Understanding smallholder farmer decision making in forest land restoration using agent-based modeling
Article Full Text (PDF)

Keywords

forest restoration
land-use change
agent-based model
decision-making
labor

How to Cite

Ahimbisibwe, V., Groeneveld, J., Lippe, M., Tumwebaze, S. B., Auch, E., & Berger, U. (2021). Understanding smallholder farmer decision making in forest land restoration using agent-based modeling. Socio-Environmental Systems Modelling, 3, 18036. https://doi.org/10.18174/sesmo.2021a18036

Abstract

Success of forest restoration at farm level depends on the farmer´s decision-making and the constraints to farmers’ actions. There is a gap between the intentions and the actual behavior towards restoration in Sub-Saharan Africa and the Global South. To understand this discrepancy, our study uses empirical household survey data to design and parameterize an agent-based model. WEEM (Woodlot Establishment and Expansion Model) has been designed based on household socio-demographics and projects the temporal dynamics of woodlot numbers in Uganda. The study contributes to a mechanistic understanding of what determines the current gap between farmer’s intention and actual behavior. Results reveal that an increase in knowledge of the current forest policies laws and regulations (PLRs) from 18% to 50% and to 100% reduces the average number of woodlots by 18% and 79% respectively. Lack of labor reduces the number of woodlots by 80%. Increased labor requirement from 4 to 8 and to 12 man-days, reduces the number of woodlots by 26% and 61% respectively. WEEM indicates that absence of household labor and de facto misconception of PLRs “perceived tenure insecurity” constrains the actual behavior of farmers. We recommend forest PLRs to provide full rights of use and ownership of trees established on private farmland. Tree fund in the case of Uganda should be operationalized to address the transaction costs and  to achieve the long-term targets of forest land restoration.

https://doi.org/10.18174/sesmo.2021a18036
Article Full Text (PDF)

References

Ahimbisibwe, V., Auch, E., Groeneveld, J., Tumwebaze, S. B., & Berger, U. (2019). Drivers of Household Decision-Making on Land-Use Transformation: An Example of Woodlot Establishment in Masindi District, Uganda. Forests, 10(8), 619. https://doi.org/10.3390/f10080619

Ahimbisibwe, V., Groeneveld, J., Lippe, M., Tumwebaze, S. B., Auch, E., & Berger, U. (2021). “WEEM (Woodlot Establishment and Expansion Model)” (Version version 1.0.0) [Computer software]. CoMSES Computational Model Library. https://www.comses.net/codebases/4faf2984-7b50-4641-9585-d0ffd8b25ca2/releases/1.0.0/

Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179–211.

Andersen, L. E., Groom, B., Killick, E., Ledezma, J. C., Palmer, C., & Weinhold, D. (2017). Modelling Land Use, Deforestation, and Policy: A Hybrid Optimisation-Heterogeneous Agent Model with Application to the Bolivian Amazon. Ecological Economics, 135, 76–90. https://doi.org/10.1016/j.ecolecon.2016.12.033

Ashraf, J., Pandey, R., de Jong, W., & Nagar, B. (2015). Factors Influencing Farmers’ Decisions to Plant Trees on Their Farms in Uttar Pradesh, India. Small-Scale Forestry, 14(3), 301–313. https://doi.org/10.1007/s11842-015-9289-7

Balmann, A. (1997). Farm-based modelling of regional structural change: A cellular automata approach. European Review of Agricultural Economics, 24(1), 85–108. https://doi.org/10.1093/erae/24.1.85

Bar Massada, A., & Carmel, Y. (2008). Incorporating output variance in local sensitivity analysis for stochastic models. Ecological Modelling, 213(3-4), 463–467. https://doi.org/10.1016/j.ecolmodel.2008.01.021

Berger, T. (2001). Agent-based spatial models applied to agriculture: a simulation tool for technology diffusion, resource use changes and policy analysis. Agricultural Economics, 25(2-3), 245–260. https://doi.org/10.1111/j.1574-0862.2001.tb00205.x

Broeke, G. ten, van Voorn, G., & Ligtenberg, A. (2016). Which Sensitivity Analysis Method Should I Use for My Agent-Based Model? Journal of Artificial Societies and Social Simulation, 19(1), Article 5. https://doi.org/10.18564/jasss.2857

Cesar, S., & Jessica, C. (2010). Standing tall: Exemplary cases of sustainable forest management in Latin America and the Caribbean. Food and Agriculture Organization of the United Nations (FAO).

Dahlin, A. S., & Rusinamhodzi, L. (2019). Yield and labor relations of sustainable intensification options for smallholder farmers in sub‐Saharan Africa. A meta‐analysis. Agronomy for Sustainable Development, 39(3). https://doi.org/10.1007/s13593-019-0575-1

Demetriou, D., Stillwell, J., & See, L. (2013). A new methodology for measuring land fragmentation. Computers, Environment and Urban Systems, 39, 71–80. https://doi.org/10.1016/j.compenvurbsys.2013.02.001

Ellis, F. (1993). Peasant economics: Farm households and agrarian development / Frank Ellis (2nd ed.). Wye studies in agricultural and rural development. Cambridge University Press.

Elsawah, S., Filatova, T., Jakeman, A. J., Kettner, A. J., Zellner, M. L., Athanasiadis, I. N., Hamilton, S. H., Axtell, R. L., Brown, D. G., Gilligan, J. M., Janssen, M. A., Robinson, D. T., Rozenberg, J., Ullah, I. I. T., & Lade, S. J. (2019). Eight grand challenges in socio-environmental systems modeling. Socio-Environmental Systems Modelling, 2, 16226. https://doi.org/10.18174/sesmo.2020a16226

FAO. (1989). Forestry and food security. FAO forestry paper: Vol. 90. Food and Agriculture Organization of the United Nations.

Farley, K. A. (2010). Pathways to forest transition: Local case studies from the Ecuadorian Andes. Journal of Latin American Geography, 9, 7–26. https://www.jstor.org/stable/25765305

Foster, K., & Neufeldt, H. (2014). Biocarbon projects in agroforestry: lessons from the past for future development. Current Opinion in Environmental Sustainability, 6, 148–154. https://doi.org/10.1016/j.cosust.2013.12.002

French, J. H. (1995). Farm household decision making and extension framework for understanding farm household-level decision making and design of agroforestry extension strategies. APAN Report (FAO/APAN).

Gebreegziabher, Z., Mekonnen, A., Kassie, M., & Köhlin, G. (2010). Household tree planting in Tigrai, Northern Ethiopia: Tree species, purposes, and determinants. 1403-2465.

Gebreegziabher, Z., Mekonnen, A., Kassie, M., & Köhlin, G. (2020). Household Tree Planting in Tigrai, Northern Ethiopia: Tree Species, Purposes, and Tenure Security. Land Use Policy, 96, 104635. https://doi.org/10.1016/j.landusepol.2020.104635

Gilbert, N., & Troitzsch, K. (2005). Simulation for the social scientist. McGraw-Hill Education (UK).

Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., Goss-Custard, J., Grand, T., Heinz, S. K., Huse, G., Huth, A., Jepsen, J. U., Jørgensen, C., Mooij, W. M., Müller, B., Pe’er, G., Piou, C., Railsback, S. F., Robbins, A. M., Robbins, M. M., Rossmanith, E., Rüger, N., Strand, E., Souissi, S., Stillman, R. A., Vabø, R., Visser U., & DeAngelis, D. L. (2006). A standard protocol for describing individual-based and agent-based models. Ecological Modelling, 198(1-2), 115–126. https://doi.org/10.1016/j.ecolmodel.2006.04.023

Grimm, V., Berger, U., DeAngelis, D. L., Polhill, J. G., Giske, J., & Railsback, S. F. (2010). The ODD protocol: A review and first update. Ecological Modelling, 221(23), 2760–2768. https://doi.org/10.1016/j.ecolmodel.2010.08.019

Grimm, V., Revilla, E., Berger, U., Jeltsch, F., Mooij, W. M., Railsback, S. F., Thulke, H.‑H., Weiner, J., Wiegand, T., & DeAngelis, D. L. (2005). Pattern-oriented modeling of agent-based complex systems: Lessons from ecology. Science (New York, N.Y.), 310(5750), 987–991. https://doi.org/10.1126/science.1116681

Groeneveld, J., Enright, N. J., Lamont, B. B., & Wissel, C. (2002). A spatial model of coexistence among three Banksia species along a topographic gradient in fire-prone shrublands. Journal of Ecology, 90(5), 762–774. https://doi.org/10.1046/j.1365-2745.2002.00712.x

Groeneveld, J., Müller, B., Buchmann, C. M., Dressler, G., Guo, C., Hase, N., Hoffmann, F., John, F., Klassert, C., Lauf, T., Liebelt, V., Nolzen, H., Pannicke, N., Schulze, J., Weise, H., & Schwarz, N. (2017). Theoretical foundations of human decision-making in agent-based land use models – A review. Environmental Modelling & Software, 87, 39–48. https://doi.org/10.1016/j.envsoft.2016.10.008

Hoch, L., Pokorny, B., & de Jong, W. (2012). Financial attractiveness of smallholder tree plantations in the Amazon: bridging external expectations and local realities. Agroforestry Systems, 84(3), 361–375. https://doi.org/10.1007/s10457-012-9480-1

Holmgren, P., Masakha, E. J., & Sjöholm, H. (1994). Not all African land is being degraded: a recent survey of trees on farms in Kenya reveals rapidly increasing forest resources. Ambio, 23(7), 390–395.

Kimambo, N. E., L'Roe, J., Naughton-Treves, L., & Radeloff, V. C. (2020). The role of smallholder woodlots in global restoration pledges – Lessons from Tanzania. Forest Policy and Economics, 115, 102144. https://doi.org/10.1016/j.forpol.2020.102144

Kiyingi, I., Edriss, A., Phiri, M., Buyinza, M., & Agaba, H. (2016). The Impact of Farm Forestry on Poverty alleviation and Food Security in Uganda. Journal of Sustainable Development, 9(1), 150. https://doi.org/10.5539/jsd.v9n1p150

Koontz, T. M., Gupta, D., Mudliar, P., & Ranjan, P. (2015). Adaptive institutions in social-ecological systems governance: A synthesis framework. Environmental Science & Policy, 53, 139–151. https://doi.org/10.1016/j.envsci.2015.01.003

Kremmydas, D., Athanasiadis, I. N., & Rozakis, S. (2018). A review of Agent Based Modeling for agricultural policy evaluation. Agricultural Systems, 164, 95–106. https://doi.org/10.1016/j.agsy.2018.03.010

Kull, C. A. (1998). Leimavo Revisited: Agrarian Land-Use Change in the Highlands of Madagascar. The Professional Geographer, 50(2), 163–176. https://doi.org/10.1111/0033-0124.00112

Lambin, E. F., & Meyfroidt, P. (2010). Land use transitions: Socio-ecological feedback versus socio-economic change. Land Use Policy, 27(2), 108–118.

Lempert, R. (2002). Agent-based modeling as organizational and public policy simulators. Proceedings of the National Academy of Sciences of the United States of America, 99 Suppl 3, 7195–7196. https://doi.org/10.1073/pnas.072079399

Lienhoop, N., & Brouwer, R. (2015). Agri-environmental policy valuation: Farmers’ contract design preferences for afforestation schemes. Land Use Policy, 42, 568–577. https://doi.org/10.1016/j.landusepol.2014.09.017

Lippe, M., Bithell, M., Gotts, N., Natalini, D., Barbrook-Johnson, P., Giupponi, C., Hallier, M., Hofstede, G. J., Le Page, C., Matthews, R. B., Schlüter, M., Smith, P., Teglio, A., & Thellmann, K. (2019). Using agent-based modelling to simulate social-ecological systems across scales. GeoInformatica, 7(2), 161. https://doi.org/10.1007/s10707-018-00337-8

Lupo, C. V. (2015). Adoption of innovation in small-scale forestry: The case of portable-sawmill-based microenterprises. Journal of Social Change, 7(1), 2.

Mather, A. S. (1992). The forest transition. Area, 367–379.

Matthews, R. B., Gilbert, N. G., Roach, A., Polhill, J. G., & Gotts, N. M. (2007). Agent-based land-use models: a review of applications. Landscape Ecology, 22(10), 1447–1459.

McConnell, D. J., & Dillon, J. L. (1997). Farm management for Asia: A systems approach / Douglas J. McConnell, John L. Dillon. FAO farm systems management series, 1020-2080: Vol. 13. Food and Agriculture Organization of the United Nations.

McLain, R., Lawry, S., Guariguata, M. R., & Reed, J. (2018). Toward a tenure-responsive approach to forest landscape restoration: A proposed tenure diagnostic for assessing restoration opportunities. Land Use Policy, 103748. https://doi.org/10.1016/j.landusepol.2018.11.053

Meyfroidt, P [P.], Roy Chowdhury, R., Bremond, A. de, Ellis, E. C., Erb, K.‑H., Filatova, T [T.], Garrett, R. D., Grove, J. M., Heinimann, A., Kuemmerle, T., Kull, C. A [C. A.], Lambin, E. F [E. F.], Landon, Y., Le Polain de Waroux, Y., Messerli, P., Müller, D., Nielsen, J., Peterson, G. D., Rodriguez García, V., . . . Verburg, P. H. (2018). Middle-range theories of land system change. Global Environmental Change, 53, 52–67. https://doi.org/10.1016/j.gloenvcha.2018.08.006

Müller, B., Bohn, F., Dreßler, G., Groeneveld, J., Klassert, C., Martin, R., Schlüter, M., Schulze, J., Weise, H., & Schwarz, N. (2013). Describing human decisions in agent-based models – ODD + D, an extension of the ODD protocol. Environmental Modelling & Software, 48, 37–48. https://doi.org/10.1016/j.envsoft.2013.06.003

Nawir, A. A., Kassa, H., Sandewall, M., Dore, D., Campbell, B., Ohlsson, B., & Bekele, M. (2007). Stimulating smallholder tree planting-lessons from Africa and Asia. UNASYLVA-FAO-, 58(3), 53.

Newby, J., Cramb, R., & Sakanphet, S. (2014). Forest Transitions and Rural Livelihoods: Multiple Pathways of Smallholder Teak Expansion in Northern Laos. Land, 3(2), 482–503. https://doi.org/10.3390/land3020482

Newby, J. C., Cramb, R. A., Sakanphet, S., & McNamara, S. (2012). Smallholder Teak and Agrarian Change in Northern Laos. Small-Scale Forestry, 11(1), 27–46. https://doi.org/10.1007/s11842-011-9167-x

Nigussie, Z., Tsunekawa, A., Haregeweyn, N., Adgo, E., Nohmi, M., Tsubo, M., Aklog, D., Meshesha, D. T., & Abele, S. (2017). Factors Affecting Small-Scale Farmers’ Land Allocation and Tree Density Decisions in an Acacia decurrens-Based taungya System in Fagita Lekoma District, North-Western Ethiopia. Small-Scale Forestry, 16(2), 219–233. https://doi.org/10.1007/s11842-016-9352-z

Nyberg, Y., Wetterlind, J., Jonsson, M., & Öborn, I. (2020). The role of trees and livestock in ecosystem service provision and farm priorities on smallholder farms in the Rift Valley, Kenya. Agricultural Systems, 181, 102815. https://doi.org/10.1016/j.agsy.2020.102815

Pannell, D. (1997). Sensitivity analysis of normative economic models: theoretical framework and practical strategies. Agricultural Economics, 16(2), 139–152. https://doi.org/10.1016/S0169-5150(96)01217-0

Parker, D. C., Manson, S. M., Janssen, M. A., Hoffmann, M. J., & Deadman, P. (2003). Multi-Agent Systems for the Simulation of Land-Use and Land-Cover Change: A Review. Annals of the Association of American Geographers, 93(2), 314–337. https://doi.org/10.1111/1467-8306.9302004

Rahman, S. A., Sunderland, T., Roshetko, J. M., & Healey, J. R. (2017). Facilitating smallholder tree farming in fragmented tropical landscapes: Challenges and potentials for sustainable land management. Journal of Environmental Management, 198(1), 110–121. https://doi.org/10.1016/j.jenvman.2017.04.047

Rudel, T. K., Bates, D., & Machinguiashi, R. (2002). A Tropical Forest Transition? Agricultural Change, Out-migration, and Secondary Forests in the Ecuadorian Amazon. Annals of the Association of American Geographers, 92(1), 87–102. https://doi.org/10.1111/1467-8306.00281

Rudel, T. K., Meyfroidt, P., Chazdon, R., Bongers, F., Sloan, S., Grau, H. R., van Holt, T., & Schneider, L. (2019). Whither the forest transition? Climate change, policy responses, and redistributed forests in the twenty-first century. Ambio. Advance online publication. https://doi.org/10.1007/s13280-018-01143-0

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., ... & Tarantola, S. (2008). Global sensitivity analysis: the primer. John Wiley & Sons.

Salvini, G., Ligtenberg, A., van Paassen, A., Bregt, A. K., Avitabile, V., & Herold, M. (2016). Redd+ and climate smart agriculture in landscapes: A case study in Vietnam using companion modelling. Journal of Environmental Management, 172, 58–70. https://doi.org/10.1016/j.jenvman.2015.11.060

Schulze, J., Müller, B., Groeneveld, J., & Grimm, V. (2017). Agent-Based Modelling of Social-Ecological Systems: Achievements, Challenges, and a Way Forward. Journal of Artificial Societies and Social Simulation, 20(2). https://doi.org/10.18564/jasss.3423

Squazzoni, F. (2012). Agent-based computational sociology. Wiley & Sons.

Taubert, F., Fischer, R., Groeneveld, J., Lehmann, S., Müller, M. S., Rödig, E., Wiegand, T., & Huth, A. (2018). Global patterns of tropical forest fragmentation. Nature, 554(7693), 519–522. https://doi.org/10.1038/nature25508

Taylor, J. E., & Charlton, D. (2019). Labor in an Agricultural Household. In J. E. Taylor & D. Charlton (Eds.), The farm labor problem: A global perspective (pp. 97–120). Academic Press. https://doi.org/10.1016/B978-0-12-816409-9.00005-7

Tefera, S. A., & Lerra, M. D. (2016). Determinants of Farmers Decision Making for Plant Eucalyptus Trees in Market District, North Willow, Ethiopia, vol.6,, Article No.13.

The Agriculture (Farm Forestry) Rules 193 (2009).

Thiele, J. C., Kurth, W., & Grimm, V. (2014). Facilitating Parameter Estimation and Sensitivity Analysis of Agent-Based Models: A Cookbook Using NetLogo and 'R'. Journal of Artificial Societies and Social Simulation, 17(3), Article 11. https://doi.org/10.18564/jasss.2503

Tiffen, M., Mortimore, M., & Gichuki, F. (1994). More people, less erosion: Environmental recovery in Kenya.

Treue, T. (2001). Politics and economics of tropical high forest management: Case study of Ghana / by Thorsten Treue. Forestry sciences: v. 68. Kluwer Academic Publishers.

Tripathi, B. R., Psychas, P. J., Atta-Krah, K., & Sanginga, N. (1992). The AFNETA alley farming training manual. Alley Farming Network for Tropical Africa.

Twongyirwe, R. (2015). Forests under threat? Changes in land use and forest cover in rural western Uganda [, University of Cambridge]. EndNote Tagged Import Format.

Uganda Bureau of Statistics. (2019). Statistical Abstract 2019.

Veljanoska, S. (2018). Can Land Fragmentation Reduce the Exposure of Rural Households to Weather Variability? Ecological Economics, 154, 42–51. https://doi.org/10.1016/j.ecolecon.2018.06.023

Vicente, V. R., & Pérez, M. F. M. (2008). Assessing the role of the family unit in individual private forestry in northern Spain. Scandinavian Journal of Forest Research, 23(1), 53–77. https://doi.org/10.1080/02827580701672212

Villamor, G. B., van Noordwijk, M., Troitzsch, K. G., & Vlek, P. L. (2012). Human Decision Making In Empirical Agent-Based Models: Pitfalls And Caveats For Land-Use Change Policies. In K. G. Troitzsch, M. Mohring, & U. Lotzmann (Eds.), Proceedings: 26th European Conference on Modelling and Simulation / edited by Klaus G. Troitzsch, Michael Möhring, Ulf Lotzmann (pp. 631–637). European Council for Modelling and Simulation. https://doi.org/10.7148/2012-0631-0637

Wilenski, U. (2016). Netlogo User Manual version 5.3. 1.

Zhang, H., & Vorobeychik, Y. (2019). Empirically grounded agent-based models of innovation diffusion: a critical review. Artificial Intelligence Review, 52(1), 707–741. https://doi.org/10.1007/s10462-017-9577-z

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2021 Vianny Ahimbisibwe, Melvin Lippe, Eckhard Auch, Jürgen Groeneveld, Susan Balaba Tumwebaze, Uta Berger