Building trust in SWAT model scenarios through a multi-institutional approach in Uruguay
Article Full Text (PDF)

Supplementary Files

Supplementary Material (PDF)

Keywords

Integrated Water Resource Management
hydrological modelling
stakeholder modelling
capacity building

How to Cite

Mer, F., Baethgen, W., & Vervoort, R. W. . (2020). Building trust in SWAT model scenarios through a multi-institutional approach in Uruguay. Socio-Environmental Systems Modelling, 2, 17892. https://doi.org/10.18174/sesmo.2020a17892

Abstract

The inherent complexity of numerical models and the diversity of stakeholders in integrated water resources management (IWRM) create challenges in achieving credibility, salience and legitimacy to develop trust in model-based scenarios. In Uruguay, there has been significant debate on increasing agricultural production while managing agriculture’s environmental impacts (e.g., on water quality and environmental flows). This paper reports on the evolution of a stakeholder process in a case study with a multi-institutional participatory modelling group, supported by researchers.  This specific participatory modelling (PM) project is unique in that the active stakeholders are the actual hydrological modellers, and the role of “experts” is mainly in facilitation and capacity building. The results highlight the different bottlenecks and the factors that enabled effective collaboration in this PM project. The main bottlenecks were related to: different views on representation of the watershed, the quality and usability of different input data, the public information for the technical implementation of the model, and the priority of output scenarios. The factors that enhanced collaboration were: a focus on a single basin problem, strong support from upper management, and support from experts in coordination and capacity building. The detailed documentation provided with this project can inspire similar approaches in the future.

https://doi.org/10.18174/sesmo.2020a17892
Article Full Text (PDF)

References

Abbaspour, K.C., Rouholahnejada, E., Vaghefia, S., Srinivasan, R., Yang, H., & Kløved, B. (2015). A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. Journal of Hydrology, 524, 733–752. https://doi.org/10.1016/j.jhydrol.2015.03.027

Achkar, M., Dominguez, A., & Pesce, F. (2012). Cuenca del Río Santa Lucía–Uruguay Aportes para la discusiόn ciudadana. Fac. Cienc.-UdelaR REDES- Programa Urug. Sustentable. https://www.redes.org.uy/wp-content/uploads/2012/12/Publicacion-Santa-Lucia-WEB.pdf

Anonymous (2018). Plan de acción para la protección de la calidad ambiental de la cuenca del río Santa Lucía. Medidas de segunda generación. https://www.gub.uy/ministerio-ambiente/sites/ministerio-ambiente/files/documentos/publicaciones/PLAN_DE_ACCION_RIO_SANTA_LUCIA_-_MEDIDAS_DE_2da_GENERACION.pdf

Ansell, C., & Gash, A. (2007). Collaborative Governance in Theory and Practice. J. Public Adm. Res. Theory, 18, 543–571. https://doi.org/10.1093/jopart/mum032

Arnold, J.G., Moriasi, D.N., Gassman, P.W., Abbaspour, K.C., White, M.J., Srinivasan, R., Santhi, C., Harmel, R., Van Griensven, A., Van Liew, M.W., Kannan, N., & Jha, M. (2012). SWAT: Model use, calibration, and validation. Trans. ASABE, 55, 1491–1508.

Badham, J., Elsawah, S., Guillaume, J.H.A., Hamilton, S.H., Hunt, R.J., Jakeman, A.J., Pierce, S.A., Snow, V.O., Babbar-Sebens, M., Fu, B., Gober, P., Hill, M.C., Iwanaga, T., Loucks, D.P., Merritt, W.S., Peckham, S.D., Richmond, A.K., Zare, F., Ames, D., & Bammer, G. (2019). Effective modeling for Integrated Water Resource Management: A guide to contextual practices by phases and steps and future opportunities. Environ. Model. Softw., 116, 40–56. https://doi.org/10.1016/j.envsoft.2019.02.013

Barreto, P., Dogliotti, S., & Perdomo, C. (2017). Surface water quality of intensive farming areas within the santa lucia river basin of uruguay. Air Soil Water Res., 10, 1178622117715446. https://doi.org/10.1177/1178622117715446

Basco-Carrera, L., Warren, A., van Beek, E., Jonoski, A., & Giardino, A. (2017). Collaborative modelling or participatory modelling? A framework for water resources management. Environ. Model. Softw., 91, 95–110. https://doi.org/10.1016/j.envsoft.2017.01.014

Bodin, Ö. (2017). Collaborative environmental governance: Achieving collective action in social-ecological systems. Science, 357, eaan1114. https://doi.org/10.1126/science.aan1114

Brown, S.C., Versace, V.L., Lester, R.E. & Walter, M.T. (2015). Assessing the impact of drought and forestry on streamflows in south-eastern Australia using a physically based hydrological model. Environ. Earth Sci., 74, 6047–6063. https://doi.org/10.1007/s12665-015-4628-8

Cash, D.W., Clark, W.C., Alcock, F., Dickson, N.M., Eckley, N., Guston, D.H., Jäger, J. & Mitchell, R.B. (2003). Knowledge systems for sustainable development. Proc. Natl. Acad. Sci., 100, 8086-8091. https://doi.org/10.1073/pnas.1231332100

Clark, M.P., Nijssen, B., Lundquist, J.D., Kavetski, D., Rupp, D.E., Woods, R.A., Freer, J.E., Gutmann, E.D., Wood, A.W., Brekke, L.D., Arnold, J.R., Gochis, D.J., & Rasmussen, R.M. (2015). A Unified Approach for Process-Based Hydrologic Modeling: 1. Modeling Concept. Water Resour. Res. 51, 2498–2514. https://doi.org/10.1002/2015WR017198

Cosgrove, W.J., & Loucks, D.P. (2015). Water management: Current and future challenges and research directions: Water management research challenges. Water Resour. Res., 51, 4823–4839. https://doi.org/10.1002/2014WR016869

de Fraiture, C., & Wichelns, D. (2010). Satisfying future water demands for agriculture. Agric. Water Manag., 97, 502–511. https://doi.org/10.1016/j.agwat.2009.08.008

Falconi, S.M., & Palmer, R.N. (2017). An interdisciplinary framework for participatory modeling design and evaluation-What makes models effective participatory decision tools? Water Resour. Res., 53, 1625–1645. https://doi.org/10.1002/2016WR019373

Fu, B., Merritt, W.S., Croke, B.F.W., Weber, T.R. & Jakeman, A.J. (2019). A review of catchment-scale water quality and erosion models and a synthesis of future prospects. Environ. Model. Softw., 114, 75–97. https://doi.org/10.1016/j.envsoft.2018.12.008

García-Préchac, F., & Durán, A. (2001). Estimating soil productivity loss due to erosion in Uruguay in terms of beef and wool production on natural pastures. In: Sustaining the Global Farm. Purdue University and USDA-ARS National Soil Erosion Research Laboratory, pp. 40–45.

Haasnoot, M., van Deursen, W.P.A., Guillaume, J.H.A., Kwakkel, J.H., van Beek, E., & Middelkoop, H. (2014). Fit for purpose? Building and evaluating a fast, integrated model for exploring water policy pathways. Environ. Model. Softw., 60, 99–120. https://doi.org/10.1016/j.envsoft.2014.05.020

Hämäläinen, R.P. (2015). Behavioural issues in environmental modelling – The missing perspective. Environ. Model. Softw., 73, 244–253. https://doi.org/10.1016/j.envsoft.2015.08.019

Hamilton, S.H., ElSawah, S., Guillaume, J.H.A., Jakeman, A.J., & Pierce, S.A. (2015). Integrated assessment and modelling: Overview and synthesis of salient dimensions. Environ. Model. Softw., 64, 215–229. https://doi.org/10.1016/j.envsoft.2014.12.005

Langsdale, S., Beall, A., Bourget, E., Hagen, E., Kudlas, S., Palmer, R., Tate, D., & Werick, W. (2013). Collaborative Modeling for Decision Support in Water Resources: Principles and Best Practices. J. Am. Water Resour. Assoc., 49, 629–638. https://doi.org/10.1111/jawr.12065

Merritt, W.S., Fu, B., Ticehurst, J.L., El Sawah, S., Vigiak, O., Roberts, A.M., Dyer, F., Pollino, C.A., Guillaume, J.H.A., Croke, B.F.W., & Jakeman, A.J. (2017). Realizing modelling outcomes: A synthesis of success factors and their use in a retrospective analysis of 15 Australian water resource projects. Environ. Model. Softw., 94, 63–72. https://doi.org/10.1016/j.envsoft.2017.03.021

Molden, D. (2013). Water for food water for life: A comprehensive assessment of water management in agriculture. Routledge, London.

Molina-Navarro, E., Andersen, H.E., Nielsen, A., Thodsen, H., & Trolle, D. (2017). The impact of the objective function in multi-site and multi-variable calibration of the SWAT model. Environ. Model. Softw., 93, 255–267. https://doi.org/10.1016/j.envsoft.2017.03.018

Navas, R., Alonso, J., Gorgoglione, A., & Vervoort, R.W. (2019). Identifying climate and human impact trends in streamflow: A case study in uruguay. Water, 11(7), 1433. https://doi.org/10.3390/w11071433

Oficina de Estadísticas Agropecuarias (DIEA) (2017). Anuario Estadístico Agropecuario.Vigésima Edición. https://www.gub.uy/ministerio-ganaderia-agricultura-pesca/sites/ministerio-ganaderia-agricultura-pesca/files/documentos/publicaciones/diea-anuario2017web01a.pdf

Olsson, J.A., & Andersson, L. (2007). Possibilities and problems with the use of models as a communication tool in water resource management Water. Resour. Manage., 21, 97–110. https://doi.org/ 10.1007/s11269-006-9043-1

Oreskes, N., Shrader-Frechette, K., & Belitz, K. (1994). Verification, validation, and confirmation of numerical models in the earth sciences. Science, 263, 641–646. https://doi.org/10.1126/science.263.5147.641

Prell, C., Hubacek, K., Reed, M., Quinn, C., Jin, N., Holden, J., Burt, T., Kirby, M., & Sendzimir, J. (2007). If you have a hammer everything looks like a nail: traditional versus participatory model building. Interdiscip. Sci. Rev., 32, 263–282. https://doi.org/10.1179/030801807X211720

Renger, M., Kolfschoten, G.L., & De Vreede, G.-J. (2008). Challenges in collaborative modelling: a literature review and research agenda. Int. J. Simul. Process Model., 4, 248–263.

Voinov, A., & Bousquet, F. (2010). Modelling with stakeholders. Environ. Model. Softw., 25, 1268–1281. https://doi.org/10.1016/j.envsoft.2010.03.007

Voinov, A., Kolagani, N., McCall, M.K., Glynn, P.D., Kragt, M.E., Ostermann, F.O., Pierce, S.A., & Ramu, P. (2016). Modelling with stakeholders – Next generation. Environ. Model. Softw., 77, 196–220. https://doi.org/10.1016/j.envsoft.2015.11.016