A., Kaplan, I. C., Blanchard, J. L., Fay, G., Gaichas, S. K., McGregor, V. L., Morzaria-Luna, H. N., Porobic, J., Townsend, H., & Fulton, E. A. (2023a). Atlantis Ecosystem Model Summit 2022: Report from a workshop. Ecological Modelling, 483, 110442. https://doi.org/10.1016/j.ecolmodel.2023.110442

Perryman, H. A., Scott, R. L., Combs-Hintze, B., Repeta, H. C., Vasbinder, K., Masi, M., Kaplan, I., Ainsworth, C. H., Sagarese, S. R., & Nuttall, M. A. (2023b). An Atlantis ecosystem model for the Gulf of Mexico with updates to 2023 (NOAA Technical Memorandum No. NMFS-SEFSC-780; p. 128). doi: 10.25923/y56z-ns92

Perryman, H. A., Tarnecki, J. H., Grüss, A., Babcock, E. A., Sagarese, S. R., Ainsworth, C. H., & Gray DiLeone, A. M. (2020). A revised diet matrix to improve the parameterization of a West Florida Shelf Ecopath model for understanding harmful algal bloom impacts. Ecological Modelling, 416, 108890. https://doi.org/10.1016/j.ecolmodel.2019.108890

Peterson, C. D., & Walter III, J. F. (2023). Southeast Fisheries Science Center Management Strategy Evaluation Strategic Plan (NOAA Technical Memorandum No. NMFS-SEFSC-TM-766; p. 27). https://doi.org/10.25923/khnf-vh41

Pethybridge, H. R., Weijerman, M., Perrymann, H., Audzijonyte, A., Porobic, J., McGregor, V., Girardin, R., Bulman, C., Ortega-Cisneros, K., Sinerchia, M., Hutton, T., Lozano-Montes, H., Mori, M., Novaglio, C., Fay, G., Gorton, R., & Fulton, E. (2019). Calibrating process-based marine ecosystem models: An example case using Atlantis. Ecological Modelling, 412, 108822. https://doi.org/10.1016/j.ecolmodel.2019.108822

Pikitch, E. K., Santora, C., Babcock, E. A., Bakun, A., Bonfil, R., Conover, D. O., Dayton, P., Doukakis, P., Fluharty, D., Heneman, B., Houde, E. D., Link, J., Livingston, P. A., Mangel, M., McAllister, M. K., Pope, J., & Sainsbury, K. J. (2004). Ecosystem-Based Fishery Management. Science, 305(5682), 346–347. https://doi.org/10.1126/science.1098222

Plagányi, É. E. (2007). Models for an ecosystem approach to fisheries (FAO Fisheries Technical Paper No. 447; p. 108). Food and Agriculture Organization of the United Nations. https://www.fao.org/4/a1149e/a1149e.pdf

Planque, B., Aarflot, J. M., Buttay, L., Carroll, J., Fransner, F., Hansen, C., Husson, B., Langangen, Ø., Lindstrøm, U., Pedersen, T., Primicerio, R., Sivel, E., Skogen, M. D., Strombom, E., Stige, L. C., Varpe, Ø., & Yoccoz, N. G. (2022). A standard protocol for describing the evaluation of ecological models. Ecological Modelling, 471, 110059. https://doi.org/10.1016/j.ecolmodel.2022.110059

Porobic Garate, J. (2019). An ecosystem based management framework for the Juan Fernandez Ridge fisheries [Thesis, University Of Tasmania]. https://doi.org/10.25959/100.00031954

Porobic, J. (2022). ReactiveAtlantis: Multiple Reactive HTML tools to help in the calibration of the Atlantis ecosystem model (AEM). R package version 0.0.2.0. https://github.com/Atlantis-Ecosystem-Model/ReactiveAtlantis.git

Purcell, K. M., Craig, J. K., Nance, J. M., Smith, M. D., & Bennear, L. S. (2017). Fleet behavior is responsive to a large-scale environmental disturbance: Hypoxia effects on the spatial dynamics of the northern Gulf of Mexico shrimp fishery. PLOS ONE, 12(8), e0183032. https://doi.org/10.1371/journal.pone.0183032

Reum, J. C. P., Townsend, H., Gaichas, S., Sagarese, S., Kaplan, I. C., & Grüss, A. (2021). It’s Not the Destination, It’s the Journey: Multispecies Model Ensembles for Ecosystem Approaches to Fisheries Management. Frontiers in Marine Science, 8, 631839. https://doi.org/10.3389/fmars.2021.631839

Rodriguez-Perez, A., Tsikliras, A. C., Gal, G., Steenbeek, J., Falk-Andersson, J., & Heymans, J. J. (2023). Using ecosystem models to inform ecosystem-based fisheries management in Europe: a review of the policy landscape and related stakeholder needs. Frontiers in Marine Science, 10, 1196329. https://doi.org/10.3389/fmars.2023.1196329

Rovellini, A., Punt, A. E., Bryan, M. D., Kaplan, I. C., Dorn, M. W., Aydin, K., Fulton, E. A., Alglave, B., Baker, M. R., Carroll, G., Ferriss, B. E., Haltuch, M. A., Hayes, A. L., Hermann, A. J., Hernvann, P.-Y., Holsman, K. K., Liu, O. R., McHuron, E., Morzaria-Luna, H. N., … Weise, M. T. (2024). Linking climate stressors to ecological processes in ecosystem models, with a case study from the Gulf of Alaska. ICES Journal of Marine Science, fsae002. https://doi.org/10.1093/icesjms/fsae002

Ryan, E., Wild, O., Voulgarakis, A., & Lee, L. (2018). Fast sensitivity analysis methods for computationally expensive models with multi-dimensional output. Geoscientific Model Development, 11(8), 3131–3146. https://doi.org/10.5194/gmd-11-3131-2018

Sagarese, S. R., Vaughan, N. R., Walter, J. F., & Karnauskas, M. (2021). Enhancing single-species stock assessments with diverse ecosystem perspectives: a case study for Gulf of Mexico red grouper (Epinephelus morio) and red tides. Canadian Journal of Fisheries and Aquatic Sciences, 78(8), 1168–1180. https://doi.org/10.1139/cjfas-2020-0257

Scott-Denton, E., Cryer, P. F., Duffin, B. V., Duffy, M. R., Gocke, J. P., Harrelson, M. R., Whatley, A. J., & Williams, J. A. (2020). Characterization of the U.S. Gulf of Mexico and South Atlantic Penaeidae and Rock Shrimp (Sicyoniidae) Fisheries through Mandatory Observer Coverage, from 2011 to 2016. Marine Fisheries Review, 82(1–2), 17–47. https://go.gale.com/ps/i.do?p=AONE&sw=w&issn=00901830&v=2.1&it=r&id=GALE%7CA648333230&sid=googleScholar&linkaccess=abs

SEDAR. (2019). SEDAR 61: Gulf of Mexico Red Grouper (p. 285). https://sedarweb.org/assessments/sedar-61/

SEDAR. (2020). SEDAR 69: Atlantic Menhaden Ecological Reference Points Stock Assessment Report (p. 560). http://sedarweb.org/sedar-69

SEDAR. (2021). SEDAR 72: Gulf of Mexico Gag Grouper (p. 326). https://sedarweb.org/assessments/sedar-72/

Skogen, M., Ji, R., Akimova, A., Daewel, U., Hansen, C., Hjøllo, S., Van Leeuwen, S., Maar, M., Macias, D., Mousing, E., Almroth-Rosell, E., Sailley, S., Spence, M., Troost, T., & Van De Wolfshaar, K. (2021). Disclosing the truth: Are models better than observations? Marine Ecology Progress Series, 680, 7–13. https://doi.org/10.3354/meps13574

Spence, M. A., Blanchard, J. L., Rossberg, A. G., Heath, M. R., Heymans, J. J., Mackinson, S., Serpetti, N., Speirs, D. C., Thorpe, R. B., & Blackwell, P. G. (2018). A general framework for combining ecosystem models. Fish and Fisheries, 19(6), 1031–1042. https://doi.org/10.1111/faf.12310

Steenbeek, J., Buszowski, J., Chagaris, D., Christensen, V., Coll, M., Fulton, E. A., Katsanevakis, S., Lewis, K. A., Mazaris, A. D., Macias, D., De Mutsert, K., Oldford, G., Pennino, M. G., Piroddi, C., Romagnoni, G., Serpetti, N., Shin, Y.-J., Spence, M. A., & Stelzenmüller, V. (2021). Making spatial-temporal marine ecosystem modelling better – A perspective. Environmental Modelling & Software, 145, 105209. https://doi.org/10.1016/j.envsoft.2021.105209

Stow, C. A., Jolliff, J., McGillicuddy, D. J., Doney, S. C., Allen, J. I., Friedrichs, M. A. M., Rose, K. A., & Wallhead, P. (2009). Skill assessment for coupled biological/physical models of marine systems. Journal of Marine Systems, 76(1–2), 4–15. https://doi.org/10.1016/j.jmarsys.2008.03.011

Sturludottir, E., Desjardins, C., Elvarsson, B., Fulton, E. A., Gorton, R., Logemann, K., & Stefansson, G. (2018). End-to-end model of Icelandic waters using the Atlantis framework: Exploring system dynamics and model reliability. Fisheries Research, 207, 9–24. https://doi.org/10.1016/j.fishres.2018.05.026

Tam, J. C., Fay, G., & Link, J. S. (2019). Better Together: The Uses of Ecological and Socio-Economic Indicators With End-to-End Models in Marine Ecosystem Based Management. Frontiers in Marine Science, 6, 560. https://doi.org/10.3389/fmars.2019.00560

Tittensor, D. P., Novaglio, C., Harrison, C. S., Heneghan, R. F., Barrier, N., Bianchi, D., Bopp, L., Bryndum-Buchholz, A., Britten, G. L., Büchner, M., Cheung, W. W. L., Christensen, V., Coll, M., Dunne, J. P., Eddy, T. D., Everett, J. D., Fernandes-Salvador, J. A., Fulton, E. A., Galbraith, E. D., … Blanchard, J. L. (2021). Next-generation ensemble projections reveal higher climate risks for marine ecosystems. Nature Climate Change, 11(11), 973–981. https://doi.org/10.1038/s41558-021-01173-9

Townsend, H., Harvey, C. J., deReynier, Y., Davis, D., Zador, S. G., Gaichas, S., Weijerman, M., Hazen, E. L., & Kaplan, I. C. (2019). Progress on Implementing Ecosystem-Based Fisheries Management in the United States Through the Use of Ecosystem Models and Analysis. Frontiers in Marine Science, 6, 641. https://doi.org/10.3389/fmars.2019.00641

Vilas, D., Buszowski, J., Sagarese, S., Steenbeek, J., Siders, Z., & Chagaris, D. (2023). Evaluating red tide effects on the West Florida Shelf using a spatiotemporal ecosystem modeling framework. Scientific Reports, 13(1), 2541. https://doi.org/10.1038/s41598-023-29327-z

Walters, C. J., Christensen, V., Martell, S. J., & Kitchell, J. F. (2005). Possible ecosystem impacts of applying MSY policies from single-species assessment. ICES Journal of Marine Science, 62(3), 558–568. https://doi.org/10.1016/j.icesjms.2004.12.005

Xue, Z., He, R., Fennel, K., Cai, W.-J., Lohrenz, S., & Hopkinson, C. (2013). Modeling ocean circulation and biogeochemical variability in the Gulf of Mexico. Biogeosciences, 10(11), 7219–7234. https://doi.org/10.5194/bg-10-7219-2013

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2025 Holly Perryman, Cameron H. Ainsworth, Michelle Masi, Isaac C. Kaplan, Howard Townsend, Skyler R. Sagarese, Matthew A. Nuttall, Rebecca L. Scott, Hallie C. Repeta