Tracing resilience, social dynamics and behavioral change: a review of agent-based flood risk models
Article Full Text (PDF)

Keywords

Agent-based modeling
climate change
adaptation
urban
behavior
floods
resilience

How to Cite

Taberna, A., Filatova, T., Roy, D., & Noll, B. (2020). Tracing resilience, social dynamics and behavioral change: a review of agent-based flood risk models. Socio-Environmental Systems Modelling, 2, 17938. https://doi.org/10.18174/sesmo.2020a17938

Abstract

Climate change and rapid urbanization exacerbate flood risks worldwide. The recognition of the crucial role that human actors play in altering risks and resilience of flood-prone cities triggers a paradigm shift in climate risks assessments and drives the proliferation of computational models that include societal dynamics. Yet, replacing a representative rational actor dominant in climate policy models with a variety of behaviorally-rich agents that interact, learn, and adapt is not straightforward. Focusing on the costliest climate-exacerbated hazard, flooding, we review computational agent-based models that include behavioral change and societal dynamics. We distinguish between two streams of literature: one stemming from economics & behavioral sciences and another from hydrology. Our findings show that most studies focus on households while representing decisions of other agents (government, insurance, urban developers) simplistically and entirely overlooking firms' choices in the face of risks. The two communities vary in the extent they ground agents' rules in social theories and behavioral data when modeling boundedly-rational decisions. While both aspire to trace feedbacks that agents collectively instigate, they employ different learning and interactions when computing societal dynamics in the face of climate risks. Dynamics of hazard, exposure, and vulnerability components of flood risks driven by incremental adaptation of agents are well represented. We highlight that applying a complex adaptive system perspective to trace the evolution of resilience can lead to a better understanding of transformational adaptation. The methodological advances in computational models with heterogeneous behaviorally-rich adaptive agents are relevant for adaptation to different climate-driven hazards beyond flooding.

https://doi.org/10.18174/sesmo.2020a17938
Article Full Text (PDF)

References

Abebe, Y. A., Ghorbani, A., Nikolic, I., Vojinovic, Z., & Sanchez, A. (2019a). A coupled flood-agent-institution modelling (CLAIM) framework for urban flood risk management. Environmental Modelling and Software, 111, 483–492. https://doi.org/10.1016/j.envsoft.2018.10.015

Abebe, Y. A., Ghorbani, A., Nikolic, I., Vojinovic, Z., & Sanchez, A. (2019b). Flood risk management in Sint Maarten – A coupled agent-based and flood modelling method. Journal of Environmental Management, 248, 109317. https://doi.org/10.1016/j.jenvman.2019.109317

Adger, W. N., Arnell, N. W., & Tompkins, E. L. (2005). Successful adaptation to climate change across scales. Global Environmental Change, 15(2), 77–86. https://doi.org/10.1016/j.gloenvcha.2004.12.005

Aerts, J. C. J. H., Botzen, W. J. W., Clarke, K. C., Cutter, S. L., Hall, J. W., Merz, B., Michel-Kerjan, E., Mysiak, J., Surminski, S., & Kunreuther, H. (2018). Integrating human behaviour dynamics into flood disaster risk assessment. Nature Climate Change, 8(3), 193–199. https://doi.org/10.1038/s41558-018-0085-1

Bagstad, K. J., Stapleton, K., & D’Agostino, J. R. (2007). Taxes, subsidies, and insurance as drivers of United States coastal development. Ecological Economics, 63(2–3), 285–298. https://doi.org/10.1016/j.ecolecon.2006.09.019

Bamberg, S., Masson, T., Brewitt, K., & Nemetschek, N. (2017). Threat, coping and flood prevention – A meta-analysis. Journal of Environmental Psychology, 54, 116–126. https://doi.org/10.1016/j.jenvp.2017.08.001

Bayer, J., Atreya, A., Campbell, K., Botzen, W., & Collier, B. (2014). Operationalizing Resilience against Natural Disaster Risk: Opportunities, Barriers, and a Way Forward. http://repo.floodalliance.net/jspui/handle/44111/2709

Bell, A. R., Robinson, D. T., Malik, A., & Dewal, S. (2015). Modular ABM development for improved dissemination and training. Environmental Modelling and Software, 73, 189–200. https://doi.org/10.1016/j.envsoft.2015.07.016

Bordalo, P., Gennaioli, N., & Shleifer, A. (2012). Salience Theory of Choice Under Risk. The Quarterly Journal of Economics, 127(3), 1243–1285. https://doi.org/10.1093/qje/qjs018

Campbell, K. A., Laurien, F., Czajkowski, J., Keating, A., Hochrainer-Stigler, S., & Montgomery, M. (2019). First insights from the Flood Resilience Measurement Tool: A large-scale community flood resilience analysis. International Journal of Disaster Risk Reduction, 40, 101257. https://doi.org/10.1016/j.ijdrr.2019.101257

Chandra-Putra, H., & Andrews, C. (2019). An integrated model of real estate market responses to coastal flooding. Journal of Industrial Ecology, 24(2), 424-435. https://doi.org/10.1111/jiec.12957

Chandra-Putra, H., Zhang, H., & Andrews, C. (2015). Modeling real estate market responses to climate change in the coastal zone. Journal of Artificial Societies and Social Simulation, 18(2), 18. https://doi.org/10.18564/jasss.2577

Coates, G., Li, C., Ahilan, S., Wright, N. G., & Alharbi, M. (2019). Agent-based modeling and simulation to assess flood preparedness and recovery of manufacturing small and medium-sized enterprises. Engineering Applications of Artificial Intelligence, 78, 195–217. https://doi.org/10.1016/j.engappai.2018.11.010

Coates, G., Li, C., Wright, N. G., & Ahilan, S. (2016). Investigating the flood responsiveness of small and medium enterprises using agent-based modelling and simulation. International Journal of Safety and Security Engineering, 6(3), 627–635. https://doi.org/10.2495/SAFE-V6-N3-627-635

Crick, F., Jenkins, K., & Surminski, S. (2018). Strengthening insurance partnerships in the face of climate change – Insights from an agent-based model of flood insurance in the UK. Science of the Total Environment, 636, 192–204. https://doi.org/10.1016/j.scitotenv.2018.04.239

Cutter, S. L., Boruff, B. J., & Shirley, W. L. (2003). Social vulnerability to environmental hazards. Social Science Quarterly, 84(2), 242–261. https://doi.org/10.1111/1540-6237.8402002

Cutter, S. L., & Derakhshan, S. (2019). Implementing Disaster Policy: Exploring Scale and Measurement Schemes for Disaster Resilience, Journal of Homeland Security and Emergency Management, 16(3), 20180029. https://doi.org/10.1515/jhsem-2018-0029

Dawson, R. J., Peppe, R., & Wang, M. (2011). An agent-based model for risk-based flood incident management. Natural Hazards, 59(1), 167–189. https://doi.org/10.1007/s11069-011-9745-4

De Koning, K., & Filatova, T. (2020). Environmental Research Letters LETTER • OPEN ACCESS Repetitive floods intensify outmigration and climate gentrification in coastal cities. https://doi.org/10.1088/1748-9326/ab6668

de Koning, K., Filatova, T., & Bin, O. (2017). Bridging the Gap Between Revealed and Stated Preferences in Flood-prone Housing Markets. Ecological Economics, 136, 1–13. https://doi.org/10.1016/j.ecolecon.2017.01.022

de Koning, K., Filatova, T., & Bin, O. (2019). Capitalization of Flood Insurance and Risk Perceptions in Housing Prices: An Empirical Agent-Based Model Approach. Southern Economic Journal, 85(4), 1159–1179. https://doi.org/10.1002/soej.12328

Di Baldassarre, G., Viglione, A., Carr, G., Kuil, L., Salinas, J. L., & Blöschl, G. (2013). Socio-hydrology: conceptualising human-flood interactions. Hydrology and Earth System Sciences, 17(8), 3295–3303. https://doi.org/10.5194/hess-17-3295-2013

Di Baldassarre, G., Viglione, A., Carr, G., Kuil, L., Yan, K., Brandimarte, L., & Blöschl, G. (2015). Debates - Perspectives on socio-hydrology: Capturing feedbacks between physical and social processes. Water Resources Research, 51(6), 4770–4781. https://doi.org/10.1002/2014WR016416

Dubbelboer, J., Nikolic, I., Jenkins, K., & Hall, J. W. (2017). An agent-based model of flood risk and insurance. Journal of Artificial Societies and Social Simulation, 20(1), 6. https://doi.org/10.18564/jasss.3135

Eid, M. S., & El-Adaway, I. H. (2017). Integrating the Social Vulnerability of Host Communities and the Objective Functions of Associated Stakeholders during Disaster Recovery Processes Using Agent-Based Modeling. Journal of Computing in Civil Engineering, 31(5), 1–15. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000680

Eid, M. S., & El-Adaway, I. H. (2018). Decision-Making Framework for Holistic Sustainable Disaster Recovery : Agent-Based Approach for Decreasing Vulnerabilities of the Associated Communities. Journal of Infrastructure Systems, 24(3), 1–24. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000427

Eid, M. S., El-Adaway, I. H., & Asce, M. (2017). Sustainable disaster recovery: Multiagent-based model for integrating environmental vulnerability into decision-making processes of the associated stakeholders. Journal of Urban Planning and Development, 143(1). https://doi.org/10.1061/(ASCE)UP.1943-5444.0000349

Elsawah, S., Filatova, T., Jakeman, A. J., Kettner, A. J., Zellner, M. L., Athanasiadis, I. N., Hamilton, S. H., Axtell, R. L., Brown, D. G., Gilligan, J. M., Janssen, M. A., Robinson, D. T., Rozenberg, J., Ullah, I. I. T., & Lade, S. J. (2020). Eight grand challenges in socio-environmental systems modeling. Socio-Environmental Systems Modelling, 2, 16226. https://doi.org/10.18174/sesmo.2020a16226

Erdlenbruch, K., & Bonté, B. (2018). Simulating the dynamics of individual adaptation to floods. Environmental Science and Policy, 84, 134–148. https://doi.org/10.1016/j.envsci.2018.03.005

Fankhauser, S., Smith, J. B., & Tol, R. S. J. (1999). Weathering climate change: Some simple rules to guide adaptation decisions. Ecological Economics, 30(1), 67–78. https://doi.org/10.1016/S0921-8009(98)00117-7

Field, C., Barros, V., Dokken, D., & Mach, K. (2017). Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth. http://wedocs.unep.org/xmlui/handle/20.500.11822/15524

Filatova, T. (2015). Empirical agent-based land market: Integrating adaptive economic behavior in urban land-use models. Computers, Environment and Urban Systems, 54, 397–413. https://doi.org/10.1016/j.compenvurbsys.2014.06.007

Filatova, T., Parker, D. J., & Van Der Veen, A. (2011). The implications of skewed risk perception for a dutch coastal land market: Insights from an agent-based computational economics model. Agricultural and Resource Economics Review, 40(3), 405–423. https://doi.org/10.1017/S1068280500002860

Filatova, T., Van Der Veen, A., Parker, D. J., & Veen, A. Van Der. (2009). Land Market Interactions between Heterogeneous Agents in a Heterogeneous Landscape — Tracing the Macro-Scale Effects of Individual Trade-Offs between Environmental Amenities and Disamenities. Canadian Journal of Agricultural Economics, 57(4), 431–457. https://doi.org/10.1111/j.1744-7976.2009.01164.x

Filatova, T., Verburg, P. H., Parker, D. J., & Stannard, C. A. (2013). Spatial agent-based models for socio-ecological systems: Challenges and prospects. Environmental Modelling and Software, 45, 1–7. https://doi.org/10.1016/j.envsoft.2013.03.017

Folke, C. (2006). Resilience: The emergence of a perspective for social-ecological systems analyses. Global Environmental Change, 16(3), 253–267. https://doi.org/10.1016/j.gloenvcha.2006.04.002

Grimm, V., & Berger, U. (2016). Structural realism, emergence, and predictions in next-generation ecological modelling: Synthesis from a special issue. Ecological Modelling, 326, 177–187. https://doi.org/10.1016/j.ecolmodel.2016.01.001

Grimm, V., Berger, U., DeAngelis, D. L., Polhill, J. G., Giske, J., & Railsback, S. F. (2010). The ODD protocol: A review and first update. Ecological Modelling, 221(23), 2760–2768. https://doi.org/10.1016/j.ecolmodel.2010.08.019

Grimm, V., Railsback, S. F., Vincenot, C. E., Berger, U., Gallagher, C., Deangelis, D. L., Edmonds, B., Ge, J., Giske, J., Groeneveld, J., Johnston, A. S. A., Milles, A., Nabe-Nielsen, J., Polhill, J. G., Radchuk, V., Rohwäder, M. S., Stillman, R. A., Thiele, J. C., & Ayllón, D. (2020). The ODD protocol for describing agent-based and other simulation models: A second update to improve clarity, replication, and structural realism. Journal of Artificial Societies and Social Simulation, 23(2), 7. https://doi.org/10.18564/jasss.4259

Groeneveld, J., Müller, B., Buchmann, C. M., Dressler, G., Guo, C., Hase, N., Hoffmann, F., John, F., Klassert, C., Lauf, T., Liebelt, V., Nolzen, H., Pannicke, N., Schulze, J., Weise, H., & Schwarz, N. (2017). Theoretical foundations of human decision-making in agent-based land use models – A review. Environmental Modelling and Software, 87, 39–48. https://doi.org/10.1016/j.envsoft.2016.10.008

Haasnoot, M., Kwakkel, J. H., Walker, W. E., & ter Maat, J. (2013). Dynamic adaptive policy pathways: A method for crafting robust decisions for a deeply uncertain world. Global Environmental Change, 23(2), 485–498. https://doi.org/10.1016/j.gloenvcha.2012.12.006

Haer, T., Botzen, W. J. W., & Aerts, J. C. J. H. (2016). The effectiveness of flood risk communication strategies and the influence of social networks-Insights from an agent-based model. Environmental Science and Policy, 60, 44–52. https://doi.org/10.1016/j.envsci.2016.03.006

Haer, T., Botzen, W. J. W., & Aerts, J. C. J. H. (2019). Advancing disaster policies by integrating dynamic adaptive behaviour in risk assessments using an agent-based modelling approach. Environmental Research Letters, 14(4), 044022. https://doi.org/10.1088/1748-9326/ab0770

Haer, T., Botzen, W. J. W., de Moel, H., & Aerts, J. C. J. H. (2017). Integrating Household Risk Mitigation Behavior in Flood Risk Analysis: An Agent-Based Model Approach. Risk Analysis, 37(10), 1977–1992. https://doi.org/10.1111/risa.12740

Haer, T., Botzen, W. J. W., Van Roomen, V., Connor, H., Zavala-Hidalgo, J., Eilander, D. M., & Ward, P. J. (2018). Coastal and river flood risk analyses for guiding economically optimal flood adaptation policies: A country-scale study for Mexico. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2121), 20170329. https://doi.org/10.1098/rsta.2017.0329

Haer, T., Husby, T. G., Botzen, W. J. W., & Aerts, J. C. J. H. (2020). The safe development paradox: An agent-based model for flood risk under climate change in the European Union. Global Environmental Change, 60, 102009. https://doi.org/10.1016/j.gloenvcha.2019.102009

Han, Y., & Peng, Z. ren. (2019). The integration of local government, residents, and insurance in coastal adaptation: An agent-based modeling approach. Computers, Environment and Urban Systems, 76, 69–79. https://doi.org/10.1016/j.compenvurbsys.2019.04.001

Hassani-Mahmooei, B., & Parris, B. W. (2012). Climate change and internal migration patterns in Bangladesh: An agent-based model. Environment and Development Economics, 17(6), 763–780. https://doi.org/10.1017/S1355770X12000290

Jenkins, K., Surminski, S., Hall, J. W., & Crick, F. (2017). Assessing surface water flood risk and management strategies under future climate change: Insights from an Agent-Based Model. Science of the Total Environment, 595, 159–168. https://doi.org/10.1016/j.scitotenv.2017.03.242

Jha, A., Lamond, J., Bloch, R., Bhattacharya, N., Lopez, A., Papachristodoulou, N., Bird, A., Proverbs, D., Davies, J., & Barker, R. (2011). Five Feet High and Rising Cities and Flooding in the 21 st Century. The World Bank. https://doi.org/10.1596/1813-9450-5648

Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47, 278. https://doi.org/10.2307/1914185

Koerth, J., Vafeidis, A. T., & Hinkel, J. (2017). Household-Level Coastal Adaptation and Its Drivers: A Systematic Case Study Review. Risk Analysis, 37(4), 629–646. https://doi.org/10.1111/risa.12663

Kremmydas, D., Athanasiadis, I. N., & Rozakis, S. (2018). A review of Agent Based Modeling for agricultural policy evaluation. Agricultural systems, 164, 95-106. https://doi.org/10.1016/j.agsy.2018.03.010

Latombe, G., Parrott, L., & Fortin, D. (2011). Levels of emergence in individual based models: Coping with scarcity of data and pattern redundancy. Ecological Modelling, 222(9), 1557–1568. https://doi.org/10.1016/j.ecolmodel.2011.02.020

Linkov, I., Eisenberg, D. A., Bates, M. E., Chang, D., Convertino, M., Allen, J. H., Flynn, S. E., & Seager, T. P. (2013). Measurable resilience for actionable policy. Environmental Science and Technology, 47(18), 10108–10110. https://doi.org/10.1021/es403443n

Löwe, R., Urich, C., Sto. Domingo, N., Mark, O., Deletic, A., & Arnbjerg-Nielsen, K. (2017). Assessment of urban pluvial flood risk and efficiency of adaptation options through simulations – A new generation of urban planning tools. Journal of Hydrology, 550, 355–367. https://doi.org/10.1016/j.jhydrol.2017.05.009

Magliocca, N., & Walls, M. (2018). The role of subjective risk perceptions in shaping coastal development dynamics. Computers, Environment and Urban Systems, 71, 1–13. https://doi.org/10.1016/j.compenvurbsys.2018.03.009

Martin-Breen, P., and J. M. Anderies. 2011. Resilience: A Literature Review. Brighton: Bellagio Initiative. http://opendocs.ids.ac.uk/opendocs/handle/123456789/3692

McClymont, K., Morrison, D., Beevers, L., & Carmen, E. (2019). Flood resilience: a systematic review. In Journal of Environmental Planning and Management, 63(7), 1151-1176. Routledge. https://doi.org/10.1080/09640568.2019.1641474

McNamara, D. E., & Keeler, A. (2013). A coupled physical and economic model of the response of coastal real estate to climate risk. Nature Climate Change, 3(6), 559–562. https://doi.org/10.1038/nclimate1826

McNamara, D. E., & Werner, B. T. (2008). Coupled barrier island-resort model: 1. Emergent instabilities induced by strong human-landscape interactions. Journal of Geophysical Research: Earth Surface, 113(1), 1–10. https://doi.org/10.1029/2007JF000840

Mendelsohn, R. (2000). Efficient adaptation to climate change. Climatic Change, 45(3–4), 583–600. https://doi.org/10.1023/A:1005507810350

Michaelis, T., Brandimarte, L., & Mazzoleni, M. (2020). Capturing flood-risk dynamics with a coupled agent-based and hydraulic modelling framework. Hydrological Sciences Journal, 1–16. https://doi.org/10.1080/02626667.2020.1750617

Mochizuki, J., Keating, A., Liu, W., Hochrainer-Stigler, S., & Mechler, R. (2018). An overdue alignment of risk and resilience? A conceptual contribution to community resilience. Disasters, 42(2), 361–391. https://doi.org/10.1111/disa.12239

Mustafa, A., Bruwier, M., Archambeau, P., Erpicum, S., Pirotton, M., Dewals, B., & Teller, J. (2018). Effects of spatial planning on future flood risks in urban environments. Journal of Environmental Management, 225(February), 193–204. https://doi.org/10.1016/j.jenvman.2018.07.090

Noll, B., Filatova, T., & Need, A. (2020). How does private adaptation motivation to climate change vary across cultures? Evidence from a meta-analysis. In International Journal of Disaster Risk Reduction 46, 101615. Elsevier Ltd. https://doi.org/10.1016/j.ijdrr.2020.101615

O’Sullivan, D., Evans, T., Manson, S., Metcalf, S., Ligmann-Zielinska, A., & Bone, C. (2016). Strategic directions for agent-based modeling: avoiding the YAAWN syndrome. Journal of Land Use Science, 11(2), 177–187. https://doi.org/10.1080/1747423X.2015.1030463

Intergovernmental Panel on Climate Change. (2014). Summary for Policymakers. In Climate Change 2013 – The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1-30). Cambridge: Cambridge University Press. doi:10.1017/CBO9781107415324.004Rodríguez, H., Donner, W., & Trainor, J. E. (Eds.). (2018). Handbook of Disaster Research. Springer International Publishing. https://doi.org/10.1007/978-3-319-63254-4

Rogers, R. W. (1975). A Protection Motivation Theory of Fear Appeals and Attitude Change. The Journal of Psychology, 91(1), 93–114. https://doi.org/10.1080/00223980.1975.9915803

Schill, C., Anderies, J. M., Lindahl, T., Folke, C., Polasky, S., Cárdenas, J. C., Crépin, A. S., Janssen, M. A., Norberg, J., & Schlüter, M. (2019). A more dynamic understanding of human behaviour for the Anthropocene. Nature Sustainability, 2(12), 1075–1082. https://doi.org/10.1038/s41893-019-0419-7

Schlüter, M., Baeza, A., Dressler, G., Frank, K., Groeneveld, J., Jager, W., Janssen, M. A., McAllister, R. R. J., Müller, B., Orach, K., Schwarz, N., & Wijermans, N. (2017). A framework for mapping and comparing behavioural theories in models of social-ecological systems. Ecological Economics, 131, 21–35. https://doi.org/10.1016/j.ecolecon.2016.08.008

Sivapalan, M., Savenije, H. H. G., & Blöschl, G. (2012). Socio-hydrology: A new science of people and water. Hydrological Processes, 26(8), 1270–1276. https://doi.org/10.1002/hyp.8426

Smajgl, A., Brown, D. G., Valbuena, D., & Huigen, M. G. A. (2011). Empirical characterisation of agent behaviours in socio-ecological systems. Environmental Modelling and Software, 26(7), 837–844. https://doi.org/10.1016/j.envsoft.2011.02.011

Sobiech, C. (2013). Regional Research Framework. In Agent-Based Simulation of Vulnerability Dynamics (pp. 75-91). Springer, Berlin, Heidelberg.Steg, L., & Vlek, C. (2009). Encouraging pro-environmental behaviour: An integrative review and research agenda. Journal of Environmental Psychology, 29(3), 309–317. https://doi.org/10.1016/j.jenvp.2008.10.004

Stern, N. (2016). Economics: Current climate models are grossly misleading. Nature, 530(7591), 407–409. https://doi.org/10.1038/530407a

Tempels, B., & Hartmann, T. (2014). A co-evolving frontier between land and water: dilemmas of flexibility versus robustness in flood risk management. Water International, 39(6), 872–883. https://doi.org/10.1080/02508060.2014.958797

Tonn, G., & Guikema, S. (2018). An Agent-Based Model of Evolving Community Flood Risk. Risk Analysis, 38(6), 1258–1278. https://doi.org/10.1111/risa.12939

Tonn, G., Guikema, S., & Zaitchik, B. (2019). Simulating Behavioral Influences on Community Flood Risk under Future Climate Scenarios. Risk Analysis, 40(4), 884-898. https://doi.org/10.1111/risa.13428

Walls, M., Magliocca, N., & McConnell, V. (2018). Modeling coastal land and housing markets: Understanding the competing influences of amenities and storm risks. Ocean and Coastal Management, 157, 95–110. https://doi.org/10.1016/j.ocecoaman.2018.01.021

Walsh, B., & Hallegatte, S. (2019). Measuring Natural Risks in the Philippines: Socioeconomic Resilience and Wellbeing Losses. World Bank Policy Research Working Paper, 8723. https://ssrn.com/abstract=3326958.

Werner, B. T., & McNamara, D. E. (2007). Dynamics of coupled human-landscape systems. Geomorphology, 91(3–4), 393–407. https://doi.org/10.1016/j.geomorph.2007.04.020

Wilson, R. S., Herziger, A., Hamilton, M., & Brooks, J. S. (2020). From incremental to transformative adaptation in individual responses to climate-exacerbated hazards. Nature Climate Change, 10(3), 200–208. https://doi.org/10.1038/s41558-020-0691-6

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.