An in-silico analysis of information sharing systems for adaptable resources management: a case study of oyster farmers
Article Full Text (PDF)


information sharing
oyster farming
agent-based model

How to Cite

Paget, N., Bonté, B., Barreteau, O., Pigozzi, G., & Maurel, P. (2019). An in-silico analysis of information sharing systems for adaptable resources management: a case study of oyster farmers. Socio-Environmental Systems Modelling, 1, 16166.


Information sharing systems are often viewed as a potential way of increasing scrutiny by actors of their interactions with natural resources. Scrutiny is then seen as encouraging sustainable and adaptable management of the resource. We tackle this claim by using an agent-based model to focus on the specific issue of oyster farmers dealing with the deadly OsHV-1 virus by sharing information about their own experience (practices and outcomes) via their social network and/or an information sharing system. We followed closely what access to such information sharing means for the environment (production), agents (beliefs) and interactions between the environment and agents (practices). In the model, introducing information sharing leads to a decrease in mortality rates and a convergence in agents’ beliefs. Agents stop changing their practices earlier when they share information, but heterogeneity in agent decision-making models leads to wider exploration of possible strategies and increased production. Agent-based modelling proved a suitable method for studying the impacts of information sharing.
Article Full Text (PDF)


ABARE. (2014). Australian fisheries and aquaculture statistics 2013. Retrieved from

Adams, W. M., Brockington, D., Dyson, J., & Vira, B. (2003). Managing tragedies: understanding conflict over common pool resources. Science (New York, N.Y.), 302(5652), 1915–1916.

Almeida, S. J. de, Martins Ferreira, R. P., Eiras, A. E., Obermayr, R. P., & Geier, M. (2010). Multi-agent modeling and simulation of an Aedes aegypti mosquito population. Environmental Modelling and Software, 25(12), 1490–1507.

An, L. (2012). Modeling human decisions in coupled human and natural systems: Review of agent-based models. Ecological Modelling, 229, 25–36.

Anwar, S. M., Jeanneret, C. a., Parrott, L., & Marceau, D. J. (2007). Conceptualization and implementation of a multi-agent model to simulate whale-watching tours in the St. Lawrence Estuary in Quebec, Canada. Environmental Modelling and Software, 22(12), 1775–1787.

Apesteguia, J. (2006). Does information matter in the commons?. Experimental evidence. Journal of Economic Behavior and Organization, 60(1), 55–69.

Balbi, S., Giupponi, C., Perez, P., & Alberti, M. (2013). A spatial agent-based model for assessing strategies of adaptation to climate and tourism demand changes in an alpine tourism destination. Environmental Modelling and Software, 45, 29–51.

Barabási, A.-L., & Réka, A. (2002). Statistical mechanics of complex networks. Reviews of Modern Physics, 74(January), 48–94.

Bell, A. R., Shah, M. A. A., Anwar, A., & Ringler, C. (2015). What role can information play in improved equity in Pakistan ’s irrigation system ? Evidence from an experimental game in Punjab. Ecology and Society, 20(1).

Berkes, F., & Folke, C. (1998). Linking social and ecological systems for resilience and sustainability. In Linking social and ecological systems: management practices and social mechanisms for building resilience (Vol. 1). Retrieved from

Berkes, F., & Jolly, D. (2001). Adapting to Climate Change : Social-Ecological Resilience in a Canadian Western Arctic Community. Conservation Ecology, 5(2).

Bodin, Ö., & Crona, B. I. (2009). The role of social networks in natural resource governance: What relational patterns make a difference? Global Environmental Change, 19(3), 366–374.

Bohlmann, J. D., Calantone, R. J., & Zhao, M. (2010). The effects of market network heterogeneity on innovation diffusion: An agent-based modeling approach. Journal of Product Innovation Management, 27(5), 741–760.

Bousquet, F., Bakam, I., Proton, H., & Le Page, C. (1998). Cormas: Common-pool resources and multi-agent systems. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 1416, 826–837.

Butt, D., & Raftos, D. (2007). Immunosuppression in Sydney rock oysters (Saccostrea glomerata) and QX disease in the Hawkesbury River, Sydney. Marine and Freshwater Research, 58(2), 213–221.

Cameron, A., & Crane, M. (2011). International OsHV-1 µVar Workshop, Cairns, Queensland, Australia 9-10 July 2011. In Fisheries Research and Development Corporation Canberra 101 (FRDC report). Retrieved from HERPES VIRUS WORKSHOP final REPORT.pdf

Crooks, A. T., & Hailegiorgis, A. B. (2014). An agent-based modeling approach applied to the spread of cholera. Environmental Modelling and Software, 62, 164–177.

David, N. (2013). Validating simulations. In B. Edmonds & R. Meyer (Eds.), Simulating Social Complexity.

Deltreil, J. P. (1973). Evolution et conséquence de la mortalité de C.angulata dans le bassin d’Arcachon et l’estuaire de la Gironde de 1971 à 1973.

Evans, K. S., & Weninger, Q. (2013). Information Sharing and Cooperative Search in Fisheries. Environmental and Resource Economics, 58(3), 353–372.

Ferber, J. (1999). Multi-agent system (1st ed.). United Kingdom: Pearsons.

Feuillette, S., Bousquet, F., & Le Goulven, P. (2003). SINUSE: A multi-agent model to negotiate water demand management on a free access water table. Environmental Modelling and Software, 18(5), 413–427.

Gervasoni, E., & Ritter, L. (2014). Mortalités, prédation et fermetures de la commercialisation: Etat des lieux et impact pour la profession conchylicole. Retrieved from - Rapport impact mortalite predation fermeture.pdf

Gilligan, C. a. (2002). An epidemiological framework for disease management. Advances in Botanical Research, 38, 1–64.

Girard, S., Agundez, J., Gangnery, A., & Vornière, J. (2010). Impact of Cultural Practices on the individual and Collective Economic Performances in Shellfish Farming: the Case of Oyster Farming in Baie Des Veys. IIFET 2010 Montpellier Proceedings, 1–12. Retrieved from

Golub, B., & Jackson, M. O. (2010). How Homophily Affects the Speed of Contagion , Best Response and Learning. Learning, (February), 1–58.

Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., … DeAngelis, D. L. (2006). A standard protocol for describing individual-based and agent-based models. Ecological Modelling, 198(1–2), 115–126.

Grimm, V., Berger, U., DeAngelis, D. L., Polhill, J. G., Giske, J., & Railsback, S. F. (2010). The ODD protocol: A review and first update. Ecological Modelling, 221(23), 2760–2768.

Grimm, V., Polhill, G., & Touza, J. (2013). Documenting Social Simulation Models: The ODD Protocol as a Standard. In B. Edmonds & R. Meyer (Eds.), Simulating Social Complexity (pp. 117–133).

Haynie, A. C., Hicks, R. L., & Schnier, K. E. (2009). Common property, information, and cooperation: Commercial fishing in the Bering Sea. Ecological Economics, 69(2), 406–413.

Henry, A. D., & Dietz, T. (2011). Information, networks, and the complexity of trust in commons governance. International Journal of the Commons, 5(2), 188–212.

Jackson, M. O. (2010). Social and economic networks (P. university Press, Ed.).

Jackson, M. O., & López-Pintado, D. (2013). Diffusion and contagion in networks with heterogeneous agents and homophily. Network Science, 1(01), 49–67.

Janssen, MA, & Ostrom, E. (2006). Empirically based, agent-based models. Ecology and Society, 11(2). Retrieved from

Janssen, Marco. (2013). The Role of Information in Governing the Commons: Experimental Results. Ecology and Society, 18(4), 1–27.

Kirsh, D. (2010). Thinking with external representations. AI and Society, 25(4), 441–454.

Le Page, C., Bazile, D., Becu, N., Bommel, P., Etienne, M., Mathevet, R., & Weber, J. (2013). Agent-based modelling and simulation applied to environmental management. In B. Edmonds & R. Meyer (Eds.), Simulating Social Complexity (pp. 499–540).

Le Page, C., Becu, N., Bommel, P., & Bousquet, F. (2012). Participatory Agent-Based Simulation for Renewable Resource Management : The Role of the Cormas Simulation Platform to Nurture a Community of Practice. Journal of Artificial Societies and Social Simulation, 15, 10. Retrieved from

Li, J., Michael, H. A., Duke, J. M., Messer, K. D., & Suter, J. F. (2014). Behavioral response to contamination risk information in a spatially explicit groundwater environment: Experimental evidence. Water Resources Research, 50(8), 6390–6405.

Liebovitz, J. (2016). Successes and failures of knowledge management. Morgan Kaufmann.

Malhotra, Y. (2004). Why knowledge management systems fail: enablers and constraints of knowledge management in human enterprises. Handbook on Knowledge Management 1, 577–599.

Matthews, R. B., Gilbert, N. G., Roach, A., Polhill, J. G., & Gotts, N. M. (2007). Agent-based land-use models: a review of applications. Landscape Ecology, 22(10), 1447–1459.

McGinnis, M. D., & Ostrom, E. (2014). Social-ecological system framework: Initial changes and continuing challenges. Ecology and Society, 19(2).

Müller, B., Bohn, F., Dreßler, G., Groeneveld, J., Klassert, C., Martin, R., … Schwarz, N. (2013). Describing human decisions in agent-based models - ODD+D, an extension of the ODD protocol. Environmental Modelling and Software, 48, 37–48.

Mustonen-Ollila, E., & Lyytinen, K. (2003). Why organizations adopt information system process innovations: a longitudinal study using Diffusion of Innovation theory. Information Systems Journal, 13, 275–297.

Nagendra, H., & Ostrom, E. (2014). Applying the social-ecological system framework to the diagnosis of urban lake commons in Bangalore , India. Ecology and Society, 19(2).

Nash, C., & Rubio-Zuazo, A. M. (2012). Monitoring the canaries of our catchments. 21st NSW Coastal Conference. Retrieved from

Oden, E., Martenot, C., Berthaux, M., Travaillé, E., Malas, J. P., & Houssin, M. (2011). Quantification of ostreid herpesvirus 1 (OsHV-1) in Crassostrea gigas by real-time PCR: Determination of a viral load threshold to prevent summer mortalities. Aquaculture, 317(1–4), 27–31.

OISAS. (2014). NSW Oyster Industry Sustainable Aquaculture Strategy Second edition — 2014. Retrieved from

Ostrom, E. (2007). A diagnostic approach for going beyond panaceas. Proceedings of the National Academy of Sciences of the United States of America, 104(39), 15181–15187.

Ostrom, E., Janssen, M. a, & Anderies, J. M. (2007). Going beyond panaceas. Proceedings of the National Academy of Sciences of the United States of America, 104(39), 15176–15178.

Paget, N. (2016). Facing threats by sharing information for renewable natural resources management. Paris Dauphine.

Paul-Pont, I., Dhand, N. K., & Whittington, R. J. (2013). Influence of husbandry practices on OsHV-1 associated mortality of Pacific oysters Crassostrea gigas. Aquaculture, 412–413, 202–214.

Paul-pont, I., Evans, O., Dhand, N. K., Rubio, A., Coad, P., & Whittington, R. J. (2014). Descriptive epidemiology of mass mortality due to Ostreid herpesvirus-1 ( OsHV-1 ) in commercially farmed Paci fi c oysters ( Crassostrea gigas ) in the Hawkesbury River estuary , Australia. Aquaculture, 422–423, 146–159.

Pernet, F, Barret, J., Le Gall, P., Corporeau, C., Dégremont, L., Lagarde, F., … Keck, N. (2012). Mass mortalities of Pacific oysters Crassostrea gigas reflect infectious diseases and vary with farming practices in the Mediterranean Thau lagoon, France. Aquaculture Environment Interactions, 2(3), 215–237.

Pernet, Fabrice, Lagarde, F., Jeannée, N., Daigle, G., Barret, J., Le Gall, P., … D’orbcastel, E. R. (2014). Spatial and temporal dynamics of mass mortalities in oysters is influenced by energetic reserves and food quality. PloS One, 9(2), e88469.

Raihanian Mashhadi, A., & Behdad, S. (2018). Environmental impact assessment of the heterogeneity in consumers’ usage behavior: An agent-based modeling approach. Journal of Industrial Ecology, 22(4), 706–719.

Ralha, C. G., Abreu, C. G., Coelho, C. G. C., Zaghetto, A., Macchiavello, B., & Machado, R. B. (2013). A multi-agent model system for land-use change simulation. Environmental Modelling and Software, 42, 30–46.

Schlüter, M., & Pahl-Wostl, C. (2007). Mechanisms of resilience in common-pool resource management systems: an agent-based model of water use in a river basin. Ecology and Society, 12(2), 4.

Schmitt, N., & Westerhoff, F. (2017). Heterogeneity, spontaneous coordination and extreme events within large-scale and small-scale agent-based financial market models. Journal of Evolutionary Economics, 27(5), 1041–1070.

Simon, H. A. (1976). From substantive to procedural rationality. In 25 years of economic theory (pp. 65–86). Boston, MA: Springer.

Tarhini, A., Asanka Gamagedara Arachilage, N., Masa’deh, R., & Abbasi, M. S. (2015). A Critical Review of Theories and Models of Technology Adoption and Acceptance in Information System Research. International Journal of Technology Diffusion, 6(October-December), 58–77.

Team, R. C. (2015). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.

Team, Rs. (2012). RStudio. Boston, MA: RStudio: Integrated Development Environment for R.

Torra, V., & Narukawa, Y. (2007). Modeling decisions: information fusion and aggregation operators. Springer Science & Business Media.

Villena, M. G., & Zecchetto, F. (2010). Subject-Specific Performance Information can Worsen the Tragedy of the Commons: Experimental Evidence. SSRN Electronic Journal.

Whittington, R. J., Dhand, N. K., Evans, O., & Paul-Pont, I. (2015). Further observations on the influence of husbandry practices on OsHV-1 μVar mortality in Pacific oysters Crassostrea gigas: Age, cultivation structures and growing height. Aquaculture, 438, 82–97.

Wickham, H. (2009). ggplot2: elegant graphics for data analysis. Springer New York.

Wickham, H. (2014). tidyr: Easily Tidy Data with spread() and gather() Functions. (version 0.2.0).

Wickham, H., & François, R. (2015). dplyr: A Grammar of Data Manipulation. (version 0.4.2.).

Young, O. R., Berkhout, F., Gallopin, G. C., Janssen, M. a., Ostrom, E., & van der Leeuw, S. (2006). The globalization of socio-ecological systems: An agenda for scientific research. Global Environmental Change, 16(3), 304–316.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.