Learning across disciplines in socio-environmental problem framing
Article Full Text (PDF)

Supplementary Files

Supplementary Material (PDF)

Keywords

interdisciplinary
knowledge integration
model-based reasoning
boundary objects
complex problem solving

How to Cite

Pennington, D., Vincent, S., Gosselin, D., & Thompson, K. (2021). Learning across disciplines in socio-environmental problem framing. Socio-Environmental Systems Modelling, 3, 17895. https://doi.org/10.18174/sesmo.2021a17895

Abstract

Modelling complex socio-environmental problems requires integration of knowledge across disparate fields of expertise. A key challenge is understanding how social learning across disciplines occurs in scientific research teams, in order that integrated knowledge is co-created. This article introduces a new framework for training researchers to integrate their knowledge across disciplines, based on current understanding of how inter- and transdisciplinary learning in research teams occurs. The framework was generated from a synthesis of learning, cognitive, and social science theories, and combines facilitated, structured negotiation processes with co-creation of boundary objects. It was used in two, 9 to 10-day intensive training workshops for doctoral students. This article describes the framework, workshop design, analysis of data collected during the workshops related to knowledge integration processes, what has been learned from the results, and the impact on participants. All participants indicated the experience was transformative, provided knowledge and skills unavailable elsewhere, filled gaps in their graduate education programs, and improving confidence in their capacity for inter- and transdisciplinary research. Pre- and post-workshop surveys confirm that the framework changed participants’ knowledge, behaviors, and competencies for engaging across disciplines. Many students have reported they have used the framework in a variety of other research and education settings, indicating they are able to transfer their new competencies to other contexts. Findings contribute to understanding of how to more effectively train researchers to integrate knowledge across disciplines for complex societal problem solving.

Article Full Text (PDF)

References

Alhadad, S. S. J., & Thompson, K. (2017). Understanding the mediating role of teacher inquiry when connecting learning analytics with design for learning. Interaction Design and Architecture(s), 33, 54–74.

Anthony, L. J., Palius, M. F., Maher, C. A., & Moghe, P. V. (2007). Using Discourse Analysis to Study a Cross-Disciplinary Learning Community: Insights from an IGERT Training Program. Journal of Engineering Education, 96(2), 141–156. https://doi.org/10.1002/j.2168-9830.2007.tb00924.x

Argent, R. M., Sojda, R. S., Guipponi, C., McIntosh, B., Voinov, A. A., & Maier, H. R. (2016). Best practices for conceptual modelling in environmental planning and management. Environmental Modelling & Software, 80, 113–121. http://www.sciencedirect.com/science/article/pii/S1364815216300433

Badham, J., Elsawah, S., Guillaume, J. H. A., Hamilton, S. H., Hunt, R. J., Jakeman, A. J., Pierce, S. A., Snow, V. O., Babbar-Sebens, M., Fu, B., Gober, P., Hill, M. C., Iwanaga, T., Loucks, D. P., Merritt, W. S., Peckham, S. D., Richmond, A. K., Zare, F., Ames, D., & Bammer, G. (2019). Effective modeling for Integrated Water Resource Management: A guide to contextual practices by phases and steps and future opportunities. Environmental Modelling & Software, 116, 40–56. https://doi.org/10.1016/j.envsoft.2019.02.013

Bell, S. (2012). DPSIR = A Problem Structuring Method? An exploration from the “Imagine” approach. European Journal of Operational Research, 222(2), 350–360. https://doi.org/10.1016/j.ejor.2012.04.029

Bojórquez-Tapia, L. A., Janssen, M., Eakin, H., Baeza, A., Serrano-Candela, F., Gómez-Priego, P., & Miquelajauregui, Y. (2019). Spatially-explicit simulation of two-way coupling of complex socio-environmental systems: Socio-hydrological risk and decision making in Mexico City. Socio-Environmental Systems Modelling, 1, 16129–16129. https://doi.org/10.18174/sesmo.2019a16129

Borrego, M., Boden, D., & Newswander, L. K. (2014). Sustained Change: Institutionalizing Interdisciplinary Graduate Education. The Journal of Higher Education, 85(6), 858–885. https://doi.org/10.1080/00221546.2014.11777350

Boud, D. (2001). Using journal writing to enhance reflective practice. New Directions for Adult and Continuing Education, 2001(90), 9. https://doi.org/10.1002/ace.16

Bransford, J., Vye, N., Stevens, R., Kuhl, P., Schwartz, D., Bell, P., Meltzoff, A., Barron, B., Pea, R., Reeves, B., Roschelle, J., & Sabelli, N. (2006). Learning theories and education: Toward a decade of synergy. In Handbook of Educational Psychology (P. Alexander&P. Winne (Eds.), Vol. 2, pp. 209–244). Lawrence Erlbaum Associates.

Cairns, R., Hielscher, S., & Light, A. (2020). Collaboration, creativity, conflict and chaos: Doing interdisciplinary sustainability research. Sustainability Science. https://doi.org/10.1007/s11625-020-00784-z

Cheruvelil, K. S., Soranno, P. A., Weathers, K. C., Hanson, P. C., Goring, S. J., Filstrup, C. T., & Read, E. K. (2014). Creating and maintaining high-performing collaborative research teams: The importance of diversity and interpersonal skills. Frontiers in Ecology and the Environment, 12(1), 31–38. https://doi.org/10.1890/130001

Corbin, A., & Strauss, A. (1990). Grounded theory research: Procedures, canons, and evaluative criteria. Qualitative Sociology, 13(1), 3–21. URL

de Kraker, J., Kroeze, C., & Kirschner, P. (2011). Computer models as social learning tools in participatory integrated assessment. International Journal of Agricultural Sustainability, 9(2), 297–309. https://doi.org/10.1080/14735903.2011.582356

Eigenbrode, S. D., O’Rourke, M., Wulfhorst, J. D., Althoff, D. M., Goldberg, C. S., Merrill, K., Morse, W., Nielsen-Pincus, M., Stephens, J., Winowiecki, L., & Bosque-Perez, N. A. (2007). Employing Philosophical Dialogue in Collaborative Science. BioScience, 57(1), 55–64. https://doi.org/10.1641/B570109

Elsawah, S., Filatova, T., Jakeman, A. J., Kettner, A. J., Zellner, M. L., Athanasiadis, I. N., Hamilton, S. H., Axtell, R. L., Brown, D. G., Gilligan, J. M., Janssen, M. A., Robinson, D. T., Rozenberg, J., Ullah, I. I. T., & Lade, S. J. (2020). Eight grand challenges in socio-environmental systems modeling. Socio-Environmental Systems Modelling, 2, 16226–16226. https://doi.org/10.18174/sesmo.2020a16226

Ernst, A. (2019). Review of factors influencing social learning within participatory environmental governance. Ecology and Society, 24(1). https://doi.org/10.5751/ES-10599-240103

Ewenstein, B., & Whyte, J. (2009). Knowledge practices in design: The role of visual representations as ‘epistemic objects.’ Organization Studies, 30: 7-30.

Fernández-Giménez, M. E., Augustine, D. J., Porensky, L. M., Wilmer, H., Derner, J. D., Briske, D. D., & Stewart, M. O. (2019). Complexity fosters learning in collaborative adaptive management. Ecology and Society, 24(2), art29. https://doi.org/10.5751/ES-10963-240229

Fiore, S. M., Rosen, M. A., Smith-Jentsch, K. A., Salas, E., Letsky, M., & Warner, N. (2010). Toward an understanding of macrocognition in teams: Predicting processes in complex collaborative contexts. Human Factors: The Journal of the Human Factors and Ergonomics Society, 52(2), 203–224. https://doi.org/10.1177/0018720810369807

Fiore, S. M., & Schooler, J. W. (2004). Process mapping and shared cognition: Teamwork and the development of shared problem models. Team Cognition: Understanding the Factors That Drive Process and Performance, 133–152.

Fiore, S. M., & Wiltshire, T. J. (2016). Technology as Teammate: Examining the Role of External Cognition in Support of Team Cognitive Processes. Frontiers in Psychology, 7. https://doi.org/10.3389/fpsyg.2016.01531

Godemann, J. (2008). Knowledge integration: A key challenge for transdisciplinary cooperation. Environmental Education Research, 14(6), 625–641. https://doi.org/10.1080/13504620802469188

Goodyear, P., & Carvalho, L. (2014). Framing the analysis of learning network architectures. The Architecture of Productive Learning Networks, 48.

Gosselin, D., Thompson, K., Pennington, D., & Vincent, S. (2020). Learning to be an interdisciplinary researcher: Incorporating training about dispositional and epistemological differences into graduate student environmental science teams. Journal of Environmental Studies and Sciences, 10(3), 310–326. https://doi.org/10.1007/s13412-020-00605-w

Gray, S., Mellor, D., Jordan, R., Crall, A., & Newman, G. (2014). Modeling with citizen scientists: Using community-based modeling tools to develop citizen science projects. International Environmental Modelling and Software Society (iEMSs) 7th International Congress on Environmental Modelling and Software, San Diego, California, USA.

Hall, K. L., Vogel, A. L., Huang, G. C., Serrano, K. J., Rice, E. L., Tsakraklides, S. P., & Fiore, S. M. (2018). The science of team science: A review of the empirical evidence and research gaps on collaboration in science. American Psychologist, 73(4), 532–548. https://doi.org/10.1037/amp0000319

Hamilton, S. H., ElSawah, S., Guillaume, J. H. A., Jakeman, A. J., & Pierce, S. A. (2015). Integrated assessment and modelling: Overview and synthesis of salient dimensions. Environmental Modelling & Software, 64, 215–229. https://doi.org/10.1016/j.envsoft.2014.12.005

Jakeman, A. J., Letcher, R. A., & Norton, J. P. (2006). Ten iterative steps in development and evaluation of environmental models. Environmental Modelling & Software, 21(5), 602–614. https://doi.org/10.1016/j.envsoft.2006.01.004

Johnson, K. A., Dana, G., Jordan, N. R., Draeger, K. J., Kapuscinski, A., Schmitt Olabisi, L. K., & Reich, P. B. (2012). Using Participatory Scenarios to Stimulate Social Learning for Collaborative Sustainable Development. Ecology and Society, 17(2). https://doi.org/10.5751/ES-04780-170209

Killion, A. K., Sterle, K., Bondank, E. N., Drabik, J. R., Bera, A., Alian, S., Goodrich, K. A., Hale, M., Myer, R. A., Phung, Q., Shew, A. M., & Thayer, A. W. (2018). Preparing the next generation of sustainability scientists. Ecology and Society, 23(4), 39–51. https://doi.org/10.5751/ ES-10395-230439

Klein, J. T. (2020). Sustainability and Collaboration: Crossdisciplinary and Cross-Sector Horizons. Sustainability, 12(4), 1515. https://doi.org/10.3390/su12041515

Knight, S., & Thompson, K. (2018). Developing a text-integration task for investigating and teaching interdisciplinarity in science teams. In J. Kay & R. Luckin (Eds.), Rethinking Learning in the Digital Age: Making the Learning Sciences Count (Vol. 3). International Society of the Learning Sciences.

Knight, S., & Thompson, K. (2020). Developing a Text-Integration Task for Investigating and Teaching Interdisciplinarity in Science Teams. Research in Science Education. https://doi.org/10.1007/s11165-020-09937-7

Koch, J., Friedman, J. R., Paladino, S., Plassin, S., & Spencer, K. (2019). Conceptual modeling for improved understanding of the Rio Grande/Río Bravo socio-environmental system. Socio-Environmental Systems Modelling, 1, 16127. https://doi.org/10.18174/sesmo.2019a16127

Kolb, A. Y. K. (2005). Learning styles and learning spaces: Enhancing experiential learning in higher education. Academy Of Management Learning & Education, 4(2), 193–212.

Kolb, D. A. (1984). Experiential Learning: Experience as the Source of Learning and Development. Prentice-Hall.

Larkin, J. H., & Simon, H. A. (1987). Why a Diagram is (Sometimes) Worth Ten Thousand Words. Cognitive Science, 11(1), 65–100. https://doi.org/10.1111/j.1551-6708.1987.tb00863.

Lee, C. (2007). Boundary negotiating artifacts: Unbinding the routine of boundary objects and embracing chaos in collaborative work. Computer Supported Cooperative Work, 16, 307–339.

Marks, M. A., Mathieu, J. E., & Zaccaro, S. J. (2001). A temporally based framework and taxonomy of team processes. Academic Management Review 26: 356-376.

Mathieu, J. E., Gallagher, P. T., Domingo, M. A., and Klock, E. A. (2019). Embracing complexity: Reviewing the past decade of team effectiveness research. Annual Review of Organizational Psychology and Organizational Behavior, 6McGrath, J. E. (1964). Social Psychology: A Brief Introduction. New York: Holt, Rinehart and Winston.

Mezirow, J. (1981). A Critical-Theory Of Adult Learning And Education. Adult Education, 32(1), 3–24. URL

Mezirow, J. (1997). Transformative learning: Theory to practice. New Directions for Adult and Continuing Education, 1997(74), 5–12. http://onlinelibrary.wiley.com/doi/10.1002/ace.7401/full

Mezirow, J. (2018). An Overview on Transformative Learning (reprint from 2006). In K. Illeris (Ed.), Contemporary Theories of Learning: Learning theorists … in their own words (2nd Edition, p. 244). Routledge.

Misra, S., Stokols, D., & Cheng, L. (2015). The Transdisciplinary Orientation Scale: Factor Structure and Relation to the Integrative Quality and Scope of Scientific Publications. Journal of Collaborative Healthcare and Translational Medicine, 3(2), 1042.

National Academy of Sciences. (2004). Facilitating Interdisciplinary Research (p. 332). National Academies Press. http://www.nap.edu/catalog.php?record_id=11153

National Research Council. (2015). Enhancing the Effectiveness of Team Science: Committee on the Science of Team Science (N. J. Cooke & M. L. Hilton, Eds.). The National Academies Press.

Nersessian, N. J. (1999). Model-Based Reasoning in Conceptual Change. In L. Magnani, N. J. Nersessian, & P. Thagard (Eds.), Model-Based Reasoning in Scientific Discovery (pp. 5–22). Springer US. http://link.springer.com/chapter/10.1007/978-1-4615-4813-3_1

Nersessian, N. J. (2006). Model-based reasoning in distributed cognitive systems. PHILOSOPHY OF SCIENCE, 73(5), 699–709. https://doi.org/10.1086/518771

Norström, A. V., Cvitanovic, C., Löf, M. F., West, S., Wyborn, C., Balvanera, P., Bednarek, A. T., Bennett, E. M., Biggs, R., Bremond, A. de, Campbell, B. M., Canadell, J. G., Carpenter, S. R., Folke, C., Fulton, E. A., Gaffney, O., Gelcich, S., Jouffray, J.-B., Leach, M., … Österblom, H. (2020). Principles for knowledge co-production in sustainability research. Nature Sustainability, 1–9. https://doi.org/10.1038/s41893-019-0448-2

O’Rourke, M., Crowley, S., Eigenbrode, S. D., & Wulfhorst, J. (2013). Enhancing communication & collaboration in interdisciplinary research. Sage Publications.

O’Rourke, M., Crowley, S., & Gonnerman, C. (2016). On the nature of cross-disciplinary integration: A philosophical framework. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 56, 62–70.

Ostrom, E. (2007). A diagnostic approach for going beyond panaceas. Proceedings of the National Academy of Sciences, 104(39), 15181–15187. https://doi.org/10.1073/pnas.0702288104

Pennington, D. D. (2008). Cross-disciplinary collaboration and learning. Ecology and Society, 13(2), 8. https://www.ecologyandsociety.org/vol13/iss2/art8/

Pennington, D. D. (2016). A conceptual model for knowledge integration in interdisciplinary teams: Orchestrating individual learning and group processes. Journal of Environmental Studies and Sciences, 6(2), 300–312. https://rdcu.be/6Cip. https://doi.org/10.1007/s13412-015-0354-5

Pennington, D. D., Bammer, G., Danielson, A., Gosselin, D., Gouvea, J., Habron, G., Hawthorne, D., Parnell, R., Thompson, K., Vincent, S., & Wei, C. (2016). The EMBeRS project: Employing model-based reasoning in socio-environmental synthesis. Journal of Environmental Studies and Sciences, 6(2), 278–286. https://rdcu.be/6CwZ. https://doi.org/10.1007/s13412-015-0335-8

Pennington, D. D., Bondank, E., Clifton, J., Killion, A., Salas, K., Shew, A., Sterle, K., & Wilson, B. (2018). EMBeRS: An approach for igniting participatory learning and synthesis. In M. Arabi, O. David, J. Carlson, & D. P. Ames (Eds.), Proceedings of the 9th International Congress on Environmental Modelling and Software. International Association of Environmental Modelling and Software. https://scholarsarchive.byu.edu/iemssconference/2018/Stream-C/68/

Pennington, D. D., Simpson, G., McConnell, M., Fair, J., & Baker, R. (2013). Transdisciplinary science, transformative learning, and transformative science. BioScience, 63(7), 564–573.

Pennington, D., Ebert-Uphoff, I., Freed, N., Martin, J., & Pierce, S. (2020). Bridging sustainability science, earth science, and data science through interdisciplinary education. Sustainability Science. https://doi.org/doi:10.1007/s11625-019-00735-3

Pennington, Deana. (2012, April 18). A Model for Knowledge Synthesis Across Disciplines [Conference Presentation]. 3rd Annual Conference for the Science of Team Science, Northwestern University, Chicago, IL. https://www.inscits.org/2012-scits-conference

Roy, E. D., Morzillo, A. T., Seijo, F., Reddy, S. M. W., Rhemtulla, J. M., Milder, J. C., Kuemmerle, T., & Martin, and S. L. (2013). The Elusive Pursuit of Interdisciplinarity at the Human–Environment Interface. BioScience, 63(9), 745–753. https://doi.org/10.1525/bio.2013.63.9.10

Schneider, B., Dowell, N., & Thompson, K. (2021). Collaboration Analytics—Current State and Potential Futures. Journal of Learning Analytics, 8(1), 1–12.

Schneider, F., & Rist, S. (2014). Envisioning sustainable water futures in a transdisciplinary learning process: Combining normative, explorative, and participatory scenario approaches. Sustainability Science, 9(4), 463–481. https://doi.org/10.1007/s11625-013-0232-6

Scholz, G., Dewulf, A., & Pahl-Wostl, C. (2014). An Analytical Framework of Social Learning Facilitated by Participatory Methods. Systemic Practice and Action Research, 27(6), 575–591. https://doi.org/10.1007/s11213-013-9310-z

Star, S., & Griesemer, L. (1989). Institutional ecology, translations and boundary objects—Amateurs and professionals in Berkeleys Museum of Vertebrate Zoology, 1907-39. Social Studies of Science, 19(3), 387–420. URL

Stokols, D., Misra, S., Moser, R. P., Hall, K. L., & Taylor, B. K. (2008). The ecology of team science: Understanding contextual influences on transdisciplinary collaboration. American Journal of Preventative Medicine, 35(2S), S96–S115. URL

Thompson, K., Gouvea, J., & Habron, G. (2016). A design approach to understanding the activity of learners undertaking a model based reasoning course: Environment and diversity. International Conference of the Learning Sciences, Singapore.

Thompson, Kate, Alhada, S., Buckingham Shum, S., Howard, S. K., Knight, S., Martinez-Maldonado, R., & Pardo, A. (2018). Connecting expert knowledge in the design of classroom learning experiences. In J. Lodge, J. Cooney Horvath, & L. Corrin (Eds.), Learning analytics in the classroom: Translating research for teachers. Routledge.

Thompson, Kate, Danielson, A., Gosselin, D., Knight, S., Martinez-Maldonado, R., Parnell, R., & Pennington, D. (2017). Designing the EMBeRS Summer School: Connecting Stakeholders in Learning, Teaching and Research. Proceedings of the 25th International Conference on Computers in Education, 6.

Thompson, Kate, Wheeler, P., & Vasco, D. (2020). Identifying connectedness in individual and group artefacts during a graduate Summer School in interdisciplinary research. Interdisciplinary learning in undergraduate and graduate education: Conceptualisations and empirical accounts symposium, International Conference of the Learning Sciences, Nashville, TN.

Villamor, G. B., Griffith, D. L., Kliskey, A., & Alessa, L. (2020). Contrasting stakeholder and scientist conceptual models of food-energy-water systems: A case study in Magic Valley, Southern Idaho. Socio-Environmental Systems Modelling, 2, 16312–16312. https://doi.org/10.18174/sesmo.2020a16312

Voinov, A., & Bousquet, F. (2010). Modelling with stakeholders. Environmental Modelling & Software, 25(11), 1268–1281. https://doi.org/16/j.envsoft.2010.03.007

Voinov, A., Kolagani, N., McCall, M. K., Glynn, P. D., Kragt, M. E., Ostermann, F. O., Pierce, S. A., & Ramu, P. (2016). Modelling with stakeholders – Next generation. Environmental Modelling & Software, 77, 196–220. https://doi.org/10.1016/j.envsoft.2015.11.016

Yokohata, T., Tanaka, K., Nishina, K., Takahashi, K., Emori, S., Kiguchi, M., Iseri, Y., Honda, Y., Okada, M., Masaki, Y., Yamamoto, A., Shigemitsu, M., Yoshimori, M., Sueyoshi, T., Iwase, K., Hanasaki, N., Ito, A., Sakurai, G., Iizumi, T., … Oki, T. (2019). Visualizing the interconnections among climate risks. Earth’s Future, 7(2): 85-100. https://doi.org/10.1029/2018EF000945

Xue, L., Bot, G. L., Petegem, W. V., & Wieringen, A. van. (2018). Defining interdisciplinary competencies for audiological rehabilitation: Findings from a modified Delphi study. International Journal of Audiology, 57(2), 81–90. https://doi.org/10.1080/14992027.2017.1406156

Xue, L., Rienties, B., Petegem, W. V., & Wieringen, A. van. (2020). Learning relations of knowledge transfer (KT) and knowledge integration (KI) of doctoral students during online interdisciplinary training: An exploratory study. Higher Education Research & Development, 0(0), 1–18. https://doi.org/10.1080/07294360.2020.1712679

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2021 Deana Pennington, Shirley Vincent, Dave Gosselin, Kate Thompson