Containerization for creating reusable model code
Article Full Text (PDF)


computational models
research software
model portability

How to Cite

Containerization for creating reusable model code. (2022). Socio-Environmental Systems Modelling, 3, 18074.


Will you be able to run your computational models in the future? Even with well-documented code, this can be difficult due to changes in the software frameworks and operating systems that your code was built on. In this paper we discuss the use of containers to preserve code and their software dependencies to reproduce simulation results in the future. Containers are standalone lightweight packages of the original model software and their dependencies that can be run independent of the platform. As such they are suitable for reuse and sharing results. However, the use of containers is rare in the field of modeling social-environmental systems. We provide an introduction to the basic principles of containerization, argue why it would be beneficial if this tool became common practice in the field, describe a conceptual walkthrough to the process of containerizing a model, and reflect on near future directions of containerization workflows.

Article Full Text (PDF)


Almugbel, R., Hung, L.-H., Hu, J., Almutairy, A., Ortogero, N., Tamta, Y., & Yeung, K. Y. (2017). Reproducible Bioconductor workflows using browser-based interactive notebooks and containers. Journal of the American Medical Informatics Association, 25(1), 4–12.

Amouroux, E., Gaudou, B., Desvaux, S., & Drogoul, A. (2010). O.D.D.: A Promising but Incomplete Formalism for Individual-Based Model Specification. 2010 IEEE RIVF International Conference on Computing & Communication Technologies, Research, Innovation, and Vision for the Future (RIVF), 1–4.

Ayllón, D., Railsback, S. F., Gallagher, C., Augusiak, J., Baveco, H., Berger, U., Charles, S., Martin, R., Focks, A., Galic, N., Liu, C., van Loon, E. E., Nabe-Nielsen, J., Piou, C., Polhill, J. G., Preuss, T. G., Radchuk, V., Schmolke, A., Stadnicka-Michalak, J., Thorbeck, T., Grimm, V. (2021). Keeping modelling notebooks with TRACE: Good for you and good for environmental research and management support. Environmental Modelling & Software, 136, 104932.

Bell, A. R., Robinson, D. T., Malik, A., & Dewal, S. (2015). Modular ABM development for improved dissemination and training. Environmental Modelling & Software, 73, 189–200.

Boettiger, C. (2015). An introduction to Docker for reproducible research. ACM SIGOPS Operating Systems Review, 49(1), 71–79.

Boettiger, C., & Eddelbuettel, D. (2017). An Introduction to Rocker: Docker Containers for R. The R Journal, 9(2), 527.

Brinckman, A., Chard, K., Gaffney, N., Hategan, M., Jones, M. B., Kowalik, K., Kulasekaran, S., Ludäscher, B., Mecum, B. D., Nabrzyski, J., Stodden, V., Taylor, I. J., Turk, M. J., & Turner, K. (2019). Computing environments for reproducibility: Capturing the “Whole Tale.” Future Generation Computer Systems, 94, 854–867.

Clyburne-Sherin, A., Fei, X., & Green, S. A. (2019). Computational Reproducibility via Containers in Psychology. Meta-Psychology, 3, MP.2018.892.

Di Tommaso, P., Palumbo, E., Chatzou, M., Prieto, P., Heuer, M. L., & Notredame, C. (2015). The impact of Docker containers on the performance of genomic pipelines. PeerJ, 3, e1273.

Felter, W., Ferreira, A., Rajamony, R., & Rubio, J. (2014). An updated performance comparison of virtual machines and linux containers (IBM Research Report). IBM Research Division.

Grimm, V., Railsback, S. F., Vincenot, C. E., Berger, U., Gallagher, C., DeAngelis, D. L., Edmonds, B., Ge, J., Giske, J., Groeneveld, J., Johnston, A. S. A., Milles, A., Nabe-Nielsen, J., Polhill, J. G., Radchuk, V., Rohwäder, M.-S., Stillman, R. A., Thiele, J. C., & Ayllón, D. (2020). The ODD Protocol for Describing Agent-Based and Other Simulation Models: A Second Update to Improve Clarity, Replication, and Structural Realism. Journal of Artificial Societies and Social Simulation, 23(2), 7.

Hacker, J. P., Exby, J., Gill, D., Jimenez, I., Maltzahn, C., See, T., Mullendore, G., & Fossell, K. (2017). A Containerized Mesoscale Model and Analysis Toolkit to Accelerate Classroom Learning, Collaborative Research, and Uncertainty Quantification. Bulletin of the American Meteorological Society, 98(6), 1129–1138.

Hales, D., Rouchier, J., & Edmonds, B. (2003). Model-to-Model Analysis. Journal of Artificial Societies and Social Simulation, 6(4), 5.

Hinsen, K. (2019). Dealing With Software Collapse. Computing in Science & Engineering, 21(3), 104–108.

Jalili, V., Afgan, E., Gu, Q., Clements, D., Blankenberg, D., Goecks, J., Taylor, J., & Nekrutenko, A. (2020). The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2020 update. Nucleic Acids Research, 48(W1), W395–W402.

Janssen, M., & Jager, W. (1999). An integrated approach to simulating behavioural processes: A case study of the lock-in of consumption patterns. Journal of Artificial Societies and Social Simulation, 2(2), 21–35.

Kurtzer, G. M., Sochat, V., & Bauer, M. W. (2017). Singularity: Scientific containers for mobility of compute. PLOS ONE, 12(5), e0177459.

McPhillips, T., Willis, C., Gryk, M. R., Nunez-Corrales, S., & Ludascher, B. (2019). Reproducibility by Other Means: Transparent Research Objects. 2019 15th International Conference on EScience (EScience), 502–509.

Meadows, M., & Cliff, D. (2012). Reexamining the Relative Agreement Model of Opinion Dynamics. Journal of Artificial Societies and Social Simulation, 15(4), 4.

Morris, D., Voutsinas, S., Hambly, N. C., & Mann, R. G. (2017). Use of Docker for deployment and testing of astronomy software. Astronomy and Computing, 20, 105–119.

Open Container Initiative. (n.d.). About the Open Container Initiative. Retrieved October 21, 2021, from

Pineau, J., Vincent-Lamarre, P., Sinha, K., Larivière, V., Beygelzimer, A., d’Alché-Buc, F., Fox, E., & Larochelle, H. (2020). Improving Reproducibility in Machine Learning Research (A Report from the NeurIPS 2019 Reproducibility Program). ArXiv:2003.12206 [Cs, Stat].

Polhill, J. G., Izquierdo, L. R., & Gotts, N. M. (2005). The Ghost in the Model (and Other Effects of Floating Point Arithmetic). Journal of Artificial Societies and Social Simulation, 8(1), 5.

Robinson, D. T., Di Vittorio, A., Alexander, P., Arneth, A., Barton, C. M., Brown, D. G., Kettner, A., Lemmen, C., O’Neill, B. C., Janssen, M., Pugh, T. A. M., Rabin, S. S., Rounsevell, M., Syvitski, J. P., Ullah, I., & Verburg, P. H. (2018). Modelling feedbacks between human and natural processes in the land system. Earth System Dynamics, 9(2), 895–914.

Rollins, N. D., Barton, C. M., Bergin, S., Janssen, M. A., & Lee, A. (2014). A Computational Model Library for publishing model documentation and code. Environmental Modelling & Software, 61, 59–64.

Seppelt, R., & Richter, O. (2005). “It was an artefact not the result”: A note on systems dynamic model development tools. Environmental Modelling & Software, 20(12), 1543–1548.

Wilensky, U., & Rand, W. (2007). Making Models Match: Replicating an Agent-Based Model. Journal of Artificial Societies and Social Simulation, 10(4), 2.

Wilkinson, M. D., Dumontier, M., Aalbersberg, Ij. J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J.-W., da Silva Santos, L. B., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R., … Mons, B. (2016). The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data, 3(1), 160018.

Wilson, G., Bryan, J., Cranston, K., Kitzes, J., Nederbragt, L., & Teal, T. K. (2017). Good enough practices in scientific computing. PLOS Computational Biology, 13(6), e1005510.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2021 Manuela Vanegas Ferro, Allen Lee, Calvin Pritchard, C. Michael Barton, Marco A. Janssen