Combining social network analysis and agent-based modelling to explore dynamics of human interaction: A review
Article Full Text (PDF)

Supplementary Files

Supplementary Material (PDF)


agent-based modelling
social network analysis
human behaviour

How to Cite

Will, M., Groeneveld, J., Frank, K., & Müller, B. (2020). Combining social network analysis and agent-based modelling to explore dynamics of human interaction: A review. Socio-Environmental Systems Modelling, 2, 16325.


Agent-based modelling (ABM) and social network analysis (SNA) are both valuable tools for exploring the impact of human interactions on a broad range of social and ecological patterns. Integrating these approaches offers unique opportunities to gain insights into human behaviour that neither the evaluation of social networks nor agent-based models alone can provide. There are many intriguing examples that demonstrate this potential, for instance in epidemiology, marketing or social dynamics. Based on an extensive literature review, we provide an overview on coupling ABM with SNA and evaluating the integrated approach. Building on this, we identify current shortcomings in the combination of the two methods. The greatest room for improvement is found with regard to (i) the consideration of the concept of social integration through networks, (ii) an increased use of the co-evolutionary character of social networks and embedded agents, and (iii) a systematic and quantitative model analysis focusing on the causal relationship between the agents and the network. Furthermore, we highlight the importance of a comprehensive and clearly structured model conceptualization and documentation. We synthesize our findings in guidelines that contain the main aspects to consider when integrating social networks into agent-based models.
Article Full Text (PDF)


Albert, R., & Barabási, A.-L. (2002). Statistical mechanics of complex networks. Reviews of Modern Physics, 74(1), 47–97. doi:10.1103/RevModPhys.74.47

Amblard, F., Bouadjio-Boulic, A., Sureda Gutiérrez, C., & Gaudou, B. (2015). Which models are used in social simulation to generate social networks? A review of 17 years of publications in JASSS. Winter Simulation Conference Proceedings (pp. 4021–4032). doi:10.1109/wsc.2015.7408556

Amini, M., Wakolbinger, T., Racer, M., & Nejad, M. G. (2012). Alternative supply chain production–sales policies for new product diffusion: An agent-based modeling and simulation approach. European Journal of Operational Research, 216(2), 301–311. doi:10.1016/j.ejor.2011.07.040

Andre, F. E., Booy, R., Bock, H. L., Clemens, J., Datta, S. K., John, T. J., Lee, B. W., Lolekha, S., Peltola, H., Ruff, T. A., Santosham, M., & Schmitt, H. J. (2008). Vaccination greatly reduces disease, disability, death and inequity worldwide. Bulletin of the World Health Organization, 86(2), 140–146. doi:10.2471/BLT.07.040089

Araújo, T., & Banisch, S. (2016). Multidimensional Analysis of Linguistic Networks. In A. Mehler, A. Lücking, S. Banisch, P. Blanchard, & B. Job (Eds.), Towards a Theoretical Framework for Analyzing Complex Linguistic Networks (pp. 107–131). Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/978-3-662-47238-5_5

Arneth, A., Brown, C., & Rounsevell, M. D. A. (2014). Global models of human decision-making for land-based mitigation and adaptation assessment. Nature Climate Change, 4(7), 550–557. doi:10.1038/nclimate2250

Baggio, J. A., & Hillis, V. (2018). Managing ecological disturbances: Learning and the structure of social-ecological networks. Environmental Modelling & Software, 109, 32–40. doi:10.1016/j.envsoft.2018.08.002

Beretta, E., Fontana, M., Guerzoni, M., & Jordan, A. (2018). Cultural dissimilarity: Boon or bane for technology diffusion? Technological Forecasting and Social Change, 133, 95–103. doi:10.1016/j.techfore.2018.03.008

Bianchi, F., & Squazzoni, F. (2015). Agent-based models in sociology. Wiley Interdisciplinary Reviews: Computational Statistics, 7(4), 284–306. doi:10.1002/wics.1356

Biondo, A. E., Pluchino, A., & Rapisarda, A. (2018). Modeling surveys effects in political competitions. Physica A: Statistical Mechanics and its Applications, 503, 714–726. doi:10.1016/j.physa.2018.02.211

Bodin, Ö., Ramirez-Sanchez, S., Ernstson, H., & Prell, C. (2011). A social relational approach to natural resource governance. In C. Prell & Ö. Bodin (Eds.), Social Networks and Natural Resource Management: Uncovering the Social Fabric of Environmental Governance (pp. 3–28). Cambridge, UK: Cambridge University Press. doi:10.1017/CBO9780511894985.002

Bohlmann, J. D., Calantone, R. J., & Zhao, M. (2010). The Effects of Market Network Heterogeneity on Innovation Diffusion: An Agent-Based Modeling Approach. Journal of Product Innovation Management, 27(5), 741–760. doi:10.1111/j.1540-5885.2010.00748.x

Bonabeau, E. (2002). Agent-based modeling: Methods and techniques for simulating human systems. Proceedings of the National Academy of Sciences of the United States of America, 99(suppl 3), 7280–7287. doi:10.1073/pnas.082080899

Borgatti, S. P. (2006). Identifying sets of key players in a social network. Computational & Mathematical Organization Theory, 12(1), 21–34. doi:10.1007/s10588-006-7084-x

Borgatti, S. P., & Foster, P. C. (2003). The Network Paradigm in Organizational Research: A Review and Typology. Journal of Management, 29(6), 991–1013. doi:10.1016/S0149-2063_03_00087-4

Borgatti, S. P., Mehra, A., Brass, D. J., & Labianca, G. (2009). Network Analysis in the Social Sciences. Science, 323(5916), 892–895. doi:10.1126/science.1165821

Bravo, G., Squazzoni, F., & Boero, R. (2012). Trust and partner selection in social networks: An experimentally grounded model. Social Networks, 34(4), 481–492. doi:10.1016/j.socnet.2012.03.001

Bruch, E., & Atwell, J. (2015). Agent-Based Models in Empirical Social Research. Sociological Methods & Research, 44(2), 186–221. doi:10.1177/0049124113506405

Butts, C. T. (2009). Revisiting the Foundations of Network Analysis. Science, 325(5939), 414–416. doi:10.1126/science.1171022

Carley, K. M. (2009). Computational modeling for reasoning about the social behavior of humans. Computational & Mathematical Organization Theory, 15(1), 47–59. doi:10.1007/s10588-008-9048-9

Castellano, C., Fortunato, S., & Loreto, V. (2009). Statistical physics of social dynamics. Reviews of Modern Physics, 81(2), 591–646. doi:10.1103/RevModPhys.81.591

Chareunsy, A. K. (2018). Diffusion of development initiatives in a southern Lao community: An agent based evaluation. Journal of Asian Economics, 54, 53–68. doi:10.1016/j.asieco.2017.12.004

Chen, J., Taylor, J. E., & Wei, H. H. (2012). Modeling building occupant network energy consumption decision-making: The interplay between network structure and conservation. Energy and Buildings, 47, 515–524. doi:10.1016/j.enbuild.2011.12.026

Chica, M., Chiong, R., Kirley, M., & Ishibuchi, H. (2018). A Networked N-Player Trust Game and Its Evolutionary Dynamics. IEEE Transactions on Evolutionary Computation, 22(6), 866–878. doi:10.1109/TEVC.2017.2769081

Chowell, G., & Nishiura, H. (2014). Transmission dynamics and control of Ebola virus disease (EVD): a review. BMC Medicine, 12(196). doi:10.1186/s12916-014-0196-0

Cointet, J. P., & Roth, C. (2007). How Realistic Should Knowledge Diffusion Models Be? Journal of Artificial Societies and Social Simulation, 10(3), 5. Retrieved from

Costenbader, E., & Valente, T. W. (2003). The stability of centrality measures when networks are sampled. Social Networks, 25(4), 283–307. doi:10.1016/S0378-8733(03)00012-1

Crooks, A., Castle, C., & Batty, M. (2008). Key challenges in agent-based modelling for geo-spatial simulation. Computers, Environment and Urban Systems, 32(6), 417–430. doi:10.1016/j.compenvurbsys.2008.09.004

Cumming, G. S. (2016). Heterarchies: Reconciling Networks and Hierarchies. Trends in Ecology & Evolution, 31(8), 622–632. doi:10.1016/j.tree.2016.04.009

Davey, V. J., Glass, R. J., Min, J. H., Beyeler, W. E., & Glass, L. M. (2008). Effective, Robust Design of Community Mitigation for Pandemic Influenza: A Systematic Examination of Proposed US Guidance. PLoS ONE, 3(7). doi:10.1371/journal.pone.0002606

El-Sayed, A. M., Scarborough, P., Seemann, L., & Galea, S. (2012). Social network analysis and agent-based modeling in social epidemiology. Epidemiologic Perspectives & Innovations, 9. doi:10.1186/1742-5573-9-1

Emirbayer, M., & Goodwin, J. (1994). Network Analysis, Culture, and the Problem of Agency. American Journal of Sociology, 99(6), 1411–1454. doi:10.1086/230450

Erdlenbruch, K., & Bonte, B. (2018). Simulating the dynamics of individual adaptation to floods. Environmental Science & Policy, 84, 134–148. doi:10.1016/j.envsci.2018.03.005

Erdős, P., & Rényi, A. (1959). On random graphs I. Publicationes Mathematicae Debrecen, 6, 290–297. Retrieved from p_erdos/Erdos.html#1959-11

Eubank, S., Guclu, H., Anil Kumar, V. S., Marathe, M. V., Srinivasan, A., Toroczkai, Z., & Wang, N. (2004). Modelling disease outbreaks in realistic urban social networks. Nature, 429(6988), 180–184. doi:10.1038/nature02541

Fetta, A., Harper, P., Knight, V., & Williams, J. (2018). Predicting adolescent social networks to stop smoking in secondary schools. European Journal of Operational Research, 265(1), 263–276. doi:10.1016/j.ejor.2017.07.039

Flache, A., & Macy, M. W. (2011). Small Worlds and Cultural Polarization. Journal of Mathematical Sociology, 35(1-3), 146–176. doi:10.1080/0022250X.2010.532261

Flache, A., & Snijders, T. A. B. (2008). Die Modellierung komplexer Netzwerke: zum Nutzen agentenbasierter Modelle in der neuen Netzwerkforschung. In K.-S. Rehberg (Ed.), Die Natur der Gesellschaft: Verhandlungen des 33. Kongresses der Deutschen Gesellschaft für Soziologie in Kassel 2006. Teilbd. 1 u. 2 (pp. 781–797). Frankfurt: Campus Verlag. Retrieved from

Flache, A., Mäs, M., Feliciani, T., Chattoe-Brown, E., Deffuant, G., Huet, S., & Lorenz, J. (2017). Models of Social Influence: Towards the Next Frontiers. Journal of Artificial Societies and Social Simulation, 20(4), 2. doi:10.18564/jasss.3521

Frank, K. A., Xu, R., & Penuel, W. R. (2018). Implementation of Evidence-Based Practice in Human Service Organizations: Implications from Agent-Based Models. Journal of Policy Analysis and Management, 37(4), 867–895. doi:10.1002/pam.22081

Freeman, L. C. (1979). Centrality in Social Networks Conceptual Clarification. Social Networks, 1(3), 215–239. doi:10.1016/0378-8733(78)90021-7

Friedkin, N. E. (1991). Theoretical Foundations for Centrality Measures. American Journal of Sociology, 96(6), 1478–1504. doi:10.1086/229694

Fu, F., Rosenbloom, D. I., Wang, L., & Nowak, M. A. (2011). Imitation dynamics of vaccination behaviour on social networks. Proceedings of the Royal Society B: Biological Sciences, 278(1702), 42–49. doi:10.1098/rspb.2010.1107

Fu, Z., & Hao, L. (2018). Agent-based modeling of China’s rural–urban migration and social network structure. Physica A: Statistical Mechanics and its Applications, 490, 1061–1075. doi:10.1016/j.physa.2017.08.145

Garcia, L. M. T., Roux, A. V. D., Martins, A. C. R., Yang, Y., & Florindo, A. A. (2018). Exploring the emergence and evolution of population patterns of leisure-time physical activity through agent-based modelling. International Journal of Behavioral Nutrition and Physical Activity, 15(1), 112. doi:10.1186/s12966-018-0750-9

Garlaschelli, D., & Loffredo, M. I. (2005). Structure and evolution of the world trade network. Physica A: Statistical Mechanics and its Applications, 355(1), 138–144. doi:10.1016/j.physa.2005.02.075

Gereffi, G. (1999). International trade and industrial upgrading in the apparel commodity chain. Journal of International Economics, 48(1), 37–70. doi:10.1016/S0022-1996(98)00075-0

Gilbert, N. (2008). Agent-Based Models. Thousand Oaks, CA: SAGE Publications. doi:10.4135/9781412983259

Goldenberg, J., Libai, B., Moldovan, S., & Muller, E. (2007). The NPV of bad news. International Journal of Research in Marketing, 24(3), 186–200. doi:10.1016/j.ijresmar.2007.02.003

Goldstone, R. L., & Janssen, M. A. (2005). Computational models of collective behavior. Trends in Cognitive Sciences, 9(9), 424–430. doi:10.1016/j.tics.2005.07.009

Gore, R. J., Lemos, C., Shults, F. L., & Wildman, W. (2018). Forecasting Changes in Religiosity and Existential Security with an Agent-Based Model. Journal of Artificial Societies and Social Simulation, 21(1), 4. doi:10.18564/jasss.3596

Granovetter, M. (1978). Threshold Models of Collective Behavior. American Journal of Sociology, 83(6), 1420–1443. doi:10.1086/226707

Granovetter, M. (1985). Economic Action and Social Structure: The Problem of Embeddedness. American Journal of Sociology, 91(3), 481–510. doi:10.1086/228311

Granovetter, M. (2005). The Impact of Social Structure on Economic Outcomes. Journal of Economic Perspectives, 19(1), 33–50. doi:10.1257/0895330053147958

Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., Goss-Custard, J., Grand, T., Heinz, S. K., Huse, G., Huth, A., Jepsen, J. U., Jørgensen, C., Mooij, W. M., Müller, B., Pe’er, G., Piou, C., Railsback, S. F., Robbins, A. M., Robbins, M. M., Rossmanith, E., Rüger, N., Strand, E., Souissi, S., Stillman, R. A., Vabø, R., Visser, U., & DeAngelis, D. L. (2006). A standard protocol for describing individual-based and agent-based models. Ecological Modelling, 198(1–2), 115–126. doi:10.1016/j.ecolmodel.2006.04.023

Grimm, V., Berger, U., DeAngelis, D. L., Polhill, J. G., Giske, J., & Railsback, S. F. (2010). The ODD protocol: A review and first update. Ecological Modelling, 221(23), 2760–2768. doi:10.1016/j.ecolmodel.2010.08.019

Grimm, V., Revilla, E., Berger, U., Jeltsch, F., Mooij, W. M., Railsback, S. F., Thulke, H.-H., Weiner, J., Wiegand, T., & DeAngelis, D. L. (2005). Pattern-Oriented Modeling of Agent-Based Complex Systems: Lessons from Ecology. Science, 310(5750), 987. doi:10.1126/science.1116681

Groeneveld, J., Müller, B., Buchmann, C. M., Dressler, G., Guo, C., Hase, N., Hoffmann, F., John, F., Klassert, C., Lauf, T., Liebelt, V., Nolzen, H., Pannicke, N., Schulze, J., Weise, H., & Schwarz, N. (2017). Theoretical foundations of human decision-making in agent-based land use models – A review. Environmental Modelling & Software, 87, 39–48. doi:10.1016/j.envsoft.2016.10.008

Gross, T., & Blasius, B. (2008). Adaptive coevolutionary networks: a review. Journal of the Royal Society Interface, 5(20), 259–271. doi:10.1098/rsif.2007.1229

Growiec, K., Growiec, J., & Kaminski, B. (2018). Social network structure and the trade-off between social utility and economic performance. Social Networks, 55, 31–46. doi:10.1016/j.socnet.2018.05.002

Hadzibeganovic, T., Stauffer, D., & Han, X. P. (2018). Interplay between cooperation-enhancing mechanisms in evolutionary games with tag-mediated interactions. Physica A: Statistical Mechanics and its Applications, 496, 676–690. doi:10.1016/j.physa.2017.12.113

Haenlein, M., & Libai, B. (2013). Targeting Revenue Leaders for a New Product. Journal of Marketing, 77(3), 65–80. doi:10.1509/jm.11.0428

Heinrich, T. (2018). A Discontinuity Model of Technological Change: Catastrophe Theory and Network Structure. Computational Economics, 51(3), 407–425. doi:10.1007/s10614-016-9609-9

Hornbeck, T., Naylor, D., Segre, A. M., Thomas, G., Herman, T., & Polgreen, P. M. (2012). Using Sensor Networks to Study the Effect of Peripatetic Healthcare Workers on the Spread of Hospital-Associated Infections. Journal of Infectious Diseases, 206(10), 1549–1557. doi:10.1093/infdis/jis542

Hu, H. H., Lin, J., Qian, Y. J., & Sun, J. (2018). Strategies for new product diffusion: Whom and how to target? Journal of Business Research, 83, 111–119. doi:10.1016/j.jbusres.2017.10.010

Huétink, F. J., Vooren, A. V. der, & Alkemade, F. (2010). Initial infrastructure development strategies for the transition to sustainable mobility. Technological Forecasting and Social Change, 77(8), 1270–1281. doi:10.1016/j.techfore.2010.03.012

Jackson, M. O. (2010). Social and Economic Networks. Princeton, NJ: Princeton University Press. doi:10.2307/j.ctvcm4gh1

Jager, W., & Amblard, F. (2005). Uniformity, Bipolarization and Pluriformity Captured as Generic Stylized Behavior with an Agent-Based Simulation Model of Attitude Change. Computational & Mathematical Organization Theory, 10(4), 295–303. doi:10.1007/s10588-005-6282-2

Janssen, M. A. (2017). The Practice of Archiving Model Code of Agent-Based Models. Journal of Artificial Societies and Social Simulation, 20(1), 2. doi:10.18564/jasss.3317

Janssen, M. A., & Jager, W. (2001). Fashions, habits and changing preferences: Simulation of psychological factors affecting market dynamics. Journal of Economic Psychology, 22(6), 745–772. doi:10.1016/S0167-4870(01)00063-0

Janssen, M. A., & Jager, W. (2003). Simulating Market Dynamics: Interactions between Consumer Psychology and Social Networks. Artificial Life, 9(4), 343–356. doi:10.1162/106454603322694807

Kaplan, A. M., & Haenlein, M. (2010). Users of the world, unite! The challenges and opportunities of Social Media. Business Horizons, 53(1), 59–68. doi:10.1016/j.bushor.2009.09.003

Kaufmann, P., Stagl, S., & Franks, D. W. (2009). Simulating the diffusion of organic farming practices in two New EU Member States. Ecological Economics, 68(10), 2580–2593. doi:10.1016/j.ecolecon.2009.04.001

Ke, J., Gong, T., & Wang, W. S. Y. (2008). Language change and social networks. Communications in Computational Physics, 3(4), 935–949. Retrieved from

Keijzer, M. A., Mas, M., & Flache, A. (2018). Communication in Online Social Networks Fosters Cultural Isolation. Complexity. doi:10.1155/2018/9502872

Kiesling, E., Günther, M., Stummer, C., & Wakolbinger, L. M. (2012). Agent-based simulation of innovation diffusion: a review. Central European Journal of Operations Research, 20(2), 183–230. doi:10.1007/s10100-011-0210-y

Kjeldahl, E. M., & Hendricks, V. F. (2018). The sense of social influence: pluralistic ignorance in climate change. EMBO reports, 19(11). doi:10.15252/embr.201847185

Klabunde, A., & Willekens, F. (2016). Decision-Making in Agent-Based Models of Migration: State of the Art and Challenges. European Journal of Population, 32(1), 73–97. doi:10.1007/s10680-015-9362-0

Laatabi, A., Marilleau, N., Nguyen-Huu, T., Hbid, H., & Ait Babram, M. (2018). ODD+2D: An ODD Based Protocol for Mapping Data to Empirical ABMs. Journal of Artificial Societies and Social Simulation, 21(2), 9. doi:10.18564/jasss.3646

Laifa, M., Akrouf, S., & Mammeri, R. (2018). Forgiveness and trust dynamics on social networks. Adaptive Behavior, 26(2), 65–83. doi:10.1177/1059712318762733

Levin, S. A. (1992). The Problem of Pattern and Scale in Ecology: The Robert H. MacArthur Award Lecture. Ecology, 73(6), 1943–1967. doi:10.2307/1941447

Libai, B., Muller, E., & Peres, R. (2013). Decomposing the Value of Word-of-Mouth Seeding Programs: Acceleration versus Expansion. Journal of Marketing Research, 50(2), 161–176. doi:10.1509/jmr.11.0305

Lou-Magnuson, M., & Onnis, L. (2018). Social Network Limits Language Complexity. Cognitive Science, 42(8), 2790–2817. doi:10.1111/cogs.12683

Lozano, P., Antonioni, A., Tomassini, M., & Sánchez, A. (2018). Cooperation on dynamic networks within an uncertain reputation environment. Scientific Reports, 8, 9093. doi:10.1038/s41598-018-27544-5

Lu, Q., Korniss, G., & Szymanski, B. K. (2009). The Naming Game in social networks: community formation and consensus engineering. Journal of Economic Interaction and Coordination, 4(2), 221–235. doi:10.1007/s11403-009-0057-7

Macy, M. W., & Willer, R. (2002). From Factors to Actors: Computational Sociology and Agent-Based Modeling. Annual Review of Sociology, 28(1), 143–166. doi:10.1146/annurev.soc.28.110601.141117

Moglia, M., Podkalicka, A., & McGregor, J. (2018). An Agent-Based Model of Residential Energy Efficiency Adoption. Journal of Artificial Societies and Social Simulation, 21(3), 3. doi:10.18564/jasss.3729

Moradianzadeh, N., Zadeh, P. M., Kobti, Z., Hansen, S., & Pfaff, K. (2018). Using social network analysis to model palliative care. Journal of Network and Computer Applications, 120, 30–41. doi:10.1016/j.jnca.2018.07.004

Müller, B., Bohn, F., Dreßler, G., Groeneveld, J., Klassert, C., Martin, R., Schlüter, M., Schulze, J., Weise, H., & Schwarz, N. (2013). Describing human decisions in agent-based models – ODD + D, an extension of the ODD protocol. Environmental Modelling & Software, 48, 37–48. doi:10.1016/j.envsoft.2013.06.003

Namatame, A., & Chen, S. H. (2016). Agent-Based Modeling and Network Dynamics. Oxford, UK: Oxford University Press. doi:10.1093/acprof:oso/9780198708285.001.0001

Neal, Z. P., & Neal, J. W. (2014). The (In)compatibility of Diversity and Sense of Community. American Journal of Community Psychology, 53(1-2), 1–12. doi:10.1007/s10464-013-9608-0

Negahban, A., & Smith, J. S. (2018). A joint analysis of production and seeding strategies for new products: an agent-based simulation approach. Annals of Operations Research, 268(1-2), 41–62. doi:10.1007/s10479-016-2389-8

Newman, M. E. J. (2003). The Structure and Function of Complex Networks. SIAM Review, 45(2), 167–256. doi:10.1137/S003614450342480

Niamir, L., Filatova, T., Voinov, A., & Bressers, H. (2018). Transition to low-carbon economy: Assessing cumulative impacts of individual behavioral changes. Energy Policy, 118, 325–345. doi:10.1016/j.enpol.2018.03.045

Pastor-Satorras, R., & Vespignani, A. (2001). Epidemic Spreading in Scale-Free Networks. Physical Review Letters, 86(14), 3200–3203. doi:10.1103/PhysRevLett.86.3200

Pearce, P., & Slade, R. (2018). Feed-in tariffs for solar microgeneration: Policy evaluation and capacity projections using a realistic agent-based model. Energy Policy, 116, 95–111. doi:10.1016/j.enpol.2018.01.060

Peres, R., Muller, E., & Mahajan, V. (2010). Innovation diffusion and new product growth models: A critical review and research directions. International Journal of Research in Marketing, 27(2), 91–106. doi:10.1016/j.ijresmar.2009.12.012

Perlroth, D. J., Glass, R. J., Davey, V. J., Cannon, D., Garber, A. M., & Owens, D. K. (2010). Health Outcomes and Costs of Community Mitigation Strategies for an Influenza Pandemic in the United States. Clinical Infectious Diseases, 50(2), 165–174. doi:10.1086/649867

Phan, T. Q., & Godes, D. (2018). The Evolution of Influence Through Endogenous Link Formation. Marketing Science, 37(2), 259–278. doi:10.1287/mksc.2017.1077

Piedrahita, P., Borge-Holthoefer, J., Moreno, Y., & Gonzalez-Bailon, S. (2018). The contagion effects of repeated activation in social networks. Social Networks, 54, 326–335. doi:10.1016/j.socnet.2017.11.001

Rahmandad, H., & Sterman, J. (2008). Heterogeneity and Network Structure in the Dynamics of Diffusion: Comparing Agent-Based and Differential Equation Models. Management Science, 54(5), 998–1014. doi:10.1287/mnsc.1070.0787

Rai, V., & Henry, A. D. (2016). Agent-based modelling of consumer energy choices. Nature Climate Change, 6(6), 556–562. doi:10.1038/nclimate2967

Railsback, S. F., & Grimm, V. (2012). Agent-Based and Individual-Based Modeling: A Practical Introduction. Princeton, NJ: Princeton University Press. Retrieved from

Rand, W., & Rust, R. T. (2011). Agent-based modeling in marketing: Guidelines for rigor. International Journal of Research in Marketing, 28(3), 181–193. doi:10.1016/j.ijresmar.2011.04.002

Rasoulkhani, K., Logasa, B., Reyes, M. P., & Mostafavi, A. (2018). Understanding Fundamental Phenomena Affecting the Water Conservation Technology Adoption of Residential Consumers Using Agent-Based Modeling. Water, 10(8). doi:10.3390/w10080993

Rockenbauch, T., & Sakdapolrak, P. (2017). Social networks and the resilience of rural communities in the Global South: a critical review and conceptual reflections. Ecology and Society, 22(1). doi:10.5751/ES-09009-220110

Schlaile, M. P., Knausberg, T., Mueller, M., & Zeman, J. (2018). Viral ice buckets: A memetic perspective on the ALS Ice Bucket Challenge’s diffusion. Cognitive Systems Research, 52, 947–969. doi:10.1016/j.cogsys.2018.09.012

Schmolke, A., Thorbek, P., DeAngelis, D. L., & Grimm, V. (2010). Ecological models supporting environmental decision making: a strategy for the future. Trends in Ecology & Evolution, 25(8), 479–486. doi:10.1016/j.tree.2010.05.001

Scott, J. (2011). Social network analysis: developments, advances, and prospects. Social Network Analysis and Mining, 1(1), 21–26. doi:10.1007/s13278-010-0012-6

Senbel, M., Ngo, V. D., & Blair, E. (2014). Social mobilization of climate change: University students conserving energy through multiple pathways for peer engagement. Journal of Environmental Psychology, 38, 84–93. doi:10.1016/j.jenvp.2014.01.001

Simão, J., & Todd, P. M. (2002). Modeling Mate Choice in Monogamous Mating Systems with Courtship. Adaptive Behavior, 10(2), 113–136. doi:10.1177/1059-712302-010002-03

Smith, K. P., & Christakis, N. A. (2008). Social Networks and Health. Annual Review of Sociology, 34(1), 405–429. doi:10.1146/annurev.soc.34.040507.134601

Snijders, T. A. B., & Steglich, C. E. G. (2015). Representing Micro-Macro Linkages by Actor-based Dynamic Network Models. Sociological Methods & Research, 44(2), 222–271. doi:10.1177/0049124113494573

Snijders, T. A. B., Bunt, G. G. van de, & Steglich, C. E. G. (2010). Introduction to stochastic actor-based models for network dynamics. Social Networks, 32(1), 44–60. doi:10.1016/j.socnet.2009.02.004

Son, J., & Rojas, E. M. (2011). Evolution of Collaboration in Temporary Project Teams: An Agent-Based Modeling and Simulation Approach. Journal of Construction Engineering and Management, 137(8), 619–628. doi:10.1061/(ASCE)CO.1943-7862.0000331

Squazzoni, F. (2010). The Impact of Agent-Based Models in the Social Sciences after 15 Years of Incursions. History of Economic Ideas, 18(2), 197–233. Retrieved from

Squazzoni, F., Jager, W., & Edmonds, B. (2014). Social Simulation in the Social Sciences: A Brief Overview. Social Science Computer Review, 32(3), 279–294. doi:10.1177/0894439313512975

Stumpf, M. P. H., Wiuf, C., & May, R. M. (2005). Subnets of scale-free networks are not scale-free: Sampling properties of networks. Proceedings of the National Academy of Sciences of the United States of America, 102(12), 4221–4224. doi:10.1073/pnas.0501179102

Talebian, A., & Mishra, S. (2018). Predicting the adoption of connected autonomous vehicles: A new approach based on the theory of diffusion of innovations. Transportation Research Part C: Emerging Technologies, 95, 363–380. doi:10.1016/j.trc.2018.06.005

Valente, T. W. (2005). Network Models and Methods for Studying the Diffusion of Innovations. In P. J. Carrington, J. Scott, & S. Wasserman (Eds.), Models and Methods in Social Network Analysis, Structural Analysis in the Social Sciences (pp. 98–116). Cambridge, UK: Cambridge University Press. doi:10.1017/CBO9780511811395.006

Verelst, F., Willem, L., & Beutels, P. (2016). Behavioural change models for infectious disease transmission: a systematic review (2010-2015). Journal of the Royal Society Interface, 13(125). doi:10.1098/rsif.2016.0820

Walker, B. H., Carpenter, S. R., Rockstrom, J., Crépin, A.-S., & Peterson, G. D. (2012). Drivers, “Slow” Variables, “Fast” Variables, Shocks, and Resilience. Ecology and Society, 17(3). doi:10.5751/es-05063-170330

Wang, G., Zhang, Q., Li, Y., & Li, H. L. (2018). Policy simulation for promoting residential PV considering anecdotal information exchanges based on social network modelling. Applied Energy, 223, 1–10. doi:10.1016/j.apenergy.2018.04.028

Wasserman, S., & Faust, K. (1994). Social Network Analysis: Methods and Applications. Cambridge, UK: Cambridge University Press. doi:10.1017/cbo9780511815478

Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ’small-world’ networks. Nature, 393(6684), 440–442. doi:10.1038/30918

Weng, L., Flammini, A., Vespignani, A., & Menczer, F. (2012). Competition among memes in a world with limited attention. Scientific Reports, 2, 335. doi:10.1038/srep00335

Zacharias, G. L., MacMillan, J., & Van Hemel, S. B. (2008). Behavioral Modeling and Simulation: From Individuals to Societies. (G. L. Zacharias, J. MacMillan, & S. B. Van Hemel, Eds.). Washington, D.C.: The National Academies Press. doi:10.17226/12169

Zhang, T., & Nuttall, W. J. (2011). Evaluating Government’s Policies on Promoting Smart Metering Diffusion in Retail Electricity Markets via Agent-Based Simulation. Journal of Product Innovation Management, 28(2), 169–186. doi:10.1111/j.1540-5885.2011.00790.x

Zhuge, C. X., Shao, C. F., & Wei, B. R. (2018). An Agent-based Spatial Urban Social Network Generator: A Case Study of Beijing, China. Journal of Computational Science, 29, 46–58. doi:10.1016/j.jocs.2018.09.005

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.